X



トップページ数学
653コメント725KB

現代数学の系譜11 ガロア理論を読む30 [無断転載禁止]©2ch.net

■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜11 ガロア理論を読む
垢版 |
2017/04/19(水) 21:48:01.49ID:gLi5Ebjw
小学レベルとバカプロ固定お断り!sage進行推奨(^^;
旧スレが512KBオーバー間近で、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです
(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。)

過去スレ
(そのままクリックで過去ログが読める。また、ネット検索でも過去ログ結構読めます)

現代数学の系譜11 ガロア理論を読む
29 http://rio2016.2ch.net/test/read.cgi/math/1484442695/
28 (High level people が時枝問題を論じるスレ) http://rio2016.2ch.net/test/read.cgi/math/1480758460/
27 http://rio2016.2ch.net/test/read.cgi/math/1483075581/
26 http://rio2016.2ch.net/test/read.cgi/math/1480758460/
25 http://rio2016.2ch.net/test/read.cgi/math/1477804000/
24 http://rio2016.2ch.net/test/read.cgi/math/1475822875/
23 http://rio2016.2ch.net/test/read.cgi/math/1474158471/
22 http://rio2016.2ch.net/test/read.cgi/math/1471085771/
21 http://rio2016.2ch.net/test/read.cgi/math/1468584649/
20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/
19 http://wc2014.2ch.net/test/read.cgi/math/1462577773/
18 http://wc2014.2ch.net/test/read.cgi/math/1452860378/
17 http://wc2014.2ch.net/test/read.cgi/math/1448673805/
16 http://wc2014.2ch.net/test/read.cgi/math/1444562562/
15 http://wc2014.2ch.net/test/read.cgi/math/1439642249/
以下次レスへ
0155現代数学の系譜11 ガロア理論を読む
垢版 |
2017/04/24(月) 16:06:50.13ID:1RdECzzL
>>152 関連
練習問題 1: Z/nZ の単元の満たすべき必要十分条件
n を 2 以上の自然数とし、a を整数とする。 このとき a?b=b?a≡1mod n となる b が存在するための必要かつ十分な条件は a と n が互いに素であること、
すなわち gcd(a,n)=1 であることを示せ。

http://nakano.math.gakushuin.ac.jp/~shin/html-files/Algebra_Introduction/2011/08.pdf
11/29 「8 剰余類の演算」 「代数入門」(2011)の資料 学習院大 中野伸 研究室
(抜粋)
8.3 既約剰余類群
法m に関する逆元や零因子の概念も,剰余類のもつ性質ととらえることで簡明になる.
剰余類R ∈ Z/mZ のある元r が法m に関する逆元s ∈ Z をもつとする.
このとき,剰余類S = s の任意の元は法m に関するr の逆元であり,さらにR の任意の元はS の任意の元を法m に関する逆元として持つ.
すなわちa ∈ R, b ∈ S ならばab ≡ 1 (mod m),あるいはRS = 1 と書くこともできる(ああ,ややこしい).
このようなとき,S はR の逆元であると定義しR?1 で表す. この定義のもとで次が成り立つ.

? 法m に関する剰余類の逆元は,もし存在するならば一意的である.
実際,剰余類S, T ∈ Z/mZ がともに剰余類R ∈ Z/mZ の逆元ならば,それぞれの元r ∈ R, s ∈ S, t ∈ T をとるとき,
rs ≡ rt ≡ 1 (mod m) だから,t ≡ t(rs) ≡ (rt)s ≡ s (mod m),
ゆえにT = t = s = S が成り立ち,一意性がいえた.

一方,剰余類R ∈ Z/mZ のある元が法m に関する零因子ならば,R に属するすべての元は法m に関する零因子となる.
そこで,このような剰余類を零因子とよぶことにする.
つまり,剰余類R ∈ Z/mZ が零因子であるための必要十分条件は,RS = 0 をみたす剰余類S ?= 0 が存在することである.
次の命題は定理5.6 からの直接の帰結である.
命題8.3 m を2 以上の自然数とする. 法m に関する剰余類が逆元もつためには,零因子でないことが必要十分である.
また,このような剰余類はm と互いに素な整数a によってa と表される.

定義8.4 m を1 でない自然数とする. 法m に関する逆元をもつ剰余類(同じことだが,零因子でない剰余類)を,法m に関する既約剰余類という.
また,それら全体のなす集合を,法m に関する既約剰余類群といい(Z/mZ)× で表す.
(引用終り)
0156現代数学の系譜11 ガロア理論を読む
垢版 |
2017/04/24(月) 16:20:44.81ID:1RdECzzL
>>155 つづき
”次の命題は定理5.6 からの直接の帰結である.
命題8.3 m を2 以上の自然数とする. 法m に関する剰余類が逆元もつためには,零因子でないことが必要十分である.
また,このような剰余類はm と互いに素な整数a によってa と表される.”

http://nakano.math.gakushuin.ac.jp/~shin/html-files/Algebra_Introduction/
「代数入門」(2016)の資料 学習院大学理学部数学科・中野 伸 研究室
http://nakano.math.gakushuin.ac.jp/~shin/html-files/Algebra_Introduction/2016/05.pdf
「5 整数の合同」 最新版 09/12
(抜粋)
整数a, b の最大公約数が1 のとき,a, b は互いに素であるという. 次の命題は,法と互いに素な整数による割り算が可能なことを示している.
命題5.6 互いに素な整数a,m について次が成り立つ.
(1) a は法m に関して可逆である.
(2) b, c ∈ Z がab ≡ ac (mod m) をみたすならば,b ≡ c (mod m) が成り立つ.

証明
(1) gcd(a,m) = 1 よりax+my = 1 (x, y ∈ Z) と書けるが,
 これよりax−1 = −my はm の倍数,すなわちax ≡ 1 (mod m) であるからa は可逆である.
(2) ab ≡ ac (mod m) の両辺に,a の法m に関する逆元x を掛ければよい.

さて,a が法m に関して可逆ならば,逆元x を用いてax = 1 + my (y ∈ Z) と書けるが,このことは定理3.2 よりgcd(a,m) = 1 を意味する.
上の命題とあわせれば,法m に関するa の逆元が存在するためには,a,m が互いに素であることが必要十分であることがわかる.
式で書けば,gcd(a,m) = 1 ←→ ax ≡ 1 (mod m) をみたすx ∈ Z が存在する.
とくに,p が素数のときは,a ?≡ 0 (mod p) である任意の整数a に対して,法p に関する逆元が存在する.

一般に,gcd(a,m) = 1 のとき,ax にx = 1, 2, を順々に代入していってm で割った余りが1 になるものを探すことで,a の法m に関する逆元のひとつが求まる.
実際に,m ≦ 20 くらいならばこの方法は実用的である.
しかし,大きなm に対しては効率が悪い.
命題5.6 の証明をみると,ax + my = 1 (x, y ∈ Z) のとき,x がa の法m に関する逆元になっているので,ユークリッドの互除法を用いてx, y を求めれば効率よく計算できる.
(引用終り)
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況