X



トップページ数学
517コメント707KB
現代数学の系譜11 ガロア理論を読む27 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:26:21.65ID:zFouRTR2
小学生とバカプロ固定お断り!(^^;
旧スレが500KBオーバー間近で、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。)
過去スレ
現代数学の系譜11 ガロア理論を読む26 http://rio2016.2ch.net/test/read.cgi/math/1480758460/
同25 http://rio2016.2ch.net/test/read.cgi/math/1477804000/
同24 http://rio2016.2ch.net/test/read.cgi/math/1475822875/
同23 http://rio2016.2ch.net/test/read.cgi/math/1474158471/
同22 http://rio2016.2ch.net/test/read.cgi/math/1471085771/
同21 http://rio2016.2ch.net/test/read.cgi/math/1468584649/
同20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/
同19 http://wc2014.2ch.net/test/read.cgi/math/1462577773/
同18 http://wc2014.2ch.net/test/read.cgi/math/1452860378/
同17 http://wc2014.2ch.net/test/read.cgi/math/1448673805/
同16 http://wc2014.2ch.net/test/read.cgi/math/1444562562/
同15 http://wc2014.2ch.net/test/read.cgi/math/1439642249/
同14 http://wc2014.2ch.net/test/read.cgi/math/1434753250/
同13 http://wc2014.2ch.net/test/read.cgi/math/1428205549/
同12 http://wc2014.2ch.net/test/read.cgi/math/1423957563/
同11 http://wc2014.2ch.net/test/read.cgi/math/1420001500/
同10 http://wc2014.2ch.net/test/read.cgi/math/1411454303/
同9 http://wc2014.2ch.net/test/read.cgi/math/1408235017/
同8 http://wc2014.2ch.net/test/read.cgi/math/1364681707/
同7 http://uni.2ch.net/test/read.cgi/math/1349469460/
同6 http://uni.2ch.net/test/read.cgi/math/1342356874/
同5 http://uni.2ch.net/test/read.cgi/math/1338016432/
同(4) http://uni.2ch.net/test/read.cgi/math/1335598642/
同3 http://uni.2ch.net/test/read.cgi/math/1334319436/
同2 http://uni.2ch.net/test/read.cgi/math/1331903075/
同初代 http://uni.2ch.net/test/read.cgi/math/1328016756/
そのままクリックで過去ログが読める。また、ネット検索で過去ログ結構読めます。
0002現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:27:32.76ID:zFouRTR2
さて
(現代数学の系譜11 ガロア理論を読む18)>>2 再録 
1.時枝問題(「箱入り無数目」数学セミナー2015.11月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」

2.続けて時枝はいう
 私たちのやろうとすることはQのコーシー列の集合を同値関係で類別してRを構成するやりかた(の冒頭)に似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^Nは,ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版).
念のため推移律をチェックすると,sとs'が1962番目から先一致し,s'とs"が2015番目から先一致するなら,sとs"は2015番目から先一致する.
〜は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる.
任意の実数列S に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ.
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
つまりsd,sd+1,sd+2,・・・を知ればsの類の代表r は決められる.
更に,何らかの事情によりdが知らされていなくても,あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd(実はsd,sd+1,・・・,sD ごっそり)が決められることに注意しよう.
(補足)
sD+1, sD+2,sD+3,・・・:ここでD+1などは下付添え字
0003現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:27:51.73ID:zFouRTR2
3.つづき
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列S^1,S^2,・・・,S^lOOを成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1〜100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
 第1列〜第(k-1) 列,第(k+1)列〜第100列の箱を全部開ける.
第k列の箱たちはまだ閉じたままにしておく.
開けた箱に入った実数を見て,代表の袋をさぐり, S^1〜S^(k-l),S^(k+l)〜SlOOの決定番号のうちの最大値Dを書き下す.
 いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま
 D >= d(S^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.
(補足)
S^k(D+l), S^k(D+2),S^k(D+3),・・・:ここで^kは上付き添え字、(D+l)などは下付添え字
0004現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:28:14.06ID:zFouRTR2
(現代数学の系譜11 ガロア理論を読む18)>>614 再録 
数学セミナー201511月号P37 時枝記事に、次の一文がある

「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
ここは有名なヴィタリのルベーグ非可測集合の例(Q/Zを「差が有理数」で類別した代表系, 1905年)にそっくりである.」

さらに、前スレでは引用しなかったが、続いて下記も引用する
「逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない.
しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」

(現代数学の系譜11 ガロア理論を読む18)>>176 より 再録
数学セミナー201511月号P37 時枝記事より

「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
(独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.)
しかし,素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」
0005現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:28:40.83ID:zFouRTR2
>>4
補足

(引用開始)
「(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
・・・
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」
(引用終了)

これは、(1)無限を直接扱う を否定している。だから、残る選択肢は、(2)有限の極限として間接に扱う だ
ところが、上記で見たように、(2)有限の極限として間接に扱う と、無限数列のしっぽによる同値類分類は、相性がよくない
果たして、(2)有限の極限として間接に扱う で、無限数列のしっぽによる同値類分類が完遂できるのか? 大きな問題だろう
0006現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:29:01.59ID:zFouRTR2
>>5

前スレより
651 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/03(土) 18:40:32.23 ID:6Rgz8i9T [39/39]

時枝記事の問題点>>114-115 を、まとめておく

1.そもそも、可算無限の数列のしっぽなんて、「同値から推移律確認! はいおわり」 それですむ話じゃないだろう
2.コーシー列はヒルベルト空間内だが、時枝記事のR^Nはヒルベルト空間外。ヒルベルト空間外の数列は扱いが難しい。ま、そこらがトリックのネタだろう
3.”しっぽが一致する”を実際の数列について、判別する方法(実行方法)が与えられていない(絵に描いた餅だ。数列の最初から見て行っては終わらない)
4.決定番号があやしい。特に、決定番号の確率分布がすそが重い(超ヘビー)確率分布になるから、99/100が言えない(∵大数の法則も中心極限定理も不成立だから)
5.さらに、確率分布の変数として、決定番号を見たときに、定義域は[1, ∞)となる。だから、∞まで考える必要がある。この点からも、99/100は簡単に言えない
6.0〜9の数を箱に入れる極簡単なミニモデルでも、可算無限数列のしっぽは、現代数学では扱えない
  (このミニモデルでは、実数の無限小数展開と平行して論じられるので、便利なのだが)
  まして、任意の実数が箱に入る場合(つまり1つの箱に連続無限大の自由度があるモデル)においておや
0007現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:29:30.57ID:zFouRTR2
前スレ(現代数学の系譜11 ガロア理論を読む22)より 再録 

674 自分返信:132人目の素数さん[] 投稿日:2016/09/17(土) 23:02:43.81 ID:MokdApDK [41/44]
>>654
>無限級数に対してよくある誤解

ヒルベルトの無限ホテルのパラドックス
https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%81%AE%E7%84%A1%E9%99%90%E3%83%9B%E3%83%86%E3%83%AB%E3%81%AE%E3%83%91%E3%83%A9%E3%83%89%E3%83%83%E3%82%AF%E3%82%B9
(抜粋)
新たな客は1人どころか、複数でも、(可算)無限でもよい。例えば、1号室の客を2号室へ、2号室の客を4号室へ、3号室の客を6号室へ、…、n 号室の客を 2n 号室へ、…と移せば、1号室、3号室、5号室、…つまり奇数号室は空室になるから、無限の客を新たに泊めることができる。

さらに次のようなこともできる。それぞれに無限の乗客が乗った無限台の車がホテルに乗りつけたとする。この場合、まず奇数号室を上のようにして空け、1台目の乗客を 3n(n = 1, 2, 3, …)号室に、2台目の乗客を 5n(n = 1, 2, 3, …)号室に、…というふうに入れる。i 台目の乗客は pn(ここで p は i + 1 番目の素数)に入れればよい。

現実にある(2室以上ある)有限ホテルでは、当然奇数号室の数は全室数より少ないが、無限ホテルではそうではない。数学的には、全室からなる集合の基数(有限集合における要素の個数に当たる)は、その真部分集合である奇数号室すべての集合の基数と等しい。これは無限集合の特徴である。この可算無限集合の基数は アレフ 0 と表される。
(引用おわり)
0008現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:29:50.16ID:zFouRTR2
前スレ(現代数学の系譜11 ガロア理論を読む22)より 再録 

675 自分返信:132人目の素数さん[] 投稿日:2016/09/17(土) 23:11:52.43 ID:MokdApDK [42/44]
>>654
>無限級数に対してよくある誤解

https://ja.wikipedia.org/wiki/%E3%83%87%E3%83%87%E3%82%AD%E3%83%B3%E3%83%88%E7%84%A1%E9%99%90
デデキント無限
デデキント無限集合であるとは、A と同数(equinumerous)であるようなA の真部分集合B が存在することである。それはつまり、A とA の真部分集合B の間に全単射が存在するということである。

選択公理との関係
整列可能な任意の無限集合はデデキント無限である。
ACは任意の集合が整列可能であることを述べた整列可能定理と同値であるから、ACから無限集合はデデキント無限集合であるということが簡単に導かれる。
0009現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:30:08.96ID:zFouRTR2
前スレ(現代数学の系譜11 ガロア理論を読む22)より 再録 

507 自分返信:132人目の素数さん[] 投稿日:2016/09/10(土) 14:08:29.04 ID:q7Skbg74 [7/14]
>>506 つづき
上記のように解析においては、有限と無限はあまり混乱しないが
代数においては、有限と無限の言葉使いがよく混乱する

例えば、有限単純群の理論がある https://ja.wikipedia.org/wiki/%E5%8D%98%E7%B4%94%E7%BE%A4 単純群 - Wikipedia
有限単純群の中に、いくつかの無限系列の族がある。簡単な例では、Zp ? 素数位数の巡回群。素数pは考えている範囲では有限だが、取り得るp値の範囲としては無限だ

有限と無限の言葉使いの混乱の例はさておいて
いま確率が問題になっているのだから、決定番号d(s)の値域dom(d(s))がどうなっていて、dom(d(s))の範囲がどうかとか、d(s)の平均値や分散、標準偏差・・・

そういう確率分布を特徴づける値がどうかと
その場合には、dom(d(s))の範囲は無限大まで考えるべし、正規分布同様にだ
0010現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:31:08.26ID:zFouRTR2
前スレ26より
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1416621784
量子系について - 量子系はなぜヒルベルト空間で記述されるのでしょう... - Yahoo!知恵袋: 2008/5/19

量子系はなぜヒルベルト空間で記述されるのでしょうか?
ヒルベルト空間は内積(ノルム)が定義され要素の列がコーシー列となる空間のことだと思いますがなぜこれらの性質が必要となるのですか?

ベストアンサーに選ばれた回答 phd_ninoさん 2008/5/20

なぜ、ヒルベルト空間が必要かはお答えできませんが、
少なくとも交換関係を導くためにはヒルベルト空間が必要です。
ノルムが定義されないと、交換関係が導かれません。

完備性が物理的になぜ必要かは、私ははっきりは知りませんが、
量子力学の固有値をヒルベルト空間内のベクトルとして扱うことと関連しているのではないでしょうか?
0011現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 14:44:27.18ID:zFouRTR2
前 スレ http://rio2016.2ch.net/test/read.cgi/math/1480758460/666
より

google検索 ホイテカ ワトソン 数学
結果
5 件 (0.26 秒)
検索結果
現代数学の系譜11 ガロア理論を読む20 [無断転載禁止]c2ch.net
wc2014.2ch.net/test/read.cgi/math/1466279209/
2016/06/19 - 2 :現代数学の系譜11 ガロア理論を読む:2016/06/19(日) 04:50:40.78 ID:suG/dCz5: (時枝問題をまだ引っ張ってます) 前々スレ>>2 再録 (現代 ...... ホイテカ・ワトソンと一緒で、そういうのを持ってると自分の肥しになり ますわ。時々眺める ...

数学の本 第34巻 - 2ちゃんねる
science6.2ch.net/test/read.cgi/math/1245601491/
2009/06/22 - あのホイテカ・ワトソンもそんな感じですわな; 95 :132人目の素数さん:2009/07/11(土) 00:32:44: 要するにそれ以外は、ほとんどすべてダメだと 森先生は解析概論についてゆうておる とある物好きが、過去の遺物としての、興味ある単なる ...

代数学・幾何学・解析学スレッド - 2ちゃんねる
uni.2ch.net/.../627,647,668-679,710,721,726,734-735,739,742-756,769,772,774,77...
2010/09/09 - 17 :132人目の素数さん:2010/09/09(木) 23:36:03: なんだ、代数学・幾何学・解析学の全ての手法を使う分野のスレ ...... 556 :猫は一匹180円 ◇MuKUnGPXAY :2011/11/20(日) 12:09:27.03: ホイテカ・ワトソンにも書いてあるんじゃない ...

数学を独学でMASTERする事は可能ですか? | ログ速@2ちゃんねる(net)
www.logs
oku.com ? 板一覧 ? 2ちゃんねる(net) ? 数学
2009/12/26 - たとえば、数学をMASTERできた人のやりかたをまねるとか、名著と呼ばれるものを読みつくすとか、数学の歴史を調べてみるとか、歴史上の数学者が何故難問をとけたのかを探る ...... そやからホイテカ・ワトソンでもっちゅうか数学科向けには

代数学・幾何学・解析学スレッド | 2ch勉強・学問まとめ - 学問まとめリード
gakumon-matomeread.doorblog.jp/archives/26583821.html
2013/05/07 - 2chの学問情報『代数学・幾何学・解析学スレッド』についてのまとめです。 ... 556: 猫は一匹180円 ◇MuKUnGPXAY 2011/11/20(日) 12:09:27.03 ID: ホイテカ・ワトソンにも書いてあるんじゃないでしょうか。 猫; 561: 132人目の素数さん ... 👀
Rock54: Caution(BBR-MD5:f2c519fe5384e767e1c9e99abdcfc293)
0013132人目の素数さん垢版2016/12/30(金) 15:17:59.50ID:DA9ugHgO
前スレの書き込みに対して
> 「正の無限大に発散する」場合も、極限は存在するよ・・、おい

スレ主は元々
> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに
> 上限はなく、無限大の極限を考える必要がある
と書いているでしょう

それでたとえΔrの極限が存在しても極限をとる前に存在していた0[n]の開始番号がΔrの極限をとると無くなるので
Δrの極限から決定番号を求めることができないと言っている

> 決定番号がlim →∞ になっても、∞−∞=0に限られないんだよ
> ∞−∞=1も可能だな

これは間違いで決定番号の極限に関しては∞−∞=0になる

自然数全体の集合の順序数をωと書くことにして任意の有限集合の順序数をnと書くことにすると
n + ω = ω ≠ ω + n であってこれを用いれば
[An_{1}{?}, 0[n]_{?+1}{∞}]のように無限数列を書いた場合
An_{1}{?}が有限数列であれば0[n]_{?+1}{∞}は無限数列となり (n + ω = ωに対応)
An_{1}{?}が無限数列であれば0[n]_{?+1}{∞}は長さが0(つまり∞−∞=0)にならなければならない (ω ≠ ω + nに対応)

決定番号の極限に関して∞−∞=1ならばω = ω + 1となって矛盾する
0014現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 15:51:27.67ID:zFouRTR2
>>11

Whittaker-WatsonのA Course of Modern Analysis
正直、この本はいままで見てないな
訳は下記か・・、記憶がない・・

http://wwwhep.s.kanazawa-u.ac.jp/tosho/suwa.htm
数和 モダンアナリシス E.T.Whittaker, G.N.Watson   宇野書店     無限の取扱いと解析函数への入門 主要な超越函数の解説 translator:佐藤常三,洲之内治男, 所在不明

https://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%89%E3%83%9E%E3%83%B3%E3%83%89%E3%83%BB%E3%83%86%E3%82%A4%E3%83%A9%E3%83%BC%E3%83%BB%E3%83%9B%E3%82%A4%E3%83%83%E3%83%86%E3%83%BC%E3%82%AB%E3%83%BC

ワトソンと共著、佐藤常三・洲之内治男 訳、「モダンアナリシス 解析学の方法 第1冊」、宇野書店、1967年。
ワトソンと共著、佐藤常三・洲之内治男 訳、「モダンアナリシス 解析学の方法」、新科学出版社、2001年。
ワトソンと共著、正野重方 訳、「解析学」、文政社、1943年。

欧文の著作・参考文献。電子版を無料公開しているものも多い。 {{:en:Wikisourceauthor|Edmund Taylor Whittaker}}

A Course of Modern Analysis. 1902.
0015現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 16:24:21.76ID:zFouRTR2
>>13

ID:DA9ugHgOさん、端的に書かせて貰って悪いが

あなたは、いわゆる文系の数学で終わって、いま趣味で大学レベルの数学の勉強をしていると見た

Y or N 嘘でも良いから、答えてくれ
0016現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 16:38:42.41ID:zFouRTR2
>>14

R・クーラン、D・ヒルベルト 『数理物理学の方法』は有名だし、手に取ったことはある
まあ、買えなかったが

スミルノフ高等数学教程は、大学の図書館にそろっていたね(大きな書店にもあった)
これも眺めただけだが

https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%92%E3%83%A3%E3%83%AB%E3%83%88%E3%83%BB%E3%82%AF%E3%83%BC%E3%83%A9%E3%83%B3%E3%83%88
リヒャルト・クーラント
(抜粋)
リヒャルト・クーラント(Richard Courant, 1888年1月8日 - 1972年1月27日)は、ドイツおよびアメリカ合衆国の数学者。

ユダヤ人だったクーラントは1933年、同胞達よりも早くドイツを脱出し、1年後ケンブリッジ大学の、1936年にはニューヨークへ渡りニューヨーク大学の教授となった。そこで大学院での数学研究の学会立ち上げの仕事を与えられ大成功した。クーラント数学研究所(1964年に改名)は数学で最も権威ある研究所の1つであり続けている。

彼の著名な組織的才能とは別に、クーラントは数学の業績でも名高い。彼の書いた教科書Methods of mathematical physics(邦題:『数理物理学の方法』)は80年以上後もいまだに使われている。
ハーバート・ロビンズと共に一般書What is Mathematics?(邦題:『数学とは何か』)はいまだに出版されている。クーラントの名は元々技師によって発明された有限要素法でも知られており、彼はそれを確固たる数学の手法へ置いて様々な問題へ応用した。この方法は今、偏微分方程式を数量的に解く最重要な方法となっている。

アメリカ合衆国ニューヨークで死去。84歳没。

http://blog.goo.ne.jp/ktonegaw/e/d26e1bf0916344802c90d785c535149f
目次情報: スミルノフ高等数学教程 全12冊 - とね日記:2016年04月04日
(抜粋)
「超弦理論への最短ルート: 40冊の物理学、数学書籍」
http://blog.goo.ne.jp/ktonegaw/e/d8deb00ae3b5b9e0e9a04f3c3ecfb11e
という記事で紹介した「スミルノフ高等数学教程」は物理数学を学ぶための決定版。気になっている方もいることだろう。全巻の目次情報を掲載しておくので購入するかどうかの判断材料としてお使いいただきたい。
0017132人目の素数さん垢版2016/12/30(金) 16:44:33.70ID:DA9ugHgO
>>15
前スレに
> 見るところ、甘くて大学1年か。極限が分かってない? 高1?
とスレ主は書いていたからレベルにこだわりたかったらそれで良いのではないですか
他の人にとってはスレ主の理解度がどのレベルなのか判断する目安になるでしょう
0018現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 17:29:56.05ID:zFouRTR2
>>17
了解

>あなたは、いわゆる文系の数学で終わって、いま趣味で大学レベルの数学の勉強をしていると見た
>Y or N 嘘でも良いから、答えてくれ

に対して、否定はしないってことね
正直だね
ま、うそついても墓穴を掘るだけだろうが

ところで、「∞−∞=不定」って、理系の常識なんだよね
順序数をωを持ち出して正当化しようという気持ちは分かるが、正直順序数 ωは、物理などでは使わないから、よく理解できていないところがあるが、正当化できないと思うよ

例えば、不老不死の神様が居て、弟が1年後に生まれた
年の差1は、何年経っても変わらないだろ。お互い年をとって無限に生きても、年の差1は不変だ

で、弟が生まれるのは1年後に限らない
n年後が普通に考えられる

だから、「∞−∞=n」だ
ところで、nを年単位にしているが、端数を考えると、任意のr(実数)を考えられる

だから不定なんだよ

ところで、数列で元の数列の長さを兄と思いなよ
決定番号が弟だよ
0019132人目の素数さん垢版2016/12/30(金) 17:48:14.13ID:w9LCLLk2
>[1,∞)は開集合であることにご注意
that tell us his level well.
0020132人目の素数さん垢版2016/12/30(金) 17:49:01.22ID:3TupPN97
前スレ>678宛て
>>実数列 {d(n)} は正の無限大に発散するから、決定番号の極限は存在しない。

>そういう言い方がさ、数学科含む理系の人が聞いたら、目を丸くする表現だわさ、やれやれ
極限は通常は実数の値として定義する。
実数列 {a_n} が極限を持つとき {a_n} は収束する。
{a_n} が極限を持たないとき {a_n} は発散する。
ここに、{a_n} が n→+∞ のとき振動するときも {a_n} は発散する。
収束性に関する転換法により、{a_n} が極限を持たないことと {a_n} は発散することとは同値である。
だから、{a_n} が発散することがいえたら、{a_n} が極限を持たないことが従う。
こういうことは、殆ど高校数学の範囲に入る。
元々、スレ主の高校レベルの確率や極限の理解不足から生じて長引いた話だろう。
0021132人目の素数さん垢版2016/12/30(金) 17:51:37.56ID:+x/x8/0M
スレ主は極限をとっても属する同値類が変わらないと思っているのか。おめでてーな
0022現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 18:06:46.53ID:zFouRTR2
>>18-21

えーと、順序数ね(下記)
下記では、順序数の演算で和は定義できるが、差は定義されていないよ
だから、>>13の「決定番号の極限に関して∞−∞=1ならばω = ω + 1となって矛盾する」は不成立だな
(下記の拡張された複素平面も見てね。”拡張された複素平面”理系の複素関数論やれば常識だが)
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E6%95%B0
順序数
(抜粋)
数学でいう順序数(じゅんじょすう、英: ordinal number)とは、整列集合同士の"長さ"を比較するために、自然数[1]を拡張させた概念である。

順序数の演算
順序数の間には自然数の場合と同じく和、積、冪が定義できる。特に有限順序数の間の演算は通常のそれと一致する。

注釈
1^ 本項目では、各自然数が自分自身より小さな自然数全体の集合と等しくなるような仕方で自然数が定義されているものとする。例えば、0 = ? , 1 = { 0 } , 2 = { 0, 1 } である。
(引用終り)

順序数と同様な話は、下記の拡張された複素平面でもある
http://www.eng.niigata-u.ac.jp/~nomoto/12.html
無限遠点と拡張された複素平面
(抜粋)
∞ という「数」をある程度きちんと導入することもできて、とくに複素数全体の集合 C に ∞ という1点を付け加えた集合では微分のような演算もきちんと定義される。ここでは複素数の1つとしての ∞ の取り扱い方について簡単に説明しよう。
0023現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 18:20:07.77ID:zFouRTR2
極限からみで、こんなのがヒットしたので貼っておく

http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1195-5.pdf
論法の形成過程の考察 : 解析学の基礎の転換の要因 成城大学立教大学 中根美知代 数理解析研究所講究録 1195 巻2001 年
(抜粋)
1. はじめに

今日多くの微分積分学の教科書は, この論法は, フランスの数学者
Augustin-Louis Cauchy (1789-1857) によりとられたものとしている.
ところがε - δ 論法が登場したといわれているCauchy の代表的な教科書『解析学教程』
はそのようには書かれていない. そこではε - δ 論法で回避したはずの「限りなく近づく」
という表現を全面的に打ち出して様々な概念が定義されているのみならず, 無限小も概念
を定義したうえで活用して, 微積分の理論を展開している. その後にCauchy が書いた教
科書『微分積分学要論』(1823 年),『微分学講義』(1829 年) においてもこの状況はほと
んど変わっていない. 私達が期待したようなことをCauchy はやっていないのである.
教科書の歴史的記述は, 原典や数学史の専門的な文献にあたったうえでなされたとは限
らないので, むやみに信頼しないほうがいい場合もある. ところが数学史の専門的研究も
また, Cauchy をε - δ 論法の創始者・厳密な解析学を構築した人と位置づけているのであ
る.

Cauchy が敷いた路線をweierstrass が継承し, 今日見るような解析学が完成したとす
るのが先行研究の見解であるが, この道のりは, 「解析学の厳密化」の?言で片づけられ,
十分に論じられていないのが現状_{で}ある}.2)$ 本報告では, この過程もあらためて注目し, 解
析学の基礎づけの転換の要因を探っていきたい.
0025現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 19:42:06.87ID:zFouRTR2
>>24 じゃ、貴方たちにはこれを

http://park20.wakwak.com/~ichikawa-clinic/2-ya.htm
n→∞
(抜粋)
「無限大を記号で表すと∞になる。可能無限の立場では、この記号は認められていない。これは実無限の記号さ」

「でも、魅力的な記号だわ。うっとりするほど、引き込まれる記号よ」

「8を横にしただけだろう?。それだけで、これほど魅了されるのか?」

「サクくん、あなたにはこの記号の魅力がまだわかっていないのよ。これは、数学を超えた神聖な記号なのよ」

「超えすぎているさ」

数学を超えた記号が数学内で使用されていることに、サクくんはすでに気がついていました。

「でも、便利よ」

「確かに∞は便利な記号であることは認めるよ。だからこそ、可能無限でも使用しているのさ。たとえば、n→∞という記号は、可能無限では『nという自然数を無限に大きくして行く』という意味さ。これを『nを無限大に近づける』と読んではいけないし、『nを無限大にする』と読んでもいけない」

「読み方に規定があるのね」

「もちろんだ。誤解を招かない読み方を守ることは、とても大切さ。nをいくら大きくしても、nは無限大にはまったく近づかない。nと∞の間には、決して埋めることのできない概念上の大きな隔たりがあるからさ。この隔たりを埋める作業は、拡張と呼ばれている論理の飛躍だけだ」

「nはどこまで大きくしても自然数であって、無限大という名前の非自然数には変化しないのね。でも、無限先で自然数nは∞という非自然数に変化できると考えたほうがかっこ良くないかしら?」

「かっこ良いか悪いかの問題ではない。俺たちが問題にしているのは、記号が実無限で、意味は可能無限だということだ。ここにも、実無限と可能無限の混在が認められるのさ。でも、可能無限と実無限の違いをしっかり理解しながら使う限りは、あまり混乱しないですむ。この2つを見分ける力がないと、パラドックスが発生して頭の中が混乱するだけさ」

ロマンチックな気分に浸っているミサさんを現実に引き戻したサクくんは、女性の心理をあまり理解していないようでした。

「∞は無限大を表す記号さ。n→∞は記号の組み合わせで、これ自体も立派な記号さ」

∞は、記号である。n→∞も、記号である。
つづく
0026現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 19:42:46.74ID:zFouRTR2
>>25 つづき

「∞は記号といっても、実無限の記号だ」

「すると、n→∞も実無限の記号なの?」

「いいや、違う」

「ええ?」

ミサさんはびっくりしました。

「∞を言葉に直すと、『無限大』になる。しかし、n→∞を言葉に直すと、『nを無限大に近づける』にならずに、『nを無限に大きくする』になる」

「n→∞は∞を含んでいるのに、これを言葉になおすと∞が消えてしまうの?」

「そうさ。記号では無限大を含んでいるのに、それを言葉に変換すると無限大が消えるのさ。つまり、実無限が可能無限に変化したのさ」

∞は、実無限の記号である。

n→∞は、可能無限の記号である。

「なるほど、実無限の記号を一部だけ使いながら、思考からは実無限をみごとに消し去ったのね」

「昔の人は、このような巧みな技を使っていたのさ。たぶん、無意識的だと思うよ」

何という巧妙な思考でしょう。ミサさんは改めて、昔の人たちの数学の技を見直しました。

「ちなみに、n→∞という記号の組み合わせが分解できないことは知っているか?」

「分解できるわよ。nと→と∞にね」

「nは自然数で、∞は無限大だ。では→はどんな論理記号なのだ?」

「A→Bという論理式と違うわね」

「もちろん違う。n→∞を『nならば∞である』と読む人はいないだろう。これは∞を含んでいるけれども、分解できない記号さ」

「つまり、記号の組み合わせの形をしているけれども、形式上の組み合わせにすぎないのね」

「そうさ」

「それならば、サクくん。limから切り離すこともおかしいわ」

「どうしてだ?」

「lim という記号は、これ1個だけで意味上の最小単位

n→∞

でしょう。これを分解することはできないはずよ」

痛いところを突かれたサクくんでした。

(引用終り)
0027現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 20:38:10.16ID:zFouRTR2
>>25
(抜粋)の(抜粋)

「確かに∞は便利な記号であることは認めるよ。だからこそ、可能無限でも使用しているのさ。たとえば、n→∞という記号は、可能無限では『nという自然数を無限に大きくして行く』という意味さ。これを『nを無限大に近づける』と読んではいけないし、『nを無限大にする』と読んでもいけない」

「誤解を招かない読み方を守ることは、とても大切さ。nをいくら大きくしても、nは無限大にはまったく近づかない。nと∞の間には、決して埋めることのできない概念上の大きな隔たりがあるからさ。この隔たりを埋める作業は、拡張と呼ばれている論理の飛躍だけだ」

「nはどこまで大きくしても自然数であって、無限大という名前の非自然数には変化しないのね。」

「俺たちが問題にしているのは、記号が実無限で、意味は可能無限だということだ。ここにも、実無限と可能無限の混在が認められるのさ。でも、可能無限と実無限の違いをしっかり理解しながら使う限りは、あまり混乱しないですむ。この2つを見分ける力がないと、パラドックスが発生して頭の中が混乱するだけさ」

「∞は無限大を表す記号さ。n→∞は記号の組み合わせで、これ自体も立派な記号さ」

∞は、記号である。n→∞も、記号である。

「∞は記号といっても、実無限の記号だ」

「すると、n→∞も実無限の記号なの?」

「いいや、違う」

「∞を言葉に直すと、『無限大』になる。しかし、n→∞を言葉に直すと、『nを無限大に近づける』にならずに、『nを無限に大きくする』になる」

「n→∞は∞を含んでいるのに、これを言葉になおすと∞が消えてしまうの?」

「そうさ。記号では無限大を含んでいるのに、それを言葉に変換すると無限大が消えるのさ。つまり、実無限が可能無限に変化したのさ」

∞は、実無限の記号である。

n→∞は、可能無限の記号である。

「なるほど、実無限の記号を一部だけ使いながら、思考からは実無限をみごとに消し去ったのね」

「昔の人は、このような巧みな技を使っていたのさ。たぶん、無意識的だと思うよ」

何という巧妙な思考でしょう。ミサさんは改めて、昔の人たちの数学の技を見直しました。
0028132人目の素数さん垢版2016/12/30(金) 21:04:04.30ID:+x/x8/0M
s_1 = (1, 0, 0, 0, 0, 0, …),
s_2 = (1, 1, 0, 0, 0, 0, …),
s_3 = (1, 1, 1, 0, 0, 0, …),

すなわち、nを自然数としたとき、数列s_nを初項から第n項までを1、それ以降を0とする数列とする。
このとき、すべての自然数nについて、s_nはs_1の同値類に属すのは明らか。
では、lim[n→∞]s_n はs_0の同値類に属すか?

これに理由をつけて答えてよ
0030現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 21:48:28.80ID:zFouRTR2
>>27
(抜粋)の(抜粋)の(抜粋)

「n→∞という記号は、可能無限では『nという自然数を無限に大きくして行く』という意味さ。これを『nを無限大に近づける』と読んではいけないし、『nを無限大にする』と読んでもいけない」

「nをいくら大きくしても、nは無限大にはまったく近づかない。nと∞の間には、決して埋めることのできない概念上の大きな隔たりがあるからさ。この隔たりを埋める作業は、拡張と呼ばれている論理の飛躍だけだ」

「nはどこまで大きくしても自然数であって、無限大という名前の非自然数には変化しないのね。」

「俺たちが問題にしているのは、記号が実無限で、意味は可能無限だということだ。ここにも、実無限と可能無限の混在が認められるのさ。でも、可能無限と実無限の違いをしっかり理解しながら使う限りは、あまり混乱しないですむ。この2つを見分ける力がないと、パラドックスが発生して頭の中が混乱するだけさ」

「∞は無限大を表す記号さ。n→∞は記号の組み合わせで、これ自体も立派な記号さ」

∞は、記号である。n→∞も、記号である。

「∞は記号といっても、実無限の記号だ」

「すると、n→∞も実無限の記号なの?」

「いいや、違う」

「∞を言葉に直すと、『無限大』になる。しかし、n→∞を言葉に直すと、『nを無限大に近づける』にならずに、『nを無限に大きくする』になる」

「n→∞は∞を含んでいるのに、これを言葉になおすと∞が消えてしまうの?」

「そうさ。記号では無限大を含んでいるのに、それを言葉に変換すると無限大が消えるのさ。つまり、実無限が可能無限に変化したのさ」

∞は、実無限の記号である。

n→∞は、可能無限の記号である。

「なるほど、実無限の記号を一部だけ使いながら、思考からは実無限をみごとに消し去ったのね」

「昔の人は、このような巧みな技を使っていたのさ。たぶん、無意識的だと思うよ」

何という巧妙な思考でしょう。ミサさんは改めて、昔の人たちの数学の技を見直しました。
0031132人目の素数さん垢版2016/12/30(金) 22:05:56.54ID:DA9ugHgO
>>18
> 年の差1は、何年経っても変わらないだろ。お互い年をとって無限に生きても、年の差1は不変だ

前スレより
> ”lim_{m→∞}[An_{1}{m}, 0n_{m+1}{∞}]=An_{1}{∞}”が言えるかも知れないが、別のことも言えるよ
> 拡張実数では、普通の実数に対してm+1≠m だが、∞+1=∞ 成立だよ。ここらが分かってないと見た・・

スレ主は0[n]_{∞+1}{∞}だと数列の始まりと終りが逆転して困るから自分で「∞+1=∞」
つまり年齢差をなくしているじゃないか
0032現代数学の系譜11 ガロア理論を読む垢版2016/12/30(金) 23:29:34.56ID:zFouRTR2
>>31
どうも。スレ主です。
あなたが言いたいことがよく分からないが

実無限とかlim_{m→∞}(可能無限)とか
無限がからむと、いろんなことが、言えるってことさ

でも、決定番号で、lim_{m→∞}(可能無限)が考えられるよというわけ
もちろん、∞とか、ωを考えることも可能さ

それは人が考えることだから、なんでも可能だよ(選択公理を使う使わないと同じことさ)
だが、今回の時枝記事に限っていえば、その前提は
>>2
1.可算無限個の箱
2.実数列の集合 R^N s = (s1,s2,s3 ,・・・)
3.決定番号は、任意の実数列Sと同値な代表r= r(s)とで、sとrとがそこから先ずっと一致する番号という定義(もちろん s,r ∈R^N )

この3つは押さえておこうね
で、「可算無限個の箱」だから、これは実無限だよ

それから、問題は、これらの前提から
「100列で確率99/100」が数学的に厳密に導けるかの問題だというゴールも意識しておこう

決定番号で、∞とか、ωを考える必要は無いんじゃないかな?
lim_{m→∞}(可能無限)を考えれば十分だろ
0033132人目の素数さん垢版2016/12/30(金) 23:45:50.04ID:w9LCLLk2
Why do you ignore >>28?
0034132人目の素数さん垢版2016/12/31(土) 01:08:18.89ID:3V1BVKBo
>>32
> 決定番号で、∞とか、ωを考える必要は無いんじゃないかな?
> lim_{m→∞}(可能無限)を考えれば十分だろ

・決定番号が有限値でないことがあるから時枝の戦略は成り立たない
・キマイラ数列∈/R^Nが存在するから時枝の戦略は成り立たない
・決定番号の確率分布は裾が重いから時枝の戦略は成り立たない
・決定番号の確率分布では期待値や分散が求まらないから時枝の戦略は成り立たない
・R^Nはヒルベルト空間外だから時枝の戦略は成り立たない
・ヒルベルトのホテルのパラドックスを考えると時枝の戦略は成り立たない
・決定番号は宇宙に存在する原子数よりも大きくなるから時枝の戦略は成り立たない
・エントロピーはほとんど変化しないから時枝の戦略は成り立たない
・"確率の専門家"が疑問を呈したから時枝の戦略は成り立たない
・"院生クラスの誰か"が与太話とコメントしたから時枝の戦略は成り立たない
・なにはともあれ個人的に時枝の戦略は不成立だと思う

今は一番上のやつなw

釣り師も釣られ師もお疲れさん
よいお年を
0035132人目の素数さん垢版2016/12/31(土) 01:21:05.24ID:NLxhAFAx
スレ主からの回答がないけど、やっぱり極限を理解してないのか?
>>28-29でタイポしたからもう一度書くと

s_1 = (1, 0, 0, 0, 0, 0, …),
s_2 = (1, 1, 0, 0, 0, 0, …),
s_3 = (1, 1, 1, 0, 0, 0, …),

すなわち、nを自然数としたとき、数列s_nを初項から第n項までを1、それ以降を0とする数列とする。
このとき、すべての自然数nについて、s_nはs_1の同値類に属すのは明らか。
では、lim[n→∞]s_n はs_1の同値類に属すか?

これに理由をつけて答えてよ

念のため言っておくと、ここでいう数列は普通の実数列、すなわち自然数から実数への写像、つまりインデックスは自然数だ。
自然数でないωや∞を(自分で何らかの定義をしなければ)インデックスにとることはできない。
0036132人目の素数さん垢版2016/12/31(土) 01:56:24.37ID:EYH44b4P
>>35
All he can do is run away.
0037132人目の素数さん垢版2016/12/31(土) 02:01:00.13ID:Q2SC3jm+
>>32
スレ主の引用では
> 可能無限では『nという自然数を無限に大きくして行く』という意味さ。これを『nを無限大に近づける』
> と読んではいけないし、『nを無限大にする』と読んでもいけない
> nをいくら大きくしても、nは無限大にはまったく近づかない。nと∞の間には、決して埋めることのできない
> 概念上の大きな隔たりがあるからさ。この隔たりを埋める作業は、拡張と呼ばれている論理の飛躍だけだ
> nはどこまで大きくしても自然数であって、無限大という名前の非自然数には変化しないのね。

時枝記事に出てくる極限
> (2)有限の極限として間接に扱う
を上の引用の言葉を使って書き換えると可能無限と実無限の間には埋めることのできない概念上の大きな隔たり
があるから実無限を上限のない有限(つまり可能無限)の極限として間接的に扱うということになる
よって時枝記事に出てくる数列に対しての極限は上の引用とは逆に「nを無限大にする」と読まなければいけない

> Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、
> 数列の有限の数列の長さに上限はなく、無限大の極限を考える必要がある
スレ主も「無限大の極限を考える必要がある」と実際に書いていてそのことに対して前スレで最初はlim記号を
用いずに書き込んだら
> lim記号(下記)を使って、(略)書いていることを表現してほしい。
とスレ主が要求してきたのだから
> 決定番号で、∞とか、ωを考える必要は無いんじゃないかな?
> lim_{m→∞}(可能無限)を考えれば十分だろ
というのは言っていることがまるで正反対ですよ

> ゴールも意識しておこう
スレ主は時枝記事に出てくる数列に対しての極限の定義を理解していないようだからまだスタートすらしていないよ
0039現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 06:12:20.46ID:VK/jj9Lp
こういう話だったよね(前スレより再録)
http://rio2016.2ch.net/test/read.cgi/math/1480758460/334
現代数学の系譜11 ガロア理論を読む26
334 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/17(土) 11:39:43.39 ID:sIK9xcpB
>>183-184 にもどる
https://ja.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E5%B0%8F%E6%95%B0
循環小数
ロバートソン(J.Robertson,1712-1776)の方法
循環小数
a + b ( 10^ n /(10^ n - 1) )

b ( 10^ n /(10^ n - 1) )が、循環節
aが、冒頭の循環していない有限小数部分
(引用終り)

時枝>>2の数列しっぽ同値類で、ロバートソンの方法類似の表現が考えられるね

代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・)
ここで、同じ類の元を一つ取る
r'= r(s')= (s'1,s'2,s'3 ,・・・,s'm ,・・・)

しっぽの”・・・)”の部分は、同値類なので同じ(後述の差を取ると、なくなる部分)

いま、簡単に n<mとしよう
そうして、数列の差を考える

r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ,0,0,0・・・)

しっぽの”0,0,0・・・)”の部分は、しっぽの同値類なので、差を取ると0になる。そこで、これをなくなると見なす

Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) として
Δrは、個別には、有限の長さの数列になり、ロバートソンの方法類似の表現で
r'= Δr +r
とできる

Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに上限はなく、無限大の極限を考える必要がある
それは>>188と同じだ

かつ、大きな違いは、
循環小数では、箱の数字は0〜9の10通りだが、時枝やSergiu Hart氏では、箱の中は任意の実数だから、card(R)つまり(非加算)無限大通りになる
0040現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 06:59:40.91ID:VK/jj9Lp
>>34-37 にお答えしよう

>>37に引用頂いている通りだが
時枝>>4-5に従って
無限を扱うには,(2)有限の極限として間接に扱う,を実行してみよう

1.時枝>>2により
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N
これを、一度有限に落とす。数列の長さL=nを考えよう

2.s = (s1,s2,s3 ,・・・,sn),s'=(s'1, s'2, s'3,・・・,s'n )∈R^nとなる
「ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版)」は、そのままでいい

3.「任意の実数列S に対し,同値な(同じファイパーの)代表r= r(s)」を、r =(=r(s))= (r1,r2,r3 ,・・・,r n-1, r n)と表現しよう
同値の定義より、sn=r n だ。そして
「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」も、そのままでいい。とすると、決定番号d = d(s)=nとなることに注意をうながしておく

4.で、s = (s1,s2,s3 ,・・・,sn-1,r n) と書くことができる
今、 sn-1 ≠ r n-1と仮定しよう

5.そうすると、明らかにd = d(s) = nだ

6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>38の引用に当てはめてみよう
Δr= s - r =(s1,s2,s3 ,・・・,sn-1,r n) - (r1,r2,r3 ,・・・,r n-1, r n)= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 ,0 ) となり、なんの不都合もない
Δr= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 )として、数列の長さLを、n-1と考えることも可能

7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
 lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ
0042現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 07:11:49.92ID:VK/jj9Lp
(前スレより再録)
http://rio2016.2ch.net/test/read.cgi/math/1480758460/380
現代数学の系譜11 ガロア理論を読む26
380 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/17(土) 20:39:34.96 ID:sIK9xcpB
再録
3.Aは、係数a1,a2,・・・,anの組み合わせで、場合の数を考える
4.n=3 の場合、A= a1/10+a2/10^2+a3/10^3
  ここで、A= a1/10+a2/10^2と少数2位までの数になる場合は、a1、a2とも0〜9のどれかで、10^2=100通り
  一方、a3が1〜9のどれかのとき、A= a1/10+a2/10^2+a3/10^3 少数3位の場合の数は、9*10^2=900通り。両者の計10^3=1000通り
  確率は、少数2位までの数になる場合1/10、少数3位の場合9/10

5.これを一般化すると、少数n位のA= a1/10+a2/10^2+a3/10^3+・・・・+an/10^nで
  少数n-1位までの数になる場合は10^(n-1)通り、少数n位までの数になる場合は9*10^(n-1)、両者の計10^n通り
(引用終り)

>>368の一様分布のアナロジーで言えば

宝くじの発行で、本来各番号1枚のところ、game2の決定番号では、複数枚発行するようなもの
1番10枚、2番10^2枚、3番10^3枚、・・・100番10^100枚、・・・1000番10^1000枚、・・・n番10^n枚

みてお分かりのように、100番ですでに100億(=10^10)どころじゃない、100億の10乗(=(10^10)^10)です
1000番では10^1000枚なので、100億の10乗(=10^100)のさらに10乗・・・

ところで、面白いのは、Hart氏のgame2では、先に問題の数列を固定してしまう。だから、同値類と決定番号も最初から決まっているんだ
そこで、問題の数列の同値類がどうなるかを考えてみると・・・

game2の同値類で、循環節以外の頭の側で、問題の数列と代表の数列との比較で、決定番号は、循環節以外の頭の側の長い方で決まる
ロバートソンの方法>>334で、aの部分で、長さが長い部分だが、ここの場合の数(組み合わせ)上記のように、宝くじと同じ
1番10通、2番10^2通、3番10^3通、・・・100番10^100通、・・・1000番10^1000通、・・・n番10^n通・・・

だから、小さい数は出ない
というか、n→無限大を考えると、一様分布とは比べられないくらい、裾が重いことがわかる
0043現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 07:21:00.76ID:VK/jj9Lp
>>32 に戻る

>決定番号で、∞とか、ωを考える必要は無いんじゃないかな?
>lim_{m→∞}(可能無限)を考えれば十分だろ

この話は、もともとは前スレから引用した>>42の「小さい数は出ない」
「n→無限大を考えると、一様分布とは比べられないくらい、裾が重いことがわかる」から発しているのだった

だから、n→無限大を考えると、”「100列で確率99/100」が数学的に厳密に導けないだろ”というのが私のゴール
0044現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 08:10:35.21ID:VK/jj9Lp
>>34 戻る

>釣り師も釣られ師もお疲れさん

以前、”哀れな素人さん”が、2016/05/21(土) に、
「スレ主はこういうチンピラではない。
だからたとえ時枝問題に関してスレ主が間違っていようと、
私はスレ主の味方だ。
スレ主は、あなたに味方している人間もいることを知って、
他の連中の罵倒嘲笑にめげないで書いてほしい。」と励ましてくれたが・・・

最近、見るところ、理系の連中は、「時枝記事不成立」でご理解頂いたようだ
残っているのは、”いわゆる文系の数学で終わって、いま趣味で大学レベルの数学の勉強をしている”(>>15)連中と見た

まあ、複素関数論(1変数)とか、量子力学をやると、無限に対する理解が自然に深まる
その素養がないなら仕方がないが・・

”釣られ師”というか、いまだ覚醒できない人たちだな
釣り針は、すでに時枝問題から離れている・・。が、時枝問題から離れられない覚醒できない人たちがいる

思うに、数学科の人たちは、かなり早く離れたと思う。例えば、バリバリの数学科はそうそうに引いた。のぞきに来たおそらく数学科の修士クラスは、「時枝は与太話」と言ってさった
その後、多くの理系が覚醒していった

さすがにTさんも悟ったようだな
おっちゃんも、前スレの最後で分かったのかな?

残った、文系の君たちも、「釣り針は、すでに時枝問題から離れている」ということを早く理解するように
もう一度強調しておくが、数学セミナーの時枝記事は不成立だよ。それを早く理解することだ
0045現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 08:24:45.48ID:VK/jj9Lp
>>43 補足

>だから、n→無限大を考えると、”「100列で確率99/100」が数学的に厳密に導けないだろ”というのが私のゴール

文系のために説明しておくと
時枝問題は、一様分布とは比べられないくらい、裾が重い分布なので>>42
n→無限大を考えると、平均値も発散し、標準偏差も発散してしまう

そういう確率分布では、”「100列で確率99/100」が数学的に厳密に導けないだろ”ということ
まあ、文系では理解できないかも知れないがね
理系の連中は、分かって去って行ったと思う

そのためには、n→無限大で十分で、n=∞でも同じだが
なお、裾の軽い分布例えば正規分布などでは、n→無限大やn=∞でも何も困らない ∵裾の軽い分布では、n→無限大の辺りは無視できるから。(それは、数学として証明できるよ)
裾が重いと、逆にn→無限大の辺りが無視できない。というか、n→無限大の辺りが全てを支配することになる。だから、”「100列で確率99/100」が数学的に厳密に導けないだろ”と
0048現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 09:07:02.14ID:VK/jj9Lp
>>47
Sergiu Hart氏のPDFと時枝>>2-3との決定的違いは、
Sergiu Hart氏のGAME1,2とも、数列の並べ変えはしないってこと

時枝>>2-3は、数列の並べ変えをするので、その分複雑になる
(Sergiu Hart氏の場合、問題の数列には触れずに、問題の数列の箱とは別に問題の数列と同じような(同値な)数列を作ることにしている)
0049現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 09:26:11.33ID:VK/jj9Lp
時枝>>2-3は、数列の並べ変えをするので、数列の並べ変えの定義をはっきりさせておかないと、>>34のキマイラ数列みたいなことが起きる
もともと1列だった箱の列から、同じ長さ(可算無限)の100列を作るのだから、それは>>7のヒルベルトの無限ホテルのパラドックスそのもので、よほど上手く定義しないと、ヒルベルトの無限ホテルのパラドックスを成立させかつ時枝の決定番号の確率99/100に悪影響がないようにというのは、結構難しい決定だと思う
0050現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 09:29:05.04ID:VK/jj9Lp
(前スレより再録)
http://rio2016.2ch.net/test/read.cgi/math/1480758460/330
現代数学の系譜11 ガロア理論を読む26
330 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/17(土) 10:12:20.83 ID:sIK9xcpB [16/68]

キマイラ数列について補足しておくと、簡単な話で、自然数を辞書式順序集合と見るというだけのこと

<参考>
https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E9%9B%86%E5%90%88
順序集合
(抜粋)
直積集合上の順序
ふたつの半順序集合(の台集合)の直積集合上の半順序としては次の三種類が考えられる。
・辞書式順序: ( a , b ) ≦ ( c , d ) ←→ a < c ∨ ( a = c 1∧ b ≦ d )
(引用終り)

で、( a , b )で2列
a1,a2,a3,・・・,an,・・・
b1,b2,b3,・・・,bn,・・・
の辞書式順序を考える

a1<b1<a2<b2<a3<b3<・・・<an<bn<・・・
この順序は、まず1<2<3<・・・<n<・・・を考えて、同じ1の中なら次にa<bという順序を考えるということ

対して、a1,a2,a3,・・・,an,・・・、b1,b2,b3,・・・,bn,・・・
この順序は、まずa<bを考えて、同じaの中なら次に1<2<3<・・・<n<・・・という順序を考えるということ

直積( a , b )に対するこの二つの順序の入れ方は、現代数学では普通だ

ところで、人間の集合で、男女を考えて
男性は、a1,a2,a3,・・・,an,・・・という番号を付ける
女性は、b1,b2,b3,・・・,bn,・・・という番号を付ける

似たようなことは、現代数学でなくとも日常茶飯事だ
が、現代数学で考えると、無限集合の扱いで間違いをすることが少ない

奇数偶数で
奇数に、a1,a2,a3,・・・,an,・・・という番号を付ける
偶数に、b1,b2,b3,・・・,bn,・・・という番号を付ける

大学以上の数学では、添え字集合の自由度が高いから、これは可能だ
奇数の集合∪偶数の集合=自然数の集合

a1,a2,a3,・・・,an,・・・、b1,b2,b3,・・・,bn,・・・を、キマイラ数列と商業宣伝風に名付けただけで、特別なことはしていない
0051現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 09:34:44.11ID:VK/jj9Lp
>>40 訂正

6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>38の引用に当てはめてみよう
 ↓
6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>39の引用に当てはめてみよう
0054現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:08:25.17ID:VK/jj9Lp
さて
(前スレより再録)
http://rio2016.2ch.net/test/read.cgi/math/1480758460/562
現代数学の系譜11 ガロア理論を読む26
562 名前:132人目の素数さん[] 投稿日:2016/12/23(金)
ガロアコホモロジーって知ってる?
(引用終り)

https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%83%AF%E3%82%B3%E3%83%9B%E3%83%A2%E3%83%AD%E3%82%B8%E3%83%BC
ガロワコホモロジー
(抜粋)

数学において、ガロワコホモロジー (Galois cohomology) はガロワ加群の群コホモロジー(英語版)の研究、つまり、ホモロジー代数学のガロワ群に対する加群への応用である。
体拡大 L/K と結びついたガロワ群 G はあるアーベル群、例えば L から直接に構成されたアーベル群、に自然に作用するが、より抽象的な手段によって導き出される他のガロワ表現を通して構成されたアーベル群もである。ガロワコホモロジーはガロワ不変元をとることが完全関手でなくなる理由を説明する。

歴史

ガロワコホモロジーの現在の理論は代数的整数論においてイデアル類群のガロワコホモロジーが自身を L-関数とのつながりから取り除く過程の時に類体論を定式化する1つの方法であることが実現されたときに1950年頃一体となった。
ガロワコホモロジーはガロワ群がアーベル群であるという仮定を全くしないので、これは非アーベルコホモロジー論(英語版)であった。それは類構造(英語版)の理論として抽象的に定式化された。1960年代の2つの発展は position を turn around した。
1つ目に、ガロワコホモロジーはエタールコホモロジー(大雑把に言うと 0 次元スキームに適用するときの理論)の基本的な layer として現れた。2つ目に、非可換類体論がラングランズ哲学の一端として着手された。

ガロワコホモロジーと同一視できる初期の結果は代数的整数論と楕円曲線の数論においてかなり前から知られていた。正規基底定理は L の加法群の一次コホモロジー群が消えることを意味している。
これは一般の体拡大についての結果であるが、リヒャルト・デデキントにある形で知られていた。乗法群に対する対応する結果はヒルベルトの定理90として知られており、1900年以前に知られていた。クンマー理論は理論の別のそのような早期の部分であった。これは m 次冪写像から来る連結準同型の記述を与える。
(引用終り)
0056現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:15:29.18ID:VK/jj9Lp
https://en.wikipedia.org/wiki/Galois_cohomology
In mathematics, Galois cohomology is the study of the group cohomology of Galois modules, that is, the application of homological algebra to modules for Galois groups.
A Galois group G associated to a field extension L/K acts in a natural way on some abelian groups, for example those constructed directly from L, but also through other Galois representations that may be derived by more abstract means.
Galois cohomology accounts for the way in which taking Galois-invariant elements fails to be an exact functor.

google訳(多少手直し)
数学では、ガロアコホモロジは、ガロアモジュールの群コホモロジー、すなわちガロア群のモジュールに同型代数を適用する研究です。
フィールド拡張L / Kに関連するガロア・群Gは、例えばLから直接構築されたもののようないくつかのアーベル・群上で自然なやり方で作用するが、より抽象的な手段によって導かれる他のガロア表現を介して作用する。
ガロアコホモロジーは、ガロア不変要素を取ることが正確な函手ではない方法を説明します。
0057現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:26:40.46ID:VK/jj9Lp
つづき
History
The current theory of Galois cohomology came together around 1950,
when it was realised that the Galois cohomology of ideal class groups in algebraic number theory was one way to formulate class field theory,
at the time it was in the process of ridding itself of connections to L-functions.
Galois cohomology makes no assumption that Galois groups are abelian groups,
so that this was a non-abelian theory.
It was formulated abstractly as a theory of class formations.
Two developments of the 1960s turned the position around.
Firstly, Galois cohomology appeared as the foundational layer of etale cohomology theory (roughly speaking, the theory as it applies to zero-dimensional schemes).
Secondly, non-abelian class field theory was launched as part of the Langlands philosophy.

google訳(多少手直し)
797/5000
歴史
ガロアコホモロジーの現在の理論は1950年頃にまとめられ、
代数的数論におけるイデアル類群のガロアコホモロジーが類体理論を定式化する一つの方法であることが分かったとき、
当時はL関数への接続を取り除く過程にあった。
ガロア・コホモロジーは、ガロア群がアーベル群であると仮定することはなく、
これは非アーベル理論であった。
これは、クラス形成の理論として抽象的に定式化された。
1960年代の2つの開発がその周りを回った。
第一に、ガロアコホモロジーは、エテールコホモロジー理論の基礎的な層(大まかに言って、ゼロ次元スキームに適用される理論)として現れた。
第2に、ラングランドの哲学の一部として、非アーベル・クラスの場理論が打ち出された。

おわり
0058132人目の素数さん垢版2016/12/31(土) 10:28:56.58ID:3V1BVKBo
>>52-53
必死の釣り乙
0059現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:30:14.26ID:VK/jj9Lp
さて
(前スレより再録)
http://rio2016.2ch.net/test/read.cgi/math/1480758460/619
現代数学の系譜11 ガロア理論を読む26
619 名前:華厳のパンダ ◆2VB8wsVUoo [sage] 投稿日:2016/12/25(日) 02:45:35.79 ID:O010A8Dr [1/3]
数学を何だと思うかは「その人それぞれ」ですが、私の場合には構造と
いう考え方を重視するので、従って『数学の完成形はブルバキの形式』
という思想ですね。そもそも数学の価値とか意味は:
★★★『人間の都合とか恣意性を完全に排除する理性の象徴としての絶対神』★★★
であり、従ってある特定の数学に応用がアルか否かに関しては客観的な
判定基準なんて当然に存在しません。だから一見して応用がなさそうに
見えるものが後日に有用になったりします。但し甚大な応用がアル理論
は(その妥当性から)「ソコから豊かな構造が取り出せる場合がアル」
というだけの事でしょうね。

でもこれは人間に更に近い物理でさえそうであり、例えば黎明期の電磁
気学に膨大な応用がアルなんて事をFaradayやMaxwellが具体的に予想し
たとはとても思えない。そして「点接触型トランジスタ」を最初に発見
したShockley-Bardeen-Brattainが現代社会に於ける膨大な応用(とい
うかもはや社会構造の一部でさえある半導体集積回路)を予想した筈は
ないでしょう。

初代インテルチップの設計者のおひとりであられる嶋正利先生でさえも、
ご自分の貢献が(生きてるうちに!)神戸の京速計算機の基本構成要素
に使われるなんて、まさかお考えにはなられなかったのではないかと。
だから理学と工学の間の線引きなんて、そもそもナンセンスでしかない。
そういう目先の恣意的な違いに拘泥している場合ではないと、ノーベル
賞の大隅さんも警告なさったのでは?

学問とは、そして特に数学の場合は:
☆☆☆『非力で無能な人間が、全能の神を前にして平伏して苦悩するその姿そのもの』☆☆☆
という風に私は思って居ます。

0060現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:34:18.86ID:VK/jj9Lp
>>59
どうも。スレ主です。
私ら凡人は、昔ニュートンが、天体(惑星)の運動を解明しようとして、まあそれだけが動機かどうか不明だが、微分積分を作った
その数学の力で、太陽系の天体の運動が解明された

そこに大きな数学の力と魅力を感じます
0061現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:42:47.96ID:VK/jj9Lp
ニュートン、ライプニッツによる微分積分の発明のあと、
微分積分ほか、自然現象や身の回りに、数学の力を適用してみようと

当時の数学は未熟だったから、巨人オイラーは手作りで、オイラー流の数学を作った
オイラー流の数学は、現代数学にも多く継承されている

たしか、流体の偏微分方程式のもとは、オイラーだったような

https://ja.wikipedia.org/wiki/%E3%83%AC%E3%82%AA%E3%83%B3%E3%83%8F%E3%83%AB%E3%83%88%E3%83%BB%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC
(抜粋)
レオンハルト・オイラー(Leonhard Euler, 1707年4月15日 - 1783年9月18日)は18世紀の数学者・天文学者(天体物理学者)。 18世紀の数学の中心となり、続く19世紀の厳密化・抽象化時代の礎を築いた[1]。スイスのバーゼルに生まれ、現在のロシアのサンクトペテルブルクにて死去した。

概要・生涯

ヨハン・ベルヌーイによって才能を見出されたことと、オイラー自身が数学に興味を抱いていたことから、数学者になる道を選んだ。オイラーの父も数学の教育を受けた人物であったが、オイラーには自分の後を継いで牧師になることを望んでいた[1]。

1727年、オイラーはサンクトペテルブルクの科学学士院に赴任した[1]。この地でダニエル・ベルヌーイの同僚となり、バーゼル問題を解決したことで有名になった。しかし、エカチェリーナ1世の突然の死でロシアは政情不安となり、視力の悪化も伴って、研究生活は不安定になった。

1741年、プロイセン王国のフリードリヒ2世の依頼でベルリン・アカデミーの会員となり、ドイツへ移住した[1]。
その業績からフリードリヒ2世に「数学のサイクロプス(単眼の巨人)」と賞賛される(右目を失明していたため)。彼は『無限解析入門』 "Introductio in analysin infinitorum" と『微分学教程』 "Institutiones calculi differentialis" という2冊の数学書を出版した。

つづく
0062現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:43:54.41ID:VK/jj9Lp
>>61 つづき

数理物理学

数理物理学では、ニュートン力学の幾何学的表現を解析学的に修正して、現代的なスタイルに変更した。 彼は1736年に初めて力をはっきり定義し、解析的な形で運動方程式を与えた。
それ以後、この定式化に基づいて振動弦の問題を論じ、また地球の章動の研究において運動方程式による3体問題の定式化を行った。 そして1755年には流体力学の基礎方程式(連続方程式と運動方程式)を導いて体系化した。
さらに1760年には剛体の力学を論じ、剛体に固定した運動座標系を導入してオイラーの運動方程式を得、これを発展させた。剛体の方位を規定する3つの角は「オイラーの角」と呼ばれている。 だが、彼は1760年代までニュートンの重力理論を容認できず、デカルトの充満理論・エーテル理論に固執した。 その他、変分法に関する業績も多い。
関数概念の導入
ライプニッツによって定義された関数を初めてy=f(x)の形で表したのもオイラーである。 このような近代的関数の概念は1748年に導入され、物理学など応用方面でも使いやすいものとなった[1]。

(引用終り)
0063132人目の素数さん垢版2016/12/31(土) 10:55:59.26ID:B1yFbXyS
いまの2chに人なんかいない
0064現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 10:56:51.65ID:VK/jj9Lp
数理物理学系で
覚えているのが

・上記、オイラーの流体力学の基礎方程式(連続方程式と運動方程式)
・同 変分法
・ガウスのベクトル解析と、ガウスの発散定理
https://ja.wikipedia.org/wiki/%E7%99%BA%E6%95%A3%E5%AE%9A%E7%90%86 発散定理
発散定理(はっさんていり、divergence theorem)は、ベクトル場の発散を、その場によって定義される流れの面積分に結び付けるものである。ガウスの定理とも呼ばれる。1762年にラグランジュによって発見され、その後ガウス(1813年)、グリーン(1825年)、オストログラツキー(1831年)によってそれぞれ独立に再発見された[1] [2]。オストログラツキーはまたこの定理に最初の証明を与えた人物でもある。
https://ja.wikipedia.org/wiki/%E3%82%AC%E3%82%A6%E3%82%B9%E3%81%AE%E6%B3%95%E5%89%87 ガウスの法則とは(ガウスのほうそく、英: Gauss' law[1])とは、カール・フリードリヒ・ガウスが1835年に発見し、1867年に発表した電荷と電場の関係をあらわす方程式である。この式はジェームズ・クラーク・マクスウェルにより数学的に整備され、マクスウェルの方程式の1つとなった。
・フーリエ 熱伝導方程式の解法から、フーリエ級数、フーリエ変換を発明。後の、偏微分方程式解法の基礎になる
・・・・・
(その他沢山ありすぎて思い出せないので飛ばして(^^
・フォンノイマンの量子力学定式化:これは無限次元ベクトル空間(ヒルベルト空間)論の発展をうながした
・ウィッテンの超弦理論:ウィッテン先生だけじゃないけど、超弦理論の現代数学に対するインパクトは、グロタン先生に匹敵するくらい大きいと
0066132人目の素数さん垢版2016/12/31(土) 11:00:00.74ID:B1yFbXyS
本当に一般人なら
ブログでやるよね?
0067132人目の素数さん垢版2016/12/31(土) 11:01:54.41ID:B1yFbXyS
そのへんの本を見るか
検索すればわかることばかり
引用してもアクセスは増えません
0068132人目の素数さん垢版2016/12/31(土) 11:02:22.60ID:B1yFbXyS
広告もしょぼくなりましたね
0069現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 11:03:44.05ID:VK/jj9Lp
関連
”1990年以来の過去5回のICMでは、フィールズ賞受賞者のおよそ4割が場の量子論や超弦理論に関係する分野で研究をされていたので、今回はどうなるのだろうかと思っていました。”ですと
http://planck.exblog.jp/14987060/
フィールズ賞 : 大栗博司のブログ: 2010年 08月 21日
(抜粋)
今週はインドのハイデラバードで国際数学者会議 (ICM) が開かれ、フィールズ賞受賞者が発表されました。1990年以来の過去5回のICMでは、フィールズ賞受賞者のおよそ4割が場の量子論や超弦理論に関係する分野で研究をされていたので、今回はどうなるのだろうかと思っていました。

今回の受賞者のひとりはスタニスラフ・スミルノフさんで、ある種の2次元の統計模型がスケール極限で共形対称性を持つことを示し、物理学者のジョン・カーディさんの予想していた公式に数学的証明を与えました。
場の量子論に数学的基礎を与えることは数理物理学の長年の課題ですが、2次元の共形場の理論では確実な進歩が起きています。前回の2006年のICMでフィールズ賞を受賞されたウェンデリン・ウェルナーさんの業績も2次元の共形場の理論に関係するものでした。

スミルノフさんはCaltechの大学院の卒業生なので、今回の受賞はCaltechにとってもうれしいニュースでした。

もうひとりの受賞者のセドリック・ビラニさんへの授賞対象は気体分子の運動論で、非平衡の状態からどのように平衡状態への移行が起きるのかの理解を進められたのだそうです。

物理学の提起する問題は、依然として数学の新しい発展を触発し続けているようです。
0070現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 11:11:52.96ID:VK/jj9Lp
>>65-68
まあ、そうだが、おれなんかブログ書いても
それこそ無意味
メモ帳にもならんし

>検索すればわかることばかり
>引用してもアクセスは増えません

プロ固定がどんなのかしらんが
レス数かせぐなら、検索引用なんて効率悪い
複数のスレ立てて、¥さん呼び込んで、10回書いてもらって、合いの手入れて、ageスタイルが一番だろう

まあ、数学板はもうだめでしょ
レス稼ぐには
レス稼ぐなら別に住人の多い板があるし

まあ、ここで書いていると
あんたみたいな同じ穴の狢さんが来るし(^^;
ぶちぶち言わずにROMしていきな(^^;
0071132人目の素数さん垢版2016/12/31(土) 11:17:42.35ID:3V1BVKBo
数学板の糞スレ主No1はお前
0072現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 11:21:39.31ID:VK/jj9Lp
>検索すればわかることばかり

ここな

ちょっと異論があるのは、まだまだ”検索”には、キーワード+スキルがいるんだな(将来AIが発展すれば別として)
誤解していると思うが、単純に、検索引用と思っているだろうが、そうではない

「過去にこんなことを読んだね」という経験値があって、それを引くキーワードを考えて、かつ一回でヒットしなければ、キーワードを変えてと
だから、あなたがキーワードを思いつかなければ、同じ検索はできないよ

例えば、>>69は”大栗 フィールズ賞 素粒子”という検索で、検索トップに出た記事なんだ
大栗先生が、そういうことを語っていたという記憶があるから、検索可能なんだよね
0073現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 11:24:30.68ID:VK/jj9Lp
>>71
どうも。スレ主です。
賛辞をありがとう

だが、間違っている
スレ主を名乗っているのは、おれ一人なので、Only Oneだな

また、¥さんを差し置いて、No1はおこがましい
だから、¥さんの次でいいよ

わかったら、ROM1してな!
0074132人目の素数さん垢版2016/12/31(土) 11:30:07.38ID:3V1BVKBo
ところで有限値と有界の区別はついたの?wwww
0075132人目の素数さん垢版2016/12/31(土) 11:32:08.19ID:3V1BVKBo
>>32
> 決定番号で、∞とか、ωを考える必要は無いんじゃないかな?
> lim_{m→∞}(可能無限)を考えれば十分だろ

・決定番号が有限値でないことがあるから時枝の戦略は成り立たない
・キマイラ数列∈/R^Nが存在するから時枝の戦略は成り立たない
・決定番号の確率分布は裾が重いから時枝の戦略は成り立たない
・決定番号の確率分布では期待値や分散が求まらないから時枝の戦略は成り立たない
・R^Nはヒルベルト空間外だから時枝の戦略は成り立たない
・ヒルベルトのホテルのパラドックスを考えると時枝の戦略は成り立たない
・決定番号は宇宙に存在する原子数よりも大きくなるから時枝の戦略は成り立たない
・エントロピーはほとんど変化しないから時枝の戦略は成り立たない
・"確率の専門家"が疑問を呈したから時枝の戦略は成り立たない
・"院生クラスの誰か"が与太話とコメントしたから時枝の戦略は成り立たない
・なにはともあれ個人的に時枝の戦略は不成立だと思う

いまだに一番上のやつなw
0076132人目の素数さん垢版2016/12/31(土) 11:32:40.13ID:EYH44b4P
>>40
(s1,s2,s3 ,・・・)∈R^N
(s1,s2,s3 ,・・・,sn)∈/R^N
therefore
(s1,s2,s3 ,・・・)≠(s1,s2,s3 ,・・・,sn)
(Recall how it is defined that two sequences are equal.)

but you wrote
>s = (s1,s2,s3 ,・・・)∈R^N
>s = (s1,s2,s3 ,・・・,sn)∈R^nとなる
i.e.
(s1,s2,s3 ,・・・)=(s1,s2,s3 ,・・・,sn)

It's already wrong completely. You don't understand sequence at all.
0077132人目の素数さん垢版2016/12/31(土) 11:39:27.66ID:3V1BVKBo
スレ主ってこのスレで会話するのが生きがいなんだよね。
これがないと日々労働するだけで生きる目標がなくなっちゃうww
だからみんな、哀れなスレ主をかまってやろうぜw
馬鹿をいってても釣られてやろうよ。(おれは嫌だけどな)
決定番号が有限値かどうかであと5年は話せるんじゃねえの??wwwww

時枝の話題は他でやれ、とか言っておきながらきちんと>>2-4で説明してるしねwww
0078現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:04:35.81ID:VK/jj9Lp
>>89
関連
http://www.math.chuo-u.ac.jp/ENCwMATH/
ENCOUNTERwithMATHEMATICS

http://www.math.chuo-u.ac.jp/ENCwMATH/ewm67.pdf
第67回 AGT 対応の数学と物理
2016年10月28日(金),10月29日(土)
講演予定者:柳田伸太郎(名古屋大),中島啓(京大),名古屋創(金沢大),立川裕二(東大),松尾 泰(東大)
組織委員会:山田泰彦(神戸大),寺嶋郁二(東工大),柳田伸太郎(名大)

場の量子論の数学と二次元四次元対応
立川裕二(東大・Kavli IPMU)
講演では、場の量子論は数学的に如何に捉えるべきか、また、その立場から、二次元四次元対応
はどのように理解されるか、ということをお話いたします。以下、講演では触れないと思いますが、
折角なので日記と電子メールを辿って二次元四次元対応が見つかった経緯を再構成してみます。
僕がアメリカでポスドクをしていた2009 年の1 月のある寒い日ダヴィデ・ガイオット(以下ダ
ヴィデ) がザイバーグ先生に彼の最新の研究を説明していたところに巡り合ったので、僕もそこで
それについて教えてもらいました1。それが今では四次元のクラスS 理論と呼ばれているものとの
僕のはじめての遭遇です。その後、ダヴィデはルイス・フェルナンド・アルダイ(以下フェルナン
ド) と共同研究をはじめたようなのですが、その共同研究に、僕が以前修論でやっていたインスタ
ントン分配関数の計算が使えそうだと判ったそうで、2 月中旬になって僕も共同研究に加わること
になりました。
そこからしばらくは良く判らない闇雲な計算を三人でしていましたが、5 月のある日の夕方、僕
が近くの運河脇の小径を自転車で散歩していると、携帯にダヴィデから「1 ループの寄与はリュー
ビル理論の三点関数の積だ」と短いメールが届きます。家に戻ってから「じゃあインスタントン分
配関数の寄与は?」と返事を書くと、すかさず「それは共形ブロックであるはずだ」と返信があり
ました。

つづく
0079現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:06:10.91ID:VK/jj9Lp
>>78 つづき

リュービル理論も共形ブロックも、二次元の場の理論の話題で、それまで四次元の場の理論一辺
倒だった僕にはちんぷんかんぷんで、彼が何のことを言っているのかさっぱりでした。しばらく
は、修士の頃に書いたマセマティカのプログラムに手を入れて、ダヴィデが計算してくれと言うイ
ンスタントン分配関数を、闇雲に計算すると、ダヴィデが別に計算した共形ブロックと答えが一致
する、というのの繰り返しです。これは魔法にかけられたような経験でした。彼はその度「ほらそ
うだろう」と言うのですが、僕は何故これらが一致しないといけないのか、そもそも何故彼がこの
パラメタでインスタントン分配関数を計算してくれといったのか、全く判らなかった記憶があり
ます。
そんなこんなのうちに、6 月になり、ダヴィデがローマの研究会でこの話を発表するので、それま
でに論文にまとめようとなって、フェルナンドと三人でなんとか書き上げたのが、今回のEncounter
with Mathematics の題目になっている対応のはじまりの論文です2 が、以上のエピソードからわ
かるように、僕は何も判らず論文を書いたので、自分ではこの対応の例の名前を使うのには非常に
抵抗があります。
実際、僕がダヴィデの当時の発想を理解できるようになるには数年の時間が必要でした。その間
に、フェルナンドもダヴィデもこの対応の研究を直接することからは離れてしまって、僕ばかりが
この対応を調べているという、不思議なことになっています。

1 その内容はようやく4 月になってarXiv:0904.2715 として出た。ダヴィデは雑誌に投稿するのを忘れていたらしく、
出版されたのは2012 年。
2 arXiv:0906.3219、2010 年に出版。

(引用終り)
0081現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:13:43.73ID:VK/jj9Lp
文系くんにも困ったものだ
知識の基礎レベルが分からないからね

ちょっと難しいことをいうと、よけい分からなくなるのかね?
微積、ベクトル解析、微分方程式、偏微分方程式、量子力学、熱力学、統計力学・・・

そこら理系の基礎がどこまで分かっているのか?
説明してもざるか
0082132人目の素数さん垢版2016/12/31(土) 12:18:23.07ID:Y0KEj3p3
スレ主ってこのスレで会話するのが生きがいなんだよね。
これがないと日々労働するだけで生きる目標がなくなっちゃうww
だからみんな、哀れなスレ主をかまってやろうぜw
馬鹿をいってても釣られてやろうよ。(おれは嫌だけどな)
決定番号が有限値かどうかであと5年は話せるんじゃねえの??wwwww

時枝の話題は他でやれ、とか言っておきながらきちんと>>2-4で説明してるしねwww
0083現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:31:30.65ID:VK/jj9Lp
>>78
AGT対応
http://ci.nii.ac.jp/naid/110010032654
CiNii 論文 - AGT対応 : 予想から証明へ: 瀧 雅人 Taki Masato 理化学研究所理論科学連携研究推進 日本物理學會誌 71(1), 6-15, 2016

抄録

遠い未来の論文誌が手に入り,問いの数々への解答が垣間見れたならば,と夢想された事のある方は少なくないのではないだろうか?
もちろんこのような事は不可能だが,双対性という不思議な性質は,しばしば「未来の知識を垣間見る」ような感覚を引き起こす.
二つの異なる理論が同じ物理を記述しているとき,それらの間には「双対性」(duality)がある,という.ひとたび非自明な双対性が発見されれば,伝統的な手法の射程を大きくこえて理論を理解する事ができる.
実際AdS/CFTに代表されるような様々な双対性の発見が,近年の弦理論の発展を牽引してきた.
そして2009年,Alday,Gaiottoおよび立川は,超対称ゲージ理論に関する,全く新しいタイプの双対性を発見する.
それが本稿の主題「AGT予想(AGT対応)」である.

この予想における主役は4次元時空中のN=2超対称理論と,それに付随して定まる2次元の共形場理論であり,それらの分配関数と相関関数が厳密に一致するというのが,彼らの予想である.
この数十年の研究により,どちらの理論も,量子効果と対称性による拘束が競合した結果,とても非自明な形で解けてしまう理論である事がわかっている.
その両者が実は密接に関係しているという事実は,その物理の重要な「何か」がいまだに理解されていない事を示唆する.これまでにAGT予想に対する数多くの拡張やチェックがなされ,この予想は広汎な理論たちの間に対して成立している一般的な性質だと考えられている.
特にGaiottoの発見したクラスSというグループに属した4次元理論であれば,AGT予想が成立している証拠がある.

つづく
0084現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:33:04.61ID:VK/jj9Lp
>>83 つづき

そこで次に理解すべきは,このような現象の起こる物理的なメカニズムである.完全では無いものの,有望なシナリオがいくつかある.
その一つは,超弦理論の親玉であるM理論に起源を求める考え方である.M理論には,M5ブレインという6次元的な広がりを持つ高次元の膜的な物体が存在する.
このブレインの広がりを2次元と4次元時空に分け,一方をつぶしてしまうと,残された空間にのみ住む理論が得られる.
これによりゲージ理論と共形場理論が結びつくという説明法がそれである.M5ブレイン上に励起する物理的自由度に関してはよくわかっていない事が多く,この「導出」は完全ではないが,いくつもの傍証が見つかっている.
また興味深い事に,AGT予想を理解する事でM5ブレインに関する理解が進展する可能性もある.
AGT予想に関する数学的な理解にも進展がみられる.特にMaulikとOkounkovは,ゲージ理論側を記述するインスタントン解のモジュライ空間のコホモロジーに,2次元共形対称性の表現空間としての構造が入る事を示し,予想の一部の証明に成功した.
また逆にAlbaらは,2次元共形対称性の表現の上に,インスタントンモジュライ空間と類似の組み合わせ論的な構造が隠れている事を示す事で,予想の一部を証明した.

A mysterious correspondence, which is called the AGT correspondence, between 4d supersymmetric gauge theories and 2d conformal field theories was found. The AGT correspondence sheds new light on these well-studied theories. This conjectural AGT correspondence, its generalizations and mathematical proofs are reviewed.

(引用終り)
0085現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:37:00.59ID:VK/jj9Lp
>>82

あーあ、釣られちゃったね
わかったら、ROMしてなって!(^^;

文系くんと会話してなんになる
というか、会話が成立してないだろ? 無限わかってないし、limとで説明しろといったらトンチンカンで胸をはる

わかったら、ROMしてなって!(^^;
おれは、ここに自分の好きなことをコピペするのが生き甲斐ですよ

あと、おっちゃんと¥さんがいたら、サイコー!(^^;
繰り返すが、時枝不成立が理解できない文系くんはいらんぜ。ROMしてな
0086132人目の素数さん垢版2016/12/31(土) 12:44:32.63ID:Y0KEj3p3
スレ主ってこのスレで会話するのが生きがいなんだよね。
これがないと日々労働するだけで生きる目標がなくなっちゃうww
だからみんな、哀れなスレ主をかまってやろうぜw
馬鹿をいってても釣られてやろうよ。(おれは嫌だけどな)
決定番号が有限値かどうかであと5年は話せるんじゃねえの??wwwww

時枝の話題は他でやれ、とか言っておきながらきちんと>>2-4で説明してるしねwww
0087現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:46:34.38ID:VK/jj9Lp
>>82
>時枝の話題は他でやれ、とか言っておきながらきちんと>>2-4で説明してるしねwww

時枝の話題への準備は、広く>>2-10だよ。読めてないね
>>2-4は単なる引用で、説明ではないよ

「時枝成立」の主張が出たら、潰します!
理系の人には、納得でき、分かる程度に

文系のレベルに分からせるのは、考えていない・・・
文系のレベルは、下には下があるから、説明してもざるみたいな人もいるし、きりがないだろ?(^^;
0088現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 12:55:05.41ID:VK/jj9Lp
>>86
>決定番号が有限値かどうかであと5年は話せるんじゃねえの??wwwww

そこは理系では常識だよ
(すくなくとも極限の存在までは)

それ、理解できない人は理系ではもぐり
だから、そこはおれはスルーだな。勝手に恥じかいてなと
0090現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 13:01:52.25ID:VK/jj9Lp
>>84
>そして2009年,Alday,Gaiottoおよび立川は,超対称ゲージ理論に関する,全く新しいタイプの双対性を発見する.
>それが本稿の主題「AGT予想(AGT対応)」である.

「AGT予想(AGT対応)」
A:Alday
G:Gaiotto
T:立川
0091現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 13:07:44.83ID:VK/jj9Lp
>>83 関連

http://www.jps.or.jp/books/gakkaishi/2016/01/71-01reviews.pdf
AGT対応 予想から証明へ - 日本物理学会 瀧雅人 著 - ?2016

―Keywords―
超対称ゲージ理論:
素粒子を記述する基礎理論で
あるゲージ理論は,一般には
激しい量子論的効果により定
量的計算が困難になる.この
ようなフェルミオンとボソン
の入れ替えのもとでの超対称
性を課すことで,量子論的効
果は抑えられ,しばしば理論
の振る舞いが良くなる.その
ため超対称なゲージ理論は非
常に詳細にわたるまで解析す
ることができる.

共形場理論:
臨界点においては物理現象を
特徴付ける距離スケールが失
われるため,このような物理
はスケール不変な物理理論で
記述される.共形場理論とは,
時空の各点で勝手なスケール
変換を行っても理論自身が不
変であるものであり,臨界現
象の理解に対して統一的な視
点を与える.

インスタントン:
場の理論には基本場以外にも,
場の配位がトポロジカルにね
じれることで生じる非自明な
励起状態がある.ゲージ理論
におけるインスタントンもそ
の一例であり,時空の一点に
局在化したようなゲージ場の
配位で与えられる.
0092132人目の素数さん垢版2016/12/31(土) 13:11:33.60ID:3V1BVKBo
>>87
> 「時枝成立」の主張が出たら、潰します!
> 理系の人には、納得でき、分かる程度に

成立/不成立の定義自体がお前一人だけ違うので議論になるわけがないwww
0093132人目の素数さん垢版2016/12/31(土) 13:14:45.20ID:3V1BVKBo
有限値、有界、同値関係、代表系

定義をろくすっぽ理解してなかったスレ主さんww
お前の孤独を哀れんで付き合ってやってる釣られ師とおちゃべりしてなさいw
0094現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 13:14:57.29ID:VK/jj9Lp
>>91 関連

https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%BC%E3%82%B8%E7%90%86%E8%AB%96
(抜粋)
ゲージ理論(gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。

数学におけるゲージ理論

1970年代になって、マイケル・アティヤは古典的ヤン=ミルズ方程式の数学的解決法の研究を始めた。
1983年、アティヤの学生サイモン・ドナルドソンは滑らかな4次元微分可能多様体の分類では、位相同型の違いを除いた分類とは異なっていることを示す方向の研究を進めた。
マイケル・フリードマンは、ドナルドソンの研究成果を用いて、エキゾチック R4(英語版) の存在、すなわち、4次元ユークリッド空間とは異なるエキゾチックな微分構造(英語版)(Differential structure)が存在することを示した。
このことは、ゲージ理論自体が持つ基礎物理学における成功とは独立して、数学的構造に対するゲージ理論への関心を呼び起こした。1994年、エドワード・ウィッテンおよびネーサン・サイバーグは、超対称性に基づいたゲージ理論的テクニックを発見した。
ここでの方法はあるトポロジー的不変性の計算を可能とする方法でもある。これら、ゲージ理論からの数学への貢献は、この分野の新たな関心として注目されている。

ゲージ理論および場の量子論の歴史に関するより詳細な資料はPickeringの書籍を参照のこと[3]。
0097現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 13:30:56.50ID:VK/jj9Lp
>>78
関連

https://ja.wikipedia.org/wiki/6%E6%AC%A1%E5%85%83_(2,0)-%E8%B6%85%E5%85%B1%E5%BD%A2%E5%A0%B4%E7%90%86%E8%AB%96
6次元 (2,0)-超共形場理論
(抜粋)
理論物理学では、6次元 (2,0)-超共形場理論 (six-dimensional superconformal field theory) は、超共形場理論(英語版)(superconformal field theories)の分類により存在が予言されている場の理論である。
作用汎函数の項として理論が記述できていないので、いまだ良く理解されていない。この理論の固有の難しさにもかかわらず、物理学と数学の双方から、様々な理由で興味が持たれている対象と考えられている[1][2]。

応用

(2,0)-理論は、場の量子論の一般的性質の研究にとって重要であることが証明されている。実際、この理論は有効場理論への数学的興味を多く呼び起こし、これらの理論に関連する新しい双対性を指摘する。
たとえば、ルイス・アルダイ、ダヴィデ・ガイオット、立川祐二は、この理論を曲面へコンパクト化することにより、4次元の場の量子論を得て、この理論の物理と曲面自身に付帯するある物理的概念に関係付ける双対性が存在することを示した。
この双対性はAGT対応として知られている[3]。さらに詳しくは、理論家たちはこのアイデアを拡張し、3次元へコンパクト化すると得られる理論を研究している[4]。

この場の量子論への応用に加え、(2,0)-理論は、純粋数学での多くの重要な結果をもたらしている。たとえば、(2,0)-理論の存在は、ウィッテン(Witten)により幾何学的ラングランズ対応と呼ばれる数学の関係性の予想を「物理学的」に説明することに使われた[5]。
その仕事の結果、ウィッテンは、(2,0)-理論がコバノフホモロジーと呼ばれる数学の概念とも近いことを示すことにも使った[6]。

ミハイル・コバノフ(英語版)(Mikhail Khovanov)により2000年ころに開発されたコバノフホモロジーは、結び目の異なった形を研究し分類する数学の一分野である結び目理論へツールを提供した[7]。
数学への (2,0)-理論の他の応用では、ダヴィデ・ガイオット、グレゴリー・ムーア(Greg Moore)、アンドリュー・ナイツケ(Andrew Neitzke)の仕事があり、そこでは物理的アイデアが超ケーラー幾何学(hyperkahler geometry)における新しい結果を導いている[8]。
0098現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 13:34:26.03ID:VK/jj9Lp
>>97

https://ja.wikipedia.org/wiki/AGT%E5%AF%BE%E5%BF%9C
AGT対応
(抜粋)
理論物理学において、AGT対応 (AGT correspondence) は、2次元リウヴィル場理論のVirasoro共形ブロックと4次元 N = 2 {\displaystyle {\mathcal {N}}=2} {\mathcal {N}}=2超対称SU(2)ゲージ理論のインスタントン分配関数が一致するという関係である。
この関係は超弦理論から現れる双対性の一種であり、この2つの理論は6次元 (2,0)-超共形場理論をそれぞれ別の曲面上へコンパクト化することで得られる。
この関係は、アルダイ、ガイオット、立川裕二により2009年に発見された[1]。
またこの関係は、W代数を対称性にもつ A N ? 1 {\displaystyle A_{N-1}} A_{N-1}型戸田場理論と4次元SU(N)ゲージ理論との間の関係や、変形Virasoro/W代数を対称性にもつ理論と5次元ゲージ理論との間の関係にも拡張され、またAGT対応が発見されて以来、そのアイデアは、3-次元理論の間の関係性の記述へも拡張されている[2][3]。
0099132人目の素数さん垢版2016/12/31(土) 13:37:30.04ID:3V1BVKBo
>>95
> >>92-93
> >成立/不成立の定義自体がお前一人だけ違うので議論になるわけがないwww
>
> 理系は理解していると思うけど
> 理解できてないのは文系だろ?

ほう

じゃあ理系のスレ主さん、定義を書いてみな
0100132人目の素数さん垢版2016/12/31(土) 13:51:11.19ID:Q2SC3jm+
>>43
> n→無限大を考えると、”「100列で確率99/100」が数学的に厳密に導けないだろ”というのが私のゴール
スレ主は決定番号にこだわって時枝戦略を何とか不成立にしようとしているが無限数列の出題にも決定番号は
関わっていることを理解しないといけないよ

出題する数列をSn(= s1, s2, ... sn, ... )また代表元をRn(= r1, r2, ... , rn, ... )で表すとして前スレの記号も
そのまま用いる
ある自然数mがあってSn-Rn = [(Sn-Rn)_{1}{m}, 0[n]_{m+1}{∞}] ---(1)と書けたとすると
m < nとなる全ての自然数nに対して |sn - rn| = 0となっていてこれは前スレにも書いたが
時枝記事ではこれが代表元との比較による極限の定義になりこの式を変形すると
有限数列Sn_{1}{n}のnを無限大にした極限はSn_{1}{∞} = [Sn_{1}{d-1}, Rn_{d}{∞}]と書ける
ここでdはある自然数であって決定番号である(式(1)においてd=m+1)

> (2)有限の極限として間接に扱う
[Sn_{1}{d-1}, Rn_{d}{∞}]においてはSn_{1}{d-1}が有限の部分であり極限によって扱われるのが
Rn_{d}{∞}である
これは出題する前にあらかじめ完全代表系を決めておけば出題者は有限個の数字を決めて極限値を1つ選べば
間接的に可算無限個の数字を全て選んで箱に入れたとみなせるということを意味する

決定番号が出題にも関わっているのは極限値がRn_{d}{∞}でありdを含んでいることから明らかであるが
決定番号がdであるときには出題者は最低でもd-1番目までのd-1個の数字を極限とは関係なく自分で
選ばないと出題する数列の数字全てを選んだとはみなせない

だから任意の無限数列を出題可能と仮定した段階でスレ主の挙げた不成立の根拠は一切意味がなくなる
0103現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:14:15.74ID:VK/jj9Lp
>>97 関連うすいが
>その仕事の結果、ウィッテンは、(2,0)-理論がコバノフホモロジーと呼ばれる数学の概念とも近いことを示すことにも使った[6]。

http://www.kyotoprize.org/laureates/commemorative_lectures/
歴代受賞者記念講演録 | 京都賞:
http://www.kyotoprize.org/wp/wp-content/uploads/2016/02/30kB_lct_JP.pdf
2014年 第30回 基礎科学部門数理科学(純粋数学を含む) エドワード・ウィッテン
(抜粋)

物理と数学を巡る冒険
エドワード・ウィッテン

幼い頃から私は天文学に魅せられていました。もっとも当時これはさほど珍しい
ことではありません。と言いますのも、1950年代後半に宇宙開発競争が始まり、誰
もが宇宙に胸を躍らせていたからです。それ以前から天文学に興味があったかど
うかはあまりよく覚えていません。ただ、9 歳か10歳の頃に、3 インチ反射望遠鏡
を贈られて、それで土星の環を見ることが、少年時代の私には無上の楽しみの1 つ
でありました。

子供の頃は天文学者になりたかったのですが、自分が大人になる頃には、天文学
者は宇宙で暮らし、宇宙で仕事をしなければならなくなると子供心に思い込んでい
ました。私にはそれがとても危険なことのように思えました。

11歳の頃、その年齢にしては高度な数学の本をプレゼントされました。理論物
理学者だった父は、私に微積分の手ほどきをしてくれました。そのため、しばらく
の間は数学に熱中しました。ただし両親は、数学(と両親が考えるもの)に私が急激
にのめり込んでしまうことをよしとせず、ですから、私が初歩的な微積分よりもは
るかに本格的な数学に触れることになるのは、それからずいぶん先のことになりま
す。当時の両親の方針が良かったのかどうか、今の私にはわかりません。ただ、そ
のため長い間、私が教わるたぐいの数学が、抜本的に新しいものであるとか手ごた
えがあるものというふうには思われませんでした。それがどの程度影響したのかは
わかりませんが、いずれにせよ私は長い間、数学に興味を感じなくなったのです。

つづく
0104現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:15:13.83ID:VK/jj9Lp
>>103 つづき

しかし最終的に、私が最も才能に恵まれているのは数学と理論物理学であって、
自分にはそうした分野に進む以外の道はないと思い至りました。21歳の頃、私は、
数学と理論物理学のどちらを選択するかを決めたのですが、当時の私には、どちら
の分野についても乏しい知識しか持ち合わせていませんでした。その知識をもとに
理論物理学を選んだわけですが、その大きな理由は素粒子に魅せられたからです。

私がプリンストン大学大学院に入学した1973年の秋、素粒
子の研究は、少なくともその20年ほど前からの激動期が続いていました。ただし、
その表面下では変化が兆していました。現在、素粒子物理学の標準模型として知ら
れる理論が生み出されていました。本質的には現在と変わらない形式で、長い試行
錯誤の末にようやく生み出されつつあったのです。これが私が大学院に進学するわ
ずか数ヵ月前に起きたことで、デビッド・グロス、フランク・ウィルチェック、デ
ビッド・ポリツァーの3 氏によって行われました(ちなみにデビッド・グロスは、
後に私の指導教官を務めてくれることになります。)

1970年代中頃に大学院生だった私が何
に興味を持っていたのかをわかっていただくためです。簡単に言うと、私の大学院
時代、素粒子物理学の分野では、果てしない革命の時代が全盛期を迎えていまし
た。その時代がずっと続くと思っていた私は、自分もその一翼を担いたいと考えて
いました。ただ、今にして思えば、ジェイプサイ中間子を理解することから、科学
全体に変化が起きつつあることを察知できていればよかったのかもしれませんが。
事実、この新しい粒子の持つ驚くべき特性は、標準模型によって完全な説明が可能
であり、しかもそれについては、すでにいくつかの論文で予想されていたことが明
らかになったのです。もっとも、そうした予想を行った論文がどれほど知られてい
たのかはわかりません。実際私はそれらの存在を知らなかったのです。

つづく
0105現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:16:16.71ID:VK/jj9Lp
>>104 つづき

その一方で、大学院生の私にはもう1 つ興味を引かれることがありました。そ
して、ある意味、それがその後の私の研究につながっていくところもあったので
す。ところで、物理学が専門でない皆さんのために、ここで少しご説明しておかな
ければなりません。それは、理論物理学者は自然の法則を理解しようとする一方
で、様々な状況で方程式を解き、今後何が起こるのかを予想しようとしているとい
うことです。理論物理学のこの2 つの側面は、必ずしもはっきりと区別できるわ
けではありません。たとえば、自然の法則を解き明かし、その法則による予測を明
らかにできなければ、どれが正しい法則なのかを理解することはできません。とこ
ろが実際に物理学者が行っているのは、ほとんどの場合、少なくとも原理的には適
切な方程式が明らかな状況で、物質の振る舞いを理解しようとすることです。この
2 つの側面を同時に実践するのは、口で言うほど簡単なことではありません。一例
を挙げれば、電子や原子核の振る舞いを説明するシュレーディンガー方程式につい
て知っているということと、そうした方程式をいくつも解いて一本の銅線の振る舞
いについて理解することとは、別問題だからです。

素粒子物理学者として、基本的に私の目標とするところは、そうした基礎方程式
が何なのかを理解することでした。ところが、標準模型の登場によって新たな状況
が生まれたのです。私が大学院で研究を始めたちょうどその頃、全く新しい基礎方
程式がいくつか確立されつつあり、中には理解することがきわめて難しいものもあ
りました。特に、標準模型では、陽子、中性子、パイ中間子、そしてそれ以外の相
互作用を行う粒子はクォークで形成されているものの、どのクォークも観察できな
いとされていました。この矛盾を解消するためには、クォークが「閉じ込められて
いる」、つまり、どんなにエネルギーを費やしてもクォークを取り出すことはでき
ないと考えざるをえませんでした。クォークの閉じ込めを説明しうると思われてい
た標準模型の方程式には、わかりにくく、しかも解くのが難しいという問題点があ
りました。そのため、クォークの閉じ込めが本当に起こるのかどうかは、なかなか
解明することができなかったのです。

つづく
0106現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:17:08.71ID:VK/jj9Lp
>>105 つづき

大学院時代とその後も長きにわたって、私はクォークの閉じ込めを解明すること
に情熱を燃やしました。しかし、これはきわめて困難な問題であり、私はあまり成
果を上げることはできませんでした。実際、標準模型の方程式を用いてクォークの
閉じ込めを説明するということは現在にいたるまで未解決のままです。もっと正確
に言うなら、コンピュータによる大規模なシミュレーションによって結論が正しい
ことはわかっているのですが、それがなぜかということは、私たち人間の理解を超
えているのです。

この問題を解きたいという願いは叶わなかったものの、この経験からいくつか得
るところもありました。1 つは苦い教訓です。そこでつくづくと思い知らされたこ
とが、現在私が研究を行う際にもっとも重視することの1 つとなっています。す
なわち、研究者は現実に即した態度で臨まなければならないということです。解明
しようとする問題について先入観の持ちすぎは禁物です。チャンスが巡ってきた時
に、そのチャンスを活かせるように準備しておく必要があるのです。

残念ながら私は、クォークの閉じ込めという問題の解明が、自分には難しすぎる
ということを認めざるを得ませんでした。何らかの成果を出すためには、もっと目
標を低く設定して、もっと限定された問題に取り組む必要がありました(後で詳し
くお話ししますが、結局私は、クォークの閉じ込めという問題に少しばかりの貢献
をすることになります。ただし、20年近く経ってからの話ですが)。

しかし、もっとプラスの面についても言うなら、この現実を受け入れ、より限定
的な問題で何らかの成果を出そうとすることで、私は相対論的量子系の強結合での
振る舞いと物理学者が呼ぶ現象――標準的な方法で方程式を解くことが難しい場合
の相対論的量子系の振る舞い――について考察することで、ある程度の経験を積ん
でいくようになりました。そしてこの経験が、のちの私の研究に大きな意味を持つ
ことになるのです。

つづく
0107現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:18:07.40ID:VK/jj9Lp
>>106 つづき

ここでももう1 つ、物理学が専門でない皆さんのために、少し説明しておかな
ければならないことがあります。大学院で物理学を専攻する学生は、弱結合の場合
にどうすべきかを学ぶにすぎません。強結合の場合には、様々な疑問や方法が入り
乱れて浮かび上がってくるのです。ですから、強結合の場合に量子系がどのような
振る舞いを示すのかについての専門家のような存在はいないはずですし、少なくと
も私自身は決してそのような専門家ではありません。かなりのことを研究してきま
したが、いつでも初学者のような気がしているのです。

1976年、プリンストン大学で博士号を取得した私はハーバード大学に移り、そ
の後の4 年間をそこでポスドク生活を送ることになります。その間、私生活では
いろいろなことがありました。私と同じ時期にポスドク研究員としてハーバードに
やってきたキアラ・ナッピとは1979年に結婚しました。彼女と出会ったのは、1975
年にフランス・アルプスで開催された物理学のサマースクールでした。彼女は、著
名な数理物理学者のアーサー・ジャフィーに誘われてハーバードにやってきたので
す。最初の子供を授かったのも、ハーバードにいた時でした。

ハーバードでは、多くの先生方に様々なことを教えていただきました。専門を同
じくする物理学の先生方ばかりでなく、数学が専門の先生方からもです。専門的な
話は控えたいと思いますが、少しだけ、当時の様子をお話ししたいと思います。

ハーバードでの先輩の1 人にスティーブン・ワインバーグがいました。彼は標
準模型の先駆者であり、1979年にノーベル賞を受賞しました。大学院の頃の私に
は、物理学の基本的なテーマでなかなか理解できないものがありました。おそらく
スティーブンは、他の多くの物理学者も私と同じような困難に悩まされていると
思ったのでしょう。そうしたテーマがセミナーで取り上げられるたびに、彼は自分
が理解していることを手短に説明してくれました。こうして何度も彼の説明を聞い
たおかげで、よりはっきりしたイメージが得られるようになったのです。

つづく
0108現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:18:57.92ID:VK/jj9Lp
>>107 つづき

シェルドン・グラショーとハワード・ジョージからも多くのことを学びました。
教授であったグラショーも標準模型の先駆者であり、1979年のノーベル賞受賞者で
す。ジョージは若手の教員で、私よりも少し年上でした。実は、ハーバードでは研
究室のスペースが不足していたので、私たちは一緒の研究室を共有していたのです。

当時の私は全く気づいていなかったのですが、科学に根底的な変化が生じるとい
うことは、私にとってそれまでとは少し違う方向にもっとチャンスが生まれるかも
しれないということでもありました。だからこそ、ハーバードでのもう1 人の先輩
物理学者、シドニー・コールマンとの交流が、私には大きな意味を持ちました。彼
は、場の量子論に関する優れた洞察で伝説的な人物であり、私の見るところ、強結
合な場の量子論に大きな関心を寄せた唯一の物理学者でもあります。他の物理学者
は、この問題をブラックボックス、つまり考える価値がない代物と見なしていたよ
うに思われます。

つづく
0109現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:19:50.51ID:VK/jj9Lp
>>108 つづき

私はたびたび、コールマンの優れた洞察に興味を引かれました。そうした洞察
は、彼から聞かされなければ耳にすることもなかったでしょうし、よしんば耳にす
ることがあったとしても、もっとずっと後になっていたでしょう。多くの場合、彼
の洞察は、相対論的量子物理学に関する数学の基本的概念や、他の数学の分野と相
対論的量子物理学の関係に関するものでした。私のその後の研究に重要な意味を持
つテーマも多くあったのですが、コールマンから教えてもらうまでまったく思いも
よらないことでした。初めて聞いた時はそれほどよくわかったとは言えない状態で
したが、幸いにも、後に役立つ程度には覚えていました。ここで、コールマンが私
に教えてくれた洞察の一例をご紹介しましょう。それはもともと、旧ソビエトの数
学者、アルベルト・シュワルツが述べたことなのですが、標準模型について物理学
者がもたらした驚くべき成果には、実は、マイケル・アティヤとイサドール・シン
ガーが発表した「指数定理」に由来するものがあるということです。実はこの定理
は、20世紀の数学におけるきわめて重要な定理なのですが、私には初耳でしたし、
指数という概念も、さらにはアティヤやシンガーという名前も聞いたことがありま
せんでした。

ここでお話ししておかなければならないのは、17世紀、18世紀、それに19世紀の
大半でさえ、数学者は同時に物理学者でもあるのが普通だったのに、ところが20
世紀になると、数学と物理学という2 つの学問は別々の道を歩むようになったよ
うです。その原因は、数学の分野における数々の進歩により、物理学との距離が離
れていったからだと思われます。しかしそれ以外にも、1930年頃から、物理学の研
究が、相対論的量子場理論など数学的解釈がきわめて難しいと思われる方向に向
かったことが挙げられます。

つづく
0110現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 14:20:33.09ID:VK/jj9Lp
>>109 つづき

私が大学院で物理学を研究していた当時は、最先端の数学と物理学の間にあまり
交流がない時期でした。まわりの他の物理学専攻の大学院生と同じく、私も当代の
数学の問題に取り組まんとする者が知っておきたいたぐいのことなどは学んでいま
せんでした。私はアティヤ・シンガーの指数定理や、その他の多くのことをコール
マンの話から知ったのですが、そうしたことをそれまで全く聞いたこともなかった
というのは、当時大学院で物理学を学ぶ者であればごく当然のことであったので
す。

アティヤ・シンガーの指数定理などの新たな展開をきっかけに、極めて優秀な数
学者の中にも物理学の分野で起きていることに興味を持つ者が出てきました。私
は、ハーバードで教鞭を執る何人かの数学者、とりわけラウル・ボットやデビッ
ド・カジュダンとたびたび話をするようになりました。また、マイケル・アティヤ
とイサドール・シンガーとも知り合いになりました。アティヤは、1977年から翌年
にかけての冬に私をオックスフォードに招待してくれたのですが、この後、私はた
びたびこの地を訪れることになります。両氏は、後の私の研究に大きな影響を与え
ました。

(引用終り)
面白いがここまでで1/3だ
0113132人目の素数さん垢版2016/12/31(土) 14:41:03.24ID:EYH44b4P
>なんで>>40スルー?
see >>76
0114132人目の素数さん垢版2016/12/31(土) 15:11:17.66ID:Q2SC3jm+
>>112

>>100に書いてあることでそれも否定できるから
> 決定番号がdであるときには出題者は最低でもd-1番目までのd-1個の数字を極限とは関係なく自分で
> 選ばないと出題する数列の数字全てを選んだとはみなせない

ある無限数列を出題するときに決定番号が無限大になる同じ類の代表元が(仮に存在したとして)選ばれていたとする
この場合出題者は極限を用いないで無限個の数字を自分で選ぶことになるがそれは認められていない
0115132人目の素数さん垢版2016/12/31(土) 15:41:03.31ID:3V1BVKBo
>>40
> 7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
> lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ

自ら矛盾を導いてドヤ顔はねえだろw
決定番号をdを論じるまえにs〜rが成り立っているのか確認しろアホ
0116132人目の素数さん垢版2016/12/31(土) 15:56:55.12ID:3V1BVKBo
まあ1個ヒントをやろう

>>40はキマイラ数列∈R^N っていうお前の主張と同じたぐいの間違いだ

ちゃんと来年までに考えとけよw
0117132人目の素数さん垢版2016/12/31(土) 15:58:25.42ID:NLxhAFAx
>>40 スレ主が極限を分かって無いことがよくわかるレスだな
極限の交換はいつでもできるとは限らないと習いませんでしたか?
スレ主は正規の数学教育を受けてないの?
受けていれば、極限の順序の交換に慎重になるはず。
この場合「有限数列を無限数列にする極限」と「無限数列列の極限」の交換。
交換できることを示さず、交換しているのはスレ主がスレ主が極限を分かって無いことの明らかな証拠。

>すなわち、nを自然数としたとき、数列s_nを初項から第n項までを1、それ以降を0とする数列とする。
>このとき、すべての自然数nについて、s_nはs_1の同値類に属すのは明らか。
>では、lim[n→∞]s_n はs_1の同値類に属すか?
問題追加
lim[n→∞]s_n はどんな数列か?
0118132人目の素数さん垢版2016/12/31(土) 16:57:06.38ID:EYH44b4P
Also this year, after all his ridiculousness has not got improved at all.
0119現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 17:52:36.23ID:VK/jj9Lp
>>110 追加(抜粋)

1994年、私はネイサン・サイバーグと共同で、数学者からも物理学者からもサ
イバーグ・ウィッテン理論と呼ばれる理論を発表しました。ただし、この名前の持
つ意味合いは、数学者と物理学者で異なります。この点については少し詳しくお話
ししようと思います。と言いますのも、それによって、物理学者と数学者のものの
見方が今も違うことがわかるからです。

物理学者にとってこの理論は、量子効果が大きい場合に、特定の場の量子論がど
のような振る舞いを示すかを理解するための新しい方法です。

研究を行う場合の秘訣とは、解くことができる程度には明快であり、しかも解く
ことに価値がある程度には興味深い問題を見つけることです。サイバーグと私も、
場の量子理論という、解くことができる程度には明快であり、しかも解くことで有
益な教訓が得られる程度に込み入った問題を見つけることができました。特に私
は、サイバーグ・ウィッテン理論によって、学生の頃の夢だったクォークの閉じ込
めの理解に、少し貢献することができたのです。考えてみれば、初めてこの問題に
取り組んだあの頃の私なら、こうした貢献などとても手の届くものではなかったで
しょう。すでにお話ししたことですが、研究に関するもう1 つの秘訣とは、ある時
点で自分が成し得るかもしれないことについて、あまり先入観を抱くべきではない
ということです。

サイバーグとの共同研究は、4 次元空間の研究に数学的に関係する部分もありま
した。それを、数学者は一般にサイバーグ・ウィッテン理論と呼びます。実は、こ
のことからある興味深い事実が明らかになります。それは、私が研究生活を始めて
から現在に至るまでの間に、数学と物理学の距離が非常に近くなった部分もあれ
ば、依然として大きく離れている部分もあるということです。この2 つの学問は、
目指すゴールも頼りにするツールも全く異なります。数学者は、いわゆるサイバー
グ・ウィッテン方程式を(他のツールと共に)用いて、幾何学上の素晴らしい発見を
してきましたが、サイバーグ・ウィッテン理論の量子論としての側面に着目するこ
とは、通常ありません。
(引用終り)
0120現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 17:57:35.09ID:VK/jj9Lp
>>113-118
4人か
時枝記事不成立がいまだ理解できない文系人

ID:3V1BVKBoさんは、どうもTさんぽいね。あんたも文系人間だったのか? ”論文書いたら”と言ってやったが、所詮ないものねだりだったかね・・・。おっと、sageで頼むよ、運営さん(^^
ID:Q2SC3jm+さんは、昨日のID:DA9ugHgOさんと同一人物かな? まあ、あんたこてこての文系人と見た (^^
ID:NLxhAFAxさんは、前スレで”スレ主以外のみなさんへ: 数学の議論雑談をする別の場を設けてはと思うがどうだろう?”とか言った人かな? じゃ、なんでここにいる? (^^
ID:EYH44b4Pさんは、日本語不自由なんだね。都合良く無視させてもらうわ・・・ (^^

”哀れな素人さん”が、2016/05/21(土) に、激励を書いてくれたが、そのときに比べて、多くの人が時枝記事不成立に納得して去って行った
残ったのは、4人だけ、覚醒できずに年越しか・・

時枝に釣り針はないから、適当に流させて貰うよ、あしからず
では、みなさん良いお年を
0121132人目の素数さん垢版2016/12/31(土) 18:06:32.95ID:3V1BVKBo
>>120
おい馬鹿スレ主、逃げないで>>117に答えろよw
お前は質問から逃げてアサッテのコメントばかりだなww
0122132人目の素数さん垢版2016/12/31(土) 18:36:45.90ID:EYH44b4P
He ran away. My guess was right.
0124現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 19:33:48.45ID:VK/jj9Lp
>>78-79
>リュービル理論

https://ja.wikipedia.org/wiki/%E3%83%AA%E3%82%A6%E3%83%B4%E3%82%A3%E3%83%AB%E5%A0%B4%E7%90%86%E8%AB%96
リウヴィル場理論
(抜粋)
物理学におけるリウヴィル場理論(あるいは単にリウヴィル理論、英: Liouville field theory, Liouville theory)とは、2-次元の場の量子論で、古典的な運動方程式がジョゼフ・リウヴィルのリーマン面を統一する古典的な幾何学的問題で現れる非線型第二階微分方程式となっている場の量子論を言う。[1]

リウヴィル場理論は、共形場理論で、ワイル対称性(英語版) (Weyl symmetry) を特別な方法で体現している。[2] この理論の中心電荷 c {\displaystyle c} c は、表現 c = 1 + 6 ( b + 1 / b ) 2 {\displaystyle c=1+6(b+1/b)^{2}} c=1+6(b+1/b)^{2} を通して、作用の中に現れるパラメータの項で与えられる。
リウヴィル理論は、経路積分のアプローチの中で理論の非臨界バージョンを定式化しようとするときに、弦理論の脈絡で現れる。[3] また、弦理論の脈絡では、ボゾンの自由場と結合している場合は、リウヴィル理論は、2次元空間(時空)の弦の励起を記述する理論と考えることができる。

リウヴィル場理論は、非有理な共形場理論と呼ばれる理論の最も理解がなされている例の一つで、いくつかの観測可能量が明確な方法で計算することができる。
0126現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 19:54:10.81ID:VK/jj9Lp
>>124 関連


”エヴァリスト・ガロアの功績を発見し、全集を公表したことでも知られている。”か
「スツルム=リウヴィル型微分方程式」は有名
https://ja.wikipedia.org/wiki/%E3%82%B8%E3%83%A7%E3%82%BC%E3%83%95%E3%83%BB%E3%83%AA%E3%82%A6%E3%83%B4%E3%82%A3%E3%83%AB
ジョゼフ・リウヴィル

ジョゼフ・リウヴィル(Joseph Liouville, フランス語発音: [??z?f ljuvil], 1809年3月24日 - 1882年9月8日)は、フランスの物理学者、数学者。リウヴィルの定理とよばれる業績を3つの分野に残し(物理学、解析学、数論)、さらに数論においては超越数の最初の例を与えた。
エヴァリスト・ガロアの功績を発見し、全集を公表したことでも知られている。パ=ド=カレー県サントメールで生まれ、1882年、パリで死去した。

関連項目

リウヴィル数
リウヴィルの定理 (物理学)
リウヴィルの定理 (解析学)
リウヴィルの定理 (数論)
スツルム=リウヴィル型微分方程式
0127現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 20:18:52.69ID:VK/jj9Lp
>>79
共形ブロック

http://www.math.nagoya-u.ac.jp/~hamanaka/ohkubo_y14.pdf
修論 AGT予想の漸化式を用いた証明と一般化されたJack多項式による証明 大久保勇輔 名大 多元数理 2013
(抜粋)
概要
本論文は2次元共形場理論の相関関数と4次元ゲージ理論の分配関数が一致する
というAGT 予想に関するサーベイ論文である.

1 序文
2009 年, Alday-Gaiotto-立川によって4次元N = 2 超対称SU(2) ゲージ理論のインスタ
ントン分配関数と, 2次元共形場理論の共形ブロックが一致するという驚くべき関係(AGT
予想)が, 素粒子物理学の超弦理論による立場から発見された[2].
ゲージ理論は長い歴史を持ち, 数学者や物理学者によって精力的に研究された魅力的な
理論である. この理論の分配関数を一般に計算することは困難であるが, 簡単化して計算
できるようにしたインスタントン分配関数は, 2004 年にNekrasov によって明示的な公式
(Nekrasov 公式)が与えられている[26].

共形場理論は1984 年に, Belavin-Polyakov-Zamolodchikov(BPZ)の3人によってその
基礎がほぼ完成され, 強磁性体をモデル化した2次元Ising 模型の臨界現象などを記述し
た[9].

BPZ の行った研究は, プライマリー場が特殊な共形次元を持つときに限定して行
われたもので, 相関関数を一般的な形で調べることはされていなかった. また相関関数の
満たす微分方程式を導いても, その解を綺麗に表すことは難しい. 実はプライマリー場の
相関関数を少し変形したものが共形ブロックであるのだが, このような共形場理論の立場
からみると, Nekrasov 公式と共形ブロックの一致を述べたAGT 予想の研究は, プライマ
リー場の相関関数に一般的な公式を与えられるという期待の下に行われている.
0128現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 20:20:40.82ID:VK/jj9Lp
>>127 関連

http://web.phys.ntu.edu.tw/hosomiti/
Kazuo Hosomichi / 細道 和夫 Department of Physics, National Taiwan University
http://web.phys.ntu.edu.tw/hosomiti/PDF/gakkai.pdf
4次元ゲージ理論に隠れた
2次元共形対称性
細道和夫
日本物理学会 2011年秋季大会
(抜粋)
1. AGT対応
4次元 N=2 超対称ゲージ理論と 2次元 CFT の間の双対性

まとめ・展望
1. AGT対応は Seiberg-Witten 理論とCFTの対応を越えて、より広い範囲の数学と物理を関係づけると期待される。
2. 数学・物理の関係の探求と相まって、
 新しい有用な物理量の発見(e.g. 球面上の相関関数など)
 非局所的な演算子の取扱いの理解
 ・・・が進むと期待される。
0130現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 20:38:17.61ID:VK/jj9Lp
>>34
これ、重要な項目が抜けている

もし、時枝>>2-4やSergiu Hart氏>>48が正しいとすると
既存の乱数やランダム現象の数理を破るってことだ

それはない
確率論の専門家ならそう思うはず

過去、¥さんが介入して来た初期に、私はそれを指摘した
¥さんは、即座にその意味を解した

但し、¥さんの思索はもう少し深く、コルモゴロフ超えを考えていたようだ
が、コルモゴロフ超えがなんらかの形で可能としても、時枝>>2-4やSergiu Hart氏>>48は正しくないと思うよ

世に厳然と、乱数があり、ランダム現象がある
乱数やランダム現象を利用して、箱に数を入れていくとする

それが、その箱を開けずに他の箱の情報で、確率99/100で当たる??
それは、正にタテとホコ!(矛盾だ)

そいうことを、この問題のずっと初期に書いてある(過去ログにある)
それは当初からの主張だし、単純な数学理論を超えて、私の信念でもある

次回のまとめでは、これを付け加えておいてくれ
君たちも、ちっとは、プロの数学者が時枝やSergiu Hart氏に賛成しない理由を考えたらどうかね
0132現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 20:52:32.63ID:VK/jj9Lp
>>67>>70
>そのへんの本を見るか
>検索すればわかることばかり

「プルとプッシュ」を知っているかい?(下記)
https://www.brain-solution.net/blog/seo/pull-push-contentmarketing/
プルとプッシュを意識してこそ、コンテンツマーケティングの記事作成 - Webマーケティングのブレインネット: 一見(いちみ) 卓矢 2015.02.20
(抜粋)
読んでいるユーザーに対してピント外れのコンテンツは意味がありません。
ユーザーの気持ちに寄り添うには、「プル/プッシュ」のフレームワークが必要です。
そのコンテンツはプル型? プッシュ型?

人が情報を得るときには、明確に知りたいことがあって調べる場合と、そうでない場合があります。
調べている人に適切な答えを提供するのが「プル型」のコンテンツ。
明確な目的意識がないユーザーに届けるのが「プッシュ型」のコンテンツです。

プル型のコンテンツ
質問に対する回答
例)
ユーザーの質問:○○という新車はいくら?
→回答:○○という新車の価格は○○円

プッシュ型のコンテンツ
こんな情報があります! というお知らせ
例)
○○という新車が発売されました
○○という新車には、こんな開発秘話がありました

Google Adwordsやyahoo!プロモーション広告といった検索連動型広告は、典型的なプル型広告といわれていますね。

一方、テレビ番組や雑誌の記事は、「役に立つ情報があるかな?」「何かおもしろいことはあるかな?」くらいの気持ちで見るわけです。
ここでは、質問に答えるというより、奥の深さや驚きが求められます。

プル/プッシュを使い分けて記事作成を行う際の方向性

プッシュの場合は
・タイトルをキャッチーに作成
・内容は「お知らせ」したいことが全体的にわかるよう網羅的に記載。

プルの場合は
・タイトルはファイルのインデックス(目次)のように、情報を探しているユーザー対してわかりやすいよう、端的に作成 ・内容はユーザーが知りたいと思っているであろう事を端的に記載。

上記のような方向性で作成し、プル/プッシュに合わせた届け方を用いることにより適切にユーザーにコンテンツを届けることが出来ます。
(引用終り)
0134現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 21:06:08.77ID:VK/jj9Lp
>>132 つづき

>検索すればわかることばかり

まあ、半分そうだが、それは”プル”だ
一方、検索からコピペは、”プッシュ”だ

その区別を意識することが大事だな
それと、まとめサイトなどが、なぜ存在するのか? ”プッシュ”だと思えば納得しやすいだろう

”プッシュ”は多少は意識しているが、それほど意識していない
それより、自分が面白いと思ったことを、アップしているんだ
0137現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 21:11:52.24ID:VK/jj9Lp
>>79 補足

>修士の頃に書いたマセマティカのプログラムに手を入れて、ダヴィデが計算してくれと言うイ
>ンスタントン分配関数を、闇雲に計算すると、ダヴィデが別に計算した共形ブロックと答えが一致
>する、というのの繰り返しです。これは魔法にかけられたような経験でした。

"マセマティカのプログラムに手を入れて"というところ
キーだな

マセマティカが計算するけど、立川裕二がいたから計算ができた
いや、立川裕二も、修士の頃に書いたマセマティカのプログラムがあったからすぐ対応できた・・
0142132人目の素数さん垢版2016/12/31(土) 21:16:06.54ID:3V1BVKBo
スレ主が馬鹿発言
→スレ主の間違いを指摘する
→無関係なコピペで時間を稼ぐ。質問は無視
→ほとぼりがさめたらまた馬鹿発言
→スレ主の間違いを指摘する
→無関係なコピペで時間を稼ぐ。質問は無視
→スレ主の間違いを指摘する
→無関係なコピペで時間を稼ぐ。質問は無視

この繰り返しなww
0144132人目の素数さん垢版2016/12/31(土) 21:17:56.47ID:3V1BVKBo
>>117から逃げ回るスレ主はクソ以下
数学の話をしないならお前が去れよ
0147132人目の素数さん垢版2016/12/31(土) 21:19:47.14ID:3V1BVKBo
スレ主というのは何かの国家資格か??w
んなもん関係ねえから数学の話をしないならお前が去れよ

>>117はお前のでたらめに対する数学的な指摘だ
それを無視して無関係なコピペで逃げ回るなら数学板以外でやれ
0150132人目の素数さん垢版2016/12/31(土) 21:21:30.41ID:3V1BVKBo
ほれほれ、俺を相手にしている時間があるなら>>117に答えなさいww
なんで答えられないの???w
0151132人目の素数さん垢版2016/12/31(土) 21:23:28.67ID:3V1BVKBo
>>148
コテハンの馬鹿は晒して消すのが鉄則だろ?w

コテハン馬鹿の笑える主張w
> >>40
> 7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
> lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ
0152現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 21:24:39.29ID:VK/jj9Lp
なんで、おれが高2高3でやったレベルの極限を、わかわからん文系君に説明しなきゃいかんのか?
それも、理解能力が極めてあやしく

過去さんざん説明したにも関わらず
約1年進歩の無い人に

また説明してくれだ??
金払って大学で教えて貰えよ
0153132人目の素数さん垢版2016/12/31(土) 21:25:12.31ID:3V1BVKBo
>>152
>>117に答えてから強がってねw
0155現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 21:29:24.46ID:VK/jj9Lp
>>151
> >>40
> 7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
> lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ

それ正しいよ
それすら理解できないのか?
改めて聞くが、文系くんだろ? 学歴を言ってくれ
もし、理系なら相手しても良いけど・・
0156132人目の素数さん垢版2016/12/31(土) 21:35:55.56ID:3V1BVKBo
なに?え??おまえ、俺に相手にしてもらいたいの?www

なんで俺になれなれしく個人情報を聞いてくるの?ww
俺はお前の学歴なんか露ほども興味がないけど・・

はやく自分のために>>117に答えたら?
>>117に数学を教えてもらうのがいいよ
0157132人目の素数さん垢版2016/12/31(土) 21:38:21.07ID:3V1BVKBo
>>155
> 改めて聞くが、文系くんだろ? 学歴を言ってくれ
> もし、理系なら相手しても良いけど・・

でたらめを垂れ流して数学的指摘(>>117)から逃げ回る学歴コンプw
0158132人目の素数さん垢版2016/12/31(土) 21:43:20.41ID:EYH44b4P
>>155
>そして、極限を考えても、同値s 〜 r は不変だ
You don't understand what you gotta proof.
0159現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 21:45:41.80ID:VK/jj9Lp
>>156-157
あなたの答えは分かった
おれの答えは>>155

もし暇が出来て
気が向いたら、相手してやるよ。いまは、忙しい

余談だが、おれの学歴は過去(初期)に書いた
材料工学系だ

数学は好きだから、結構読んでいるよ
ホイテカ・ワトソン知らなかったがね(^^;
0160132人目の素数さん垢版2016/12/31(土) 22:10:07.17ID:3V1BVKBo
>>159
お前の意見には証明が付いていないことがほとんど。
無根拠な意見を言うこと自体は構わないが、言ったからには
マトモな数学的指摘(>>117)には誠実に対応すべきだと思う。
0161132人目の素数さん垢版2016/12/31(土) 22:29:58.29ID:Q2SC3jm+
>>130
> 乱数やランダム現象を利用して、箱に数を入れていくとする
> それが、その箱を開けずに他の箱の情報で、確率99/100で当たる??
> それは、正にタテとホコ!(矛盾だ)

このような意見を持つということはスレ主は時枝問題に関しては(スレ主自身が区別すべきと言った)
可能無限と実無限の区別をあいまいにしているということを示している

>>37より
> スレ主の引用では
> 可能無限では『nという自然数を無限に大きくして行く』という意味さ。これを『nを無限大に近づける』
> と読んではいけないし、『nを無限大にする』と読んでもいけない
> nをいくら大きくしても、nは無限大にはまったく近づかない。nと∞の間には、決して埋めることのできない
> 概念上の大きな隔たりがあるからさ。この隔たりを埋める作業は、拡張と呼ばれている論理の飛躍だけだ
> nはどこまで大きくしても自然数であって、無限大という名前の非自然数には変化しないのね。
>
> (2)有限の極限として間接に扱う
> を上の引用の言葉を使って書き換えると可能無限と実無限の間には埋めることのできない概念上の大きな隔たり
> があるから実無限を上限のない有限(つまり可能無限)の極限として間接的に扱うということになる
> よって時枝記事に出てくる数列に対しての極限は上の引用とは逆に「nを無限大にする」と読まなければいけない

スレ主はおそらく実無限に対しての極限でも実無限に向かって「nという自然数を無限に大きくして行く」という考え方を
しているはずでこれは「可能無限と実無限の間には埋めることのできない概念上の大きな隔たりがある」
ことを全く無視していることになる

> 勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた
という時枝の言葉は「可能無限と実無限の間の隔たり」を無視しているスレ主にもあてはまる
0162現代数学の系譜11 ガロア理論を読む垢版2016/12/31(土) 22:59:28.88ID:VK/jj9Lp
戻る
(前スレより再録)
http://rio2016.2ch.net/test/read.cgi/math/1480758460/606
現代数学の系譜11 ガロア理論を読む26
606 名前:132人目の素数さん[] 投稿日:2016/12/24(土) 23:11:56.30 ID:vEx4ikP1 [1/2]
『ガロアを読む』にあるガロア自身による証明を何度も読んでたら気がついた。
ガロアは、有理数体上の多項式環の商環、 
Q[X]/(g(X))
と同型写像と、ほとんど同じことを頭の中ではイメージしてたのではないか。倉田先生は、このことを認めないから、不自然な証明を書いて、変なことを言ってるのではないのか。
(引用終り)

数の環と多項式環の類似、代数体と関数体の類似、良い発想だが
各々違いがあるみたい(下記 斎藤 毅先生 )

だいたい、関数体とか多項式環の方が易しいと言われている
倉田先生先生のガロア理論の記述も、多項式環だけでは完全ではないように思う
http://www.ms.u-tokyo.ac.jp/~t-saito/j-index.html
斎藤 毅のホームページ
http://www.ms.u-tokyo.ac.jp/~t-saito/jd.html
http://www.ms.u-tokyo.ac.jp/~t-saito/jd/i1.pdf
「数学の現在」 全三巻  はじめに, 「リーマン予想からエタール・コホモロジーへ」i巻第1講 東京大学出版会 河東泰之、小林俊行と共編
(抜粋)
2. 代数体と関数体の類似
古典的な代数的整数論は,代数体とよばれる有理数体の有限次拡大の理論
です.有限体上の1 変数有理関数体の有限次拡大は,有限体上の1 変数関数
体とよばれますが,このような体と代数体はとてもよく似ています.これを
代数体と関数体の類似といいます.数学ではこのようによく似たものをみつ
けてその類似を調べることで,両方のものがもっとわかるようになることが
よくあります.
0163132人目の素数さん垢版2016/12/31(土) 23:21:01.42ID:EYH44b4P
An idiot who don't know even ideal is speaking Galois theory. I wonder if he is speaking with right comprehension. it's full of doubt.
0164132人目の素数さん垢版2017/01/01(日) 04:00:10.71ID:PjsecY3Q
穴からドババババババババッバwwwwwwwwwwwwWWWW
wwwwwwwwwwww
WWWwwwwwwwwwww??? ? ? ? ? ? ? ????? ????????wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
なお、まにあわんもよう
0165132人目の素数さん垢版2017/01/01(日) 12:20:59.86ID:H/3bineC
>>53
おっちゃんです。
スレ主は高校レベルの確率や極限が全く分かっていないので、説明してもムダだと思った。
証明を何度書いてもスレ主は読まず、スレ主自身では証明を書かない。
これでは、もはやどうしようもないであろうと悟った。
時枝問題では非可測集合の存在性などが仮定されているから、
これらの命題の証明に用いられる選択公理或いは選択公理と同値な命題(Zornの補題など)
を仮定しないと時枝記事は正しくないという主張ならまだ分かるが、
時枝記事を一方的にただ単に否定するというスレ主の主張自体は根本的に間違っている。
選択公理或いはこれと同値な命題を仮定しないと数学の幅が狭くなるから、
時枝問題は正しいと考えるのが通常の考え方である。
選択公理を仮定しないことは、数学(代数含む)とりわけ解析学の否定につながる。
0166現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 21:28:53.34ID:cqs+IUeE
>>165
おっちゃん、どうも。みなさん、どうも。スレ主です。
明けましておめでとうございます。

まあ、はっきり言って、おっちゃんも、時枝問題不成立が分からない人たちなんだね
高校の極限が分かってない。つまり、理系の大学入試の洗礼を受けてない人たちだ(仮に文系くんなどと呼ぶ)

過去約1年、数セミ時枝記事を取り上げてきたが、多くの理系の人は覚醒していったし
プロに近い人が2〜3人来たが、数セミ時枝記事を切って、去っていった

また学会のプロの数学者が認めたという話もない(プロの数学者が認めたなら、それは「定理」などと呼ばれるが、時枝記事は定理ではない)
そこらが、わからんのだろうね、あなた方

おっちゃんは、選択公理に拘っているが、そこは本質じゃない
本質は、決定番号の確率分布が、すその超重い分布なるということ。つまり、数列の長さを有限にしたミニモデルで、決定番号の確率分布を考えることができるよ。そこから考察していけば分かる。その話は過去にも書いた。まあ、貴方たちは理解できなかったらしいから、また時間があるときに書こう

あと、時枝記事以外で、>>47のSergiu Hart 氏のPDFに、game1とgame2が載っているよ
game2は、選択公理を使わないバージョンで、有理数の無限小数展開を基本にした数当てgameだ。これは正に、上記の超重い分布が当てはまる。game1も、時枝の記事とは微妙に違っている。Sergiu Hart 氏の方が記述がすっきりしている

例えば、あなた方は気付いていないようだが、game1で”Consider the equivalence relation on X where x ? x′ if and only if there is N such that xn = x′n for all n ? N (i.e., x and x′ coincide except for finitely many coordinates).”としている
繰り返すが、はっきり、”except for finitely many coordinates”と定義している。但し、上限はないから、いわゆる可能無限(自然数の元)だな

つづく
0167現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 21:29:10.69ID:cqs+IUeE
つづき

まあ、そこらあなた方は読めてないし、理解できてない
すぐに理解できるとも思えないし、理解できるように説明してくれと言われも、重いね

もっとも、過去この記事が出た当初は、理系でも多くの人は時枝問題不成立が分からなかったみたいだから、今後、4月以降の新人理系が理解できる程度には、説明していくつもりだが・・
個人的には、時枝はもう終わっているし、あまり力を入れるつもりないんだよね、正直な話としては

だから、あんまり相手してもらえると期待しないでほしい
気長にやろうぜ

では、今年もよろしく
時枝問題に釣られないように。そこには釣り針ないよ

おわり
0169132人目の素数さん垢版2017/01/01(日) 21:34:06.73ID:55xmNTx6
>>166-167
>>117に答えてから強がってねw
0170現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 21:41:13.96ID:cqs+IUeE
>>25-27 補足

自分で引用しておいて悪いが、一言
100%真に受けないように

実無限、可能無限は、多分正式な数学用語ではないよ
哲学用語だ

ZFCの中には出てこないし、普通の数学のテキストには出てこない。が
人が普通に無限を認識するとき役に立つ。文系くんには分かりやすいだろう

https://oshiete.goo.ne.jp/qa/9055107.html
実無限と可能無限の違いを教えて下さい - 数学 [締切済 - 2015/09/12] | 教えて!goo:質問者:わかすぎたかし 質問日時:2015/08/29
0172132人目の素数さん垢版2017/01/01(日) 21:47:48.27ID:55xmNTx6
>>117によく注意して答えるがよろし

※早めに間違いを認めたほうがいいよーwwww
0173現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 21:48:49.45ID:cqs+IUeE
>>59 戻る
>数学を何だと思うかは「その人それぞれ」ですが、私の場合には構造と
>いう考え方を重視するので、従って『数学の完成形はブルバキの形式』

突然ですが、”Bourbaki and Algebraic Topology”下記が面白いなと。まあ、以前にも引用した気がするが・・(^^;

https://srad.jp/~taro-nishino/journal/547132/
ブルバキと代数トポロジー | taro-nishinoの日記 | スラド: 2012年02月26日

さて、随分本題とは関係のない話を書きましたが、ブルバキで私が取上げてほしかったトピックの一つに代数トポロジーがあります。ブルバキには多くの重要なトピックが抜けていますが、代数トポロジーについてはメンバー全員が精通していると言っても過言じゃなかったのに何故書かれなかったのか長年不思議に思っていました。
その疑問の答えを最近見つけました。それがJohn McCleary氏の"Bourbaki and Algebraic Topology"(PDF)です。以下に、その私訳を載せておきます。

<このPDFリンクでは、下記の”CasablancaTalk”のページに飛んで、そこで”McCleary”を検索すると下記PDFがあった。二つ余分を貼っておいた。>

http://www.algtop.net/?s=CasablancaTalk&;search=Search
CasablancaTalk | Resultats de recherche | Moroccan Area of Algebraic Topology:

http://www.algtop.net/wp-content/uploads/2012/02/docs_conf_ren-uir-2013_slides_CasablancaTalk.2013.pdf
Bourbaki and Algebraic Topology これ本題
by John McCleary
a talk1 given at the University of Casablanca, 4.VI.2013

http://www.algtop.net/wp-content/uploads/2012/02/docs_conf_ren-uir-2013_slides_MeknesTalk2013.pdf
A History of Spectral Sequences これ結構面白い
John McCleary
Vassar College
Universite de Meknes, Morocco, 10.VI.20131

http://www.algtop.net/wp-content/uploads/2012/02/docs_conf_ren-uir-2013_slides_RabatTalk.2013.pdf
A History of Algebraic Topology これも結構面白い
John McCleary
Vassar College
a talk1 for the GeoToPhyMa-2013 conference
Universite Internationale de Rabat, Morocco, 6.VI.2013
0175132人目の素数さん垢版2017/01/01(日) 21:51:25.08ID:/kS1YIMN
All he can do is run away even though the year changes.
0176132人目の素数さん垢版2017/01/01(日) 21:52:00.85ID:55xmNTx6
>>173
困るとコピペでごまかすいつもの図www
0177現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 21:58:19.76ID:cqs+IUeE
>>173 つづき
https://srad.jp/~taro-nishino/journal/547132/
ブルバキと代数トポロジー | taro-nishinoの日記 | スラド: 2012年02月26日

訳 (抜粋)
2004年12月10日 John McCleary マディソンウィスコンシン大学での講演

ここマディソンで、特にこの特別な日に講演する機会に感謝する。パリのサン・ミッシェル63通りにある喫茶店A. Capouladeで"解析教程草稿委員会"の創始者達が会合したのは、まさしく70年前の今日だった。
この会合には、(最近百歳になった)アンリ・カルタン(1904? )、クロード・シュヴァレー(1909?1984)、ジャン・デルサルト(1903?1968)、ジャン・デュドネ(1906?1992)、ルネ・ド・ポッセル(1905?1974)、アンドレ・ヴェイユ(1906?1998)がいた。
このプロジェクトの定めは、ブルバキ又はたぶんElements de mathematique(現代数学の基礎概念の影響力のある解説書のシリーズ)の著者である登場人物ニコラ・ブルバキの物語だろう。
この講演は、フランスのあらゆる研究に資金を提供するヴァッサー大学のGabriel Snyder Beck基金に援助されているプロジェクトに基づく。
2000年の始めにOberwolfachでの会議で、ブルバキの論文と内部資料の公文書館がパリで間もなく開かれると聞き、Beck基金は私がその公文書館に訪問出来るよう資金を出した。この公文書館の管理者Liliane BeaulieuとChristian Houzelは、2003年7月の私のパリ訪問期間中、親切に歓待し、私がブルバキ論文の中をかき回すことを許してくれた。

つづく
0178132人目の素数さん垢版2017/01/01(日) 21:59:27.67ID:55xmNTx6
>>174
新春のお笑いをお前が演るっていうから期待してるんだけど
さあさ、>>117に答えてみろよ
>>173のようなコピペでごまかしても笑いは取れませんよw
強がって周囲の人間を小馬鹿にしてきたお前は>>117にどう答えるのか?
スレ住人はageageでみな刮目しておりますw

きっちり答えてみせろ。
0179現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 21:59:28.74ID:cqs+IUeE
つづき

歴史的研究は問題を提供し、それに対していろいろな手法が採用可能だ。私の関心は代数トポロジーの歴史を含み、代数トポロジーの発展は20世紀の間、その数学に大きく影響した。
第二次大戦に続く年々が、この物語の頂点を表現し、ブルバキの多くの重要なメンバーが発展に貢献した。
しかし、代数トポロジーはElementsが扱うトピックの中に出現していない(一般的に認識されているように、他の多くの重要なトピックとともに)。私が大学院生だった間、カルタン、Koszul、Eilenberg、シュヴァレーによって代数トポロジーを扱った200ページ長の原稿がElementsのために用意されていたという噂を聞いた。
更に、このドキュメントは微分形式の使用、すなわちエリ・カルタン(1869?1951)(アンリの父親)の代数トポロジーを基礎にした。
私が聞いた話によれば、ジャン・ピエール・セール(1926? )とArmand Borel(1923?2003)の学位論文が刊行された時に、その原稿は破棄された。セールとBorelの次の論文は焦点をトポロジーに変え、微分幾何学的手法から離れ、より代数的手法、すなわち主としてスペクトル列とSteenrod代数に移したので、原稿は陳腐化した。
私の疑問: それでは、この原稿の中は何だったのか。私が閲覧出来るのだろうか? 歴史家はキーとなる出来事の前後の状況を見ることに垂涎する。
さて、その原稿は実際に存在するなら、そこには無かった。しかし、私が出来た保管作業はブルバキの働きと精神に多くの洞察を与えたから、この報告でいくつかの発見を詳しく詳述しよう。私の物語を展開しながら、ブルバキ前後の公理的手法(彼等の解説の特徴の一つが批判を受けて来た)の魅力を考えたい。

つづく
0180132人目の素数さん垢版2017/01/01(日) 22:00:07.23ID:55xmNTx6
(おまえがコピペを繰り返すなら俺もコピペで返すわw)

>>174
新春のお笑いをお前が演るっていうから期待してるんだけど
さあさ、>>117に答えてみろよ
>>173のようなコピペでごまかしても笑いは取れませんよw
強がって周囲の人間を小馬鹿にしてきたお前は>>117にどう答えるのか?
スレ住人はageageでみな刮目しておりますw

きっちり答えてみせろ。
0181現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:00:25.45ID:cqs+IUeE
つづき

ブルバキとは何者か?
パリでの会合はアンドレ・ヴェイユによって10.XII.1934と呼ばれた。ヴェイユは当時アンリ・カルタンとともにストラスブール大学の教員だった。数学免許のための3つの標準コース(一般物理学と標準力学と並んで)の一つ、微積分コースに彼等は責任があった。
標準テキストは第一次大戦前に書かれたエドゥアルド・グルサ(1858?1936)によるCours d'Analyse mathematiqueだった。カルタンはそれを一般論を欠き、不完全だと思った。明確な例(それ自体も物語を持つ)はストークスの定理の体系化である。それは以下のように書かれる。
∫∂Xω=∫Xdω
ここでωは微分形式、dωは外微分、Xは積分領域、∂XはXの境界である。
目前のすべてが滑らかな時には証明は明らかだが、積分領域がもっと一般的な場合、この公式の重要性はGeorges De Rham(1903?1990)の有名な定理(1931年に証明され、そのような多様体のトポロジーにリー群上の不変積分を関連付けるというエリ・カルタンの問題を解決した)の内容である。
カルタンのしつこいねだりはヴェイユに自分達が満足するテキストを書こうという案を出させた。ヴェイユはカルタンに"何故僕等が集結して、そのような問題をきっぱり解決しないのか。そうすれば、もう君は僕を質問攻めで困らせないだろう"と言ったと書いている。

つづく
0182現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:01:17.15ID:cqs+IUeE
つづき

パリでの本を書くための計画を立てる最初の会合はジュリア・セミナーの会合の後だった。
ジュリア・セミナーは、アンドレ・ヴェイユの言葉で言えば、フランス人数学者の"一世代が1914?1918の犠牲により事実上抹殺された"後、フランス数学の断層を埋めるためのヴェイユとカルタンのもう一つの試みだった。
セミナーはこれらの急進分子によりドイツでのセミナーを真似て組織されたが、ソルボンヌでの教室を得るためにスポンサーを必要とした。ガストン・ジュリア(1893?1978)はエコール・ノルマル・シュペリウールで彼等の最も若い先生で、進んで彼等のスポンサーとなった。
セミナーはー年に一トピックスをテーマとし、1933-34年に群と代数で始まり、そしてヒルベルト空間、トポロジーへと進んだ。セミナーは1939年まで続いたが、ブルバキ・セミナーに取って変わられた。
委員会の最初の計画は解析学のテキストだったが、ヴェイユによれば"微積分に対して25年間のカリキュラムを改善する"となった。このテキストは出来るだけ現代的、非常に役立つ解説書、最終的には出来るだけ厳密かつ多方面的となった。
ヴェイユは既に友人の内で出版者Enriques Freymannを知っていた。FreymannはMaison Hermannの主任編集者かつ経営者だった。新機軸の中でも、デルサルトにより主張された提案は、専門家のリーダーシップではなく集団でテキストを書くということだった。
最初の予想では、テキストは1000?1200ページからなり、およそ6ヶ月で完了するだろうだった。6人の初期グループは、Paul Dubreil(1904?1994)、Jean Leray(1906?1998)、Szolem Mandelbrojt(1899-1983)が加わって、9人に拡がった。DubreilとLerayは、1935年7月の夏ワークショップの前にJean CoulombとCharles Ehresmann(1905?1979)に変わった。

つづく
0183132人目の素数さん垢版2017/01/01(日) 22:01:19.06ID:55xmNTx6
スレ主の主張>>40をコピペ

//////////////////////
>>34-37 にお答えしよう

>>37に引用頂いている通りだが
時枝>>4-5に従って
無限を扱うには,(2)有限の極限として間接に扱う,を実行してみよう

1.時枝>>2により
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N
これを、一度有限に落とす。数列の長さL=nを考えよう

2.s = (s1,s2,s3 ,・・・,sn),s'=(s'1, s'2, s'3,・・・,s'n )∈R^nとなる
「ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版)」は、そのままでいい

3.「任意の実数列S に対し,同値な(同じファイパーの)代表r= r(s)」を、r =(=r(s))= (r1,r2,r3 ,・・・,r n-1, r n)と表現しよう
同値の定義より、sn=r n だ。そして
「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」も、そのままでいい。とすると、決定番号d = d(s)=nとなることに注意をうながしておく

4.で、s = (s1,s2,s3 ,・・・,sn-1,r n) と書くことができる
今、 sn-1 ≠ r n-1と仮定しよう

5.そうすると、明らかにd = d(s) = nだ

6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>38の引用に当てはめてみよう
Δr= s - r =(s1,s2,s3 ,・・・,sn-1,r n) - (r1,r2,r3 ,・・・,r n-1, r n)= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 ,0 ) となり、なんの不都合もない
Δr= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 )として、数列の長さLを、n-1と考えることも可能

7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
 lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ
0184現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:02:06.03ID:cqs+IUeE
つづき

最初のブルバキ会議はヴォージュ山脈にあるベス・アン・シャンデスで開かれた。このワークショップで、解析学をサポートするであろう抽象的(新しく現代的な)概念を扱う抽象パッケージを加えるプロジェクトを発展させる提案があった。
これらは抽象的集合論、代数、特に微分形式、トポロジーを含み、存在定理は特に重視された(Leray)。
そのパッケージは結局、有能な数学者が欲しい結果の場所を見つけられ、必要なら結果自体を与えられるように編成された役立つ結果の要約巻となった。もっとはっきり言えば、最後の刊行、第36巻、微分多様体と解析多様体の2部はそんな要約だ。ストークスの定理の記述があるのはここである。
最初の会議中に、位相空間に関する測度の新しい結果が証明され、ノートは書き上げられ、説明会に提出された。
グループのブルバキという名前は学校の物語から来た。1923年、デルサルト、カルタン、ヴェイユはエコール・ノルマル・シュペリウールで新入学クラスにいた。
その時に、彼等はかすかにスカンジナビア人の名前の教授から講義紹介を受け、講義受講を強く勧められた。その話し手は悪戯者のRaoul Hussonだが、偽髭を付けはっきりしないアクセントで話した。
古典的函数論から始まって、話は聴衆に"ものも言えない素晴らしい"と言ってから、ブルバキの定理でクライマックスを迎えた(このブルバキはナポレオンに帯同した将軍)。ヴェイユはこの話を思い出し、その名前が採択された。だが、何故ニコラなのか。論文の提出に対して著者はファーストネームを必要とした。
ブルバキ・ニコラと洗礼名をつけたのはヴェイユの妻エヴェリンだった。ノートは不幸なポルダヴィア人数学者を擁護したエリ・カルタンによって科学アカデミーに渡された。ノートは受理され刊行された。

つづく
0185現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:03:03.67ID:cqs+IUeE
つづき

ブルバキが採用した編集方法は、共同参加を維持する願いから発展した。テキストは会合の前に持込まれ、1ページ毎、1行毎にグループに発表され、グループは何かを言うが、全く批判だった。
改訂はグループのもう一人のメンバーに渡され、新しい草稿が出来た時に、そのプロセスは繰り返された。満場一致が十分な回数を重ねた後に、テキストの厳密さ、又はトピックに関してグループの疲労困憊のどちらかのために、テキストはまとめられ(通常、デュドネによって)、出版者に送られた。

余話: 公理的手法
見習い期間中、ヴェイユは多方面に旅行したが、国家社会主義が台頭した間、主にドイツで過ごした。彼は数論に関心を持っていたので、ドイツ学派の数学、特にダヴィド・ヒルベルト(1862?1943)とゲッティンゲン学派によって率いられた公理的アプローチを敬っていた。
19世紀から20世紀までフランス数学は解析学が有力だった。数論的性質の結果でさえ、解析的手法を通して証明された。多くの分野でヒルベルトのアイデアは他の所の数学者を惹き付け、ブルバキのメンバーが彼等のプロジェクトを形成するモデルを求めた時に公理的手法に向かった。
この現象は先例があった。E.H. Moore(1862?1932)が1900年頃シカゴ大学数学部門を率いるために来た時、彼はヒルベルトの幾何学の基礎のスタイルを現代的で厳密かつ真似るべき手本として意識的に採用した。
シカゴの初期の教え子の内でも(オズワルド・ヴェブレン(1880?1960)、Frederick Owens、R.L. Moore(1882?1974))、彼等の学位論文が幾何学の基礎、公理体系、ヒルベルトの達成した記述の節約に関したものだと分かる。
この、いくつかの研究の目標は幾何学を記述する公理系を縮小(冗長を見つけ出し、ユークリッドの恵みに達成すると思う必要最小のものを示すこと)することだった。しかし、これらの目標は、賞賛に値するけれども、公理的手法の深刻さを使い果たさない。

つづく
0186132人目の素数さん垢版2017/01/01(日) 22:03:05.01ID:55xmNTx6
スレ主のアホコメ>>40に対する指摘>>117

//////////////////////
>>40
スレ主が極限を分かって無いことがよくわかるレスだな
極限の交換はいつでもできるとは限らないと習いませんでしたか?
スレ主は正規の数学教育を受けてないの?
受けていれば、極限の順序の交換に慎重になるはず。
この場合「有限数列を無限数列にする極限」と「無限数列列の極限」の交換。
交換できることを示さず、交換しているのはスレ主がスレ主が極限を分かって無いことの明らかな証拠。

>すなわち、nを自然数としたとき、数列s_nを初項から第n項までを1、それ以降を0とする数列とする。
>このとき、すべての自然数nについて、s_nはs_1の同値類に属すのは明らか。
>では、lim[n→∞]s_n はs_1の同値類に属すか?
問題追加
lim[n→∞]s_n はどんな数列か?
0187現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:03:59.45ID:cqs+IUeE
つづき

大雑把に言えば、公理的手法は、いくつかの分析の後、定理の集まりを推論されるような公理系を示す数学創造へのアプローチだ。公理系の正しさを示す目標は直感の欺瞞を避けることである。
ヒルベルトの代数的整数論(報告書)と不変式論における経験は彼をもっと抽象一般化へ通じる道に足を踏ませた。
1898?99年の講義で彼が初等幾何へ向かった時、ゲッティンゲンの学生たちは驚いた。ヒルベルトの初期研究歴で既に、"点、直線、平面の代わりに、人は机、椅子、ビールのジョッキと言えるはずだ"と幾何学について注意した。
基礎における彼の目標は、"幾何学に対して単純完璧な独立した公理系を選び、これらから、異なる公理群の意味と個別の公理から導かれる結論の範囲を可能な限り明確に引出すような形で最も重要な幾何学的定理を引出すこと"だった。
基礎はすぐに成功し、Henri Poincare(1858?1912)から次のような反応を引出した。
"論理的見地だけがヒルベルト教授の興味を掻き立てるらしい。命題の列があれば、彼は先ず第一にteh[訳注:英語の定冠詞theがよくtehと書き間違い易いことを例にして皮肉っているのです]から論理的にすべてが成立すると分かっている。
この最初の命題とその心理的起源に彼は関心を持たない....公理は自明のことと仮定されている。それらがどこから来ているのか私達は分からない。それはAをCと仮定するように安易だ....彼の研究は従って不完全だが、これは彼に対する批判ではない。
不完全なものは必ずや諦めて不完全を甘受するはずである。彼は数学哲学を一歩前進させたことで十分である....”

つづく
0188132人目の素数さん垢版2017/01/01(日) 22:04:14.69ID:55xmNTx6
>>117はスレ主のでたらめに対する数学的な指摘だ
それを無視して無関係なコピペで逃げ回るなら数学板以外でやれよ
0189現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:07:45.40ID:cqs+IUeE
つづき

ヒルベルトの試みの哲学的及び基本的方面ははっきりしている。
しかし、数学的方面は基礎の大部分の議論の中心ではない。独立した研究のうちでも、彼は新しいオブジェクトを導入して来た―特に、非アルキメデス幾何学。
公理群の中の関係を離すことによって、一つ又はそれより多くの仮定の失敗がどのようにして新しい結果を生むか人は発見する―この活気性のモデルが非ユークリッド幾何学だ。彼の代数と数論での経験も、公理的手法が、新しい議論を作り、新しい事象を発見し、おまけに過去を整然とした形で保持出来る手段を高めるという見解を立証した。
ブルバキにとって重要なもう一つのゲッティンゲンの成果も同じ考え方だ。B.L. ファン・デル・ヴェルデン(1903?1996)による現代代数学が1930年に出現し、ある結果へのアプローチでの類似性を示す公理に基づいた代数学の系統だった解説を与えた。同型写像の概念は代数学の中で重要な役割を果たし、後にブルバキの中心思想として浮上する。
実のところヒルベルトとファン・デル・ヴェルデンは、過去(理論の完璧な記述を取り戻すこと、が正式な表明となっているけれども)が目的ではなく、前向き(多くの新しい結果を構築出来るスリムな足場を読者に与えること)な数学的目標を求めたと理解することが重要である。
この意見が現代数学のなされた来た方法の一部となった度合いを、私達がこの種のプレゼンテーションに対して持つ自然な感触によって測ることが出来る。いつもそうだとは限らなかった。

つづく
0190132人目の素数さん垢版2017/01/01(日) 22:08:24.62ID:55xmNTx6
コピペの発作はおさまったかい??ww
学歴の詮索(>>155)が大好きな理系の学歴コンプさんw
0191現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:08:51.28ID:cqs+IUeE
つづき

ブルバキでの代数トポロジー
現代的で厳密な万能テキストを造る目標は最もブルバキの特徴的な美点となった。"本質的要点に行き、数学をもっと包括的で概念的な方法で再編するために数学を消化 [Borel]"しようと、トピックは何度も議論された。
この目標を達成しようとセッションは活発だった。戦後にもかかわらず、La Tribu[訳注:"連中"という意味ですが、これはブルバキの隠語で、ブルバキ会議の報告書のことです]の中に、カルタンとデュドネの間に古典的と考えられる論争の再現の記録がある。
彼等の作業方法と明快な目標とともに、"是認されたものは何であれ作者へのクレジット無しに統合された。概して言えば、本当に無私、匿名で、基礎数学の出来る限りベストな解説を与えようと奮闘している人達による要求の厳しい仕事は、彼等の信念によって一貫性と極度な簡素性に近づいた [Borel]"。

トピックの最初期のリストは1935年の夏会議から始まる。

(リスト略)

トポロジーの議題がリストに登場し、1935年の春には、トポロジーの記述を含む予想されるテキストの議論があった。古典的教科書としてKerekjarto、Seifert、ThrelfallによるものとKuratowskiによるものが言及された(フランス語では皆無)。
デルサルト編集によるJournal de Bourbaki(後にLa Tribuとなった)の創刊号には、新刊本のAlexandroffとHopfのTopologie Iをヴェイユが読んでいることが報告された。このTopologie Iは彼等の記述が誤らないようにさせるものとして期待された。
トポロジー部門を書いているチーム(ヴェイユ、ド・ポッセル、アンリ・カルタン)は1936年に、読み上げている(ヴェイユ)、眠っている(ド・ポッセル)、又は何も書かずに考えている(カルタン)と報告されている。

つづく
0192132人目の素数さん垢版2017/01/01(日) 22:09:30.69ID:55xmNTx6
すげー必死じゃんwwワロタ

大量コピペで>>117から逃げるっていう発想がすごい
0193132人目の素数さん垢版2017/01/01(日) 22:09:48.91ID:55xmNTx6
スレ主のアホコメ>>40に対する指摘>>117

//////////////////////
>>40
スレ主が極限を分かって無いことがよくわかるレスだな
極限の交換はいつでもできるとは限らないと習いませんでしたか?
スレ主は正規の数学教育を受けてないの?
受けていれば、極限の順序の交換に慎重になるはず。
この場合「有限数列を無限数列にする極限」と「無限数列列の極限」の交換。
交換できることを示さず、交換しているのはスレ主がスレ主が極限を分かって無いことの明らかな証拠。

>すなわち、nを自然数としたとき、数列s_nを初項から第n項までを1、それ以降を0とする数列とする。
>このとき、すべての自然数nについて、s_nはs_1の同値類に属すのは明らか。
>では、lim[n→∞]s_n はs_1の同値類に属すか?
問題追加
lim[n→∞]s_n はどんな数列か?
0194現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:10:02.03ID:cqs+IUeE
つづき

報告書の中で、最初期の"代数トポロジー"への論及は、位相群での双対の議論に言及するための用語として使用しており、後の議論では"位相的代数"となった。
1930年代には組合せトポロジーの要点がブルバキ内部でも議論された。既に1935年の夏カンファレンスで、ヴェイユによるアウトラインは組合せ的トピックの中でも次元、交わり、繋ぎ、不動点の指数を持つ写像度を含んでいる。
基本群(ポアンカレ群)と被覆面も含んでいた。1938年までに、ヴェイユは写像度と組合せトポロジーについての報告を書いた。
1937年までに目標日とともに第1巻の計画がった。
すなわち、1.I.1938までに第1巻の完成だ。集合論、代数、集合論的トポロジー、抽象積分のトピックを含むため抽象パッケージは大きくなってしまった。
いやそれどころか、数学者のためのツールボックスを書く目標を維持して、最初の刊行はテキスト本ではなく、集合論に関する結果の一覧(証明の無い定理公式の巻)だった。解析学への行程に始まって、集合論が将来の巻に対する基礎を担うことで意見が一致した。
将来の巻の計画は1940年までJournal de Bourbaki(その年にLa Tribuに変わった)で議論された。
La Tribuの時までに、構造の概念の使用はプロジェクトを公にする理論付けを支配した。後にLe LionnaisのLes grands courants de la pensee mathematique[訳注:"数学的思考の主な傾向"]のブルバキ項目で書かれたように、最も簡単で多くの数学的活動で共有される"母なる構造"があった。
これ以上に、いくつかの母なる構造をブレンドする"多重構造"が存在することを知る。例えば、位相群は連続性を持つ群構造をブレンドし、一方で代数構造とともに順序構造はイデアルと整域の研究の要因となっている。

つづく
0195現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:10:50.04ID:cqs+IUeE
つづき

構造の階層に基いて、Elements de mathematiqueは分割された。パートTは解析の基本構造を、パートUは線型解析を、パートVは代数的解析(楕円関数、数論)を、パートWは微分トポロジーを扱った。この計画では代数トポロジー(すなわち、組合せトポロジー)がパートTにあるのが分かる。

(リスト略)

この計画において代数トポロジーの進行は殆ど無い。10?15.IV.1944のLa TribuNo. 10に"パリで1944年4月6日から8日まで開かれた最近のブルバキ会議は、それでも重要な前進をした。編集者が長らく望んでいた、代数トポロジーの始まりだ"と報告されている。
しかし、その時の議題のコアな記述は、a) 曲線のメンガー理論、グラフ、ペアノ連続体、連続体は含むべきでない、b) ノットについての一章、c) 高次ホモトピー群とファイバー空間、それらは興味を駆り立てるし、将来性もあるようであるが、現時点では"幼虫"の状態である、と書かれていた。
このトピックの展開は戦争中、フランスではEhresmann、カルタン、ルレイ、米国ではスティンロッド、ホイットニー、スイスではHopf、Eckmannの研究で占められた。
11?15.1945のLa TribuはパートTのトピックの依存関係の図を含み、再度代数トポロジーが基礎の近くに位置している。

つづく
0196現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:11:32.00ID:cqs+IUeE
つづき

1946年、第2次世界大戦が終わり簡単に旅行出来るので、サムエル・アイレンバーグ(1913?1998)がメンバーとして、明らかに代数トポロジーに関するレポートを準備するために招集された。
1949年までにアイレンバーグとヴェイユによるファイバー空間のトポロジーの重要方面を取上げている82ページのドキュメント、Rapport SEAW sur la topologie prehomologique[訳注:"プレホモロジー的トポロジーに関する緊急報告"]があった。
この細かく書かれたレポートはいくつかの新しいアイデアを含み、ファイバー空間の点集合の概念を発展させた。例えば、彼等は空間の表皮(こうしてはいけないことがあろうか、と補足説明付きで)を定義した。この"皮"は良好な拡張概念を持つ空間被覆である。
馴染みのあるトピックを取上げているリストは1950年の総計画である。

(リスト略)

パートUは可換代数を、パートVは代数トポロジーとその応用を、パートWは関数解析を扱った。
新しいトピック、幾何的トポロジーは被覆、ファイバー空間、ホモトピー、多面体、レトラクト、基本群のようなトピックを取上げるためにセールによって名付けられた。この術語は文献に載ったが、それを嘲り別の術語を考案したブルバキにはしっくり来なかった。

つづく
0197132人目の素数さん垢版2017/01/01(日) 22:11:33.22ID:55xmNTx6
スレ主の馬鹿主張>>40をコピペ

//////////////////////
>>34-37 にお答えしよう

>>37に引用頂いている通りだが
時枝>>4-5に従って
無限を扱うには,(2)有限の極限として間接に扱う,を実行してみよう

1.時枝>>2により
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N
これを、一度有限に落とす。数列の長さL=nを考えよう

2.s = (s1,s2,s3 ,・・・,sn),s'=(s'1, s'2, s'3,・・・,s'n )∈R^nとなる
「ある番号から先のしっぽが一致する∃n0:n >= n0 → sn= s'n とき同値s 〜 s'と定義しよう(いわばコーシーのべったり版)」は、そのままでいい

3.「任意の実数列S に対し,同値な(同じファイパーの)代表r= r(s)」を、r =(=r(s))= (r1,r2,r3 ,・・・,r n-1, r n)と表現しよう
同値の定義より、sn=r n だ。そして
「sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す」も、そのままでいい。とすると、決定番号d = d(s)=nとなることに注意をうながしておく

4.で、s = (s1,s2,s3 ,・・・,sn-1,r n) と書くことができる
今、 sn-1 ≠ r n-1と仮定しよう

5.そうすると、明らかにd = d(s) = nだ

6.r = (r1,r2,r3 ,・・・,r n)= (r1,r2,r3 ,・・・,r n-1, r n)として、>>38の引用に当てはめてみよう
Δr= s - r =(s1,s2,s3 ,・・・,sn-1,r n) - (r1,r2,r3 ,・・・,r n-1, r n)= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 ,0 ) となり、なんの不都合もない
Δr= (s1-r1,s2-r2,s3-r3 ,・・・,sn-1-r n-1 )として、数列の長さLを、n-1と考えることも可能

7.ここで、極限を考える。n→∞だ。d = d(s) = nだった
 lim (n→∞)d で、d→∞。そして、極限を考えても、同値s 〜 r は不変だ
0198現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:12:51.25ID:cqs+IUeE
つづき

そして、どうなったか?

代数トポロジーのテキストの出版にも影響を与える、もう一つの企てがこの時くらいに生まれた。1948/49年にアンリ・カルタンセミナーがパリで始まった。カルタンは1948年にちょうどハーバードから帰って、後に層となる位相的概念について喋った。
最初からセミナーはトポロジーなテーマを取上げ、48/49年に基礎概念に始まり、ファイバー空間へと進み、後年にはスペクトル列、層、群のホモロジー、アイレンバーグ-マクレーン空間となった。これらの講義の解説のレベルは、ブルバキの期待と合致し、講義の多くは当時のブルバキのメンバーによって行われた。
Elements de mathematiqueの最初期計画における代数トポロジーの議論と、ブルバキの予想読者のための基本的ツールでの実現は、そのトピックがグループにとってどういう位置かを明確にしている。
しかし、その分野の発展が戦後急激だったので、出版物の基準としてブルバキが課した方法(すなわち、本質的概念は同一化され、公理的基礎は主要定理が最初の原理からスムーズに証明されるように表現されていること)とは一致しなかったであろう。
ホモロジー代数の傍系的な発展は代数トポロジーに一ツールを与え、最終的にブルバキに取上げられたが、つい最近の時だ(1980年)。この発展の一部がブルバキ自身のメンバー、カルタン、アイレンバーグ、セール、Borelやその他の人によって実現されたことは重要であり、ブルバキの他の貢献と同じ形で取上げるには余りにも新しかった。

つづく
0199現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:13:27.22ID:cqs+IUeE
つづき

ブルバキの出版物は読み易くない。その厳格なスタイルは、彼等の仕事に正確厳密に表現されている統一数学の一枚岩的見解と結びついている。道標であり且つ目標として"構造"という哲学的枠組みは際立った仕事の説明に役立つ。
しかし、保管庫の記録は別のストーリーを物語る。厳格さは集団的検閲の結果だ。ドキュメントの経過は最初の発表から最終的出版まで、一流の数学者の意見交換によって薬味が加えられ、驚くべき基準に則り、殆ど混沌だった。
一つの企ての観点から、ブルバキのElementsは、好結果を生むと考えられた手法(公理的手法)に基いて、有能な数学者の集まり(作品上では個人は匿名によって埋没されるが、そのプロセスが巻き込む活発性により埋め合わされている)による数学的文化の再構築の試みとして際立っている。
私達は同じ事をするために動かされている違いない(そして、代数トポロジーに関して何の種類のレポートを今日作ったのかと思う)。

おわり
0200132人目の素数さん垢版2017/01/01(日) 22:13:27.62ID:55xmNTx6
スレ主のアホコメ>>40に対する指摘>>117

//////////////////////
>>40
スレ主が極限を分かって無いことがよくわかるレスだな
極限の交換はいつでもできるとは限らないと習いませんでしたか?
スレ主は正規の数学教育を受けてないの?
受けていれば、極限の順序の交換に慎重になるはず。
この場合「有限数列を無限数列にする極限」と「無限数列列の極限」の交換。
交換できることを示さず、交換しているのはスレ主がスレ主が極限を分かって無いことの明らかな証拠。

>すなわち、nを自然数としたとき、数列s_nを初項から第n項までを1、それ以降を0とする数列とする。
>このとき、すべての自然数nについて、s_nはs_1の同値類に属すのは明らか。
>では、lim[n→∞]s_n はs_1の同値類に属すか?
問題追加
lim[n→∞]s_n はどんな数列か?
0202132人目の素数さん垢版2017/01/01(日) 22:18:14.32ID:55xmNTx6
長文コピペの連打で逃げまわるのはやめようね
人間としてとても卑怯で非誠実な態度だよ
きみのデタラメ>>40をきっちり読んで、
数学的に指摘してくれた人(>>117)にとても失礼だと思います
0203現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:55:37.73ID:cqs+IUeE
>>199 関連 前文

https://srad.jp/~taro-nishino/journal/547132/
ブルバキと代数トポロジー | taro-nishinoの日記 | スラド: 2012年02月26日

先日、知人からブルバキ数学原論旧版の和訳への復刻リクエストが多いことを聞いて、正直言いまして意外な感じを受けました。つまり、言葉が悪いですが馬鹿じゃなかろうかと思いました。
1970年代にブルバキと元出版社との間に長い法廷闘争があったことを皆さんも御存知でしょう。そして、ブルバキ側が勝ち、元出版社はブルバキとは何の関係も無くなり、販売権、翻訳権、その他もろもろの権利もありません。
そういう状況で旧版和訳を再刊行すればどうなるか、想像も難しくありません。旧版の和訳は当然元出版社からの翻訳認可があったからですが、この元出版社はブルバキとは縁が切れているので今は何ら権利を持ちません。
では、仮にブルバキとその代理人である現出版社にお伺いをするなら、向こうも困るでしょう。改訂版の和訳を出したらと言うに違いありません。ですから、旧版和訳復刊への道は険しいと言わざるを得ないのです。
最近、各地の大学図書館でブルバキ旧版和訳を放出しているのは、本の痛みもありますが、原書の改訂版が出ていることも背景にあるのでしょう。
要はブルバキを読みたければ原書を読めばいいのです。仏語が苦手なら英訳がほぼタイムリーに出ていましたから、望ましくはありませんが英訳を読めばいいのです。

つづく
0204現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:56:26.84ID:cqs+IUeE
つづき

ここまで書いて、George McCarty博士の"Topology: An Introduction with Application to Topological Groups"の或る文章を思い出しました。その中でブルバキの"Topologie Generale"の英訳版を学習者のために推薦しているのですが、いい機会だから原書を読みなさいと言っているのです。以下に該当箇所の文章を簡単に載せておきます。

This is a translation of N. Bourbaki, Topologie Generale (Paris: Hermann, 1953); if you do not yet read math in French, here is an excellent time and place to begin. Try it; using the translation as a pony, you will find it possible even if you have never studied that language.

(私訳)
これはブルバキの"Topologie Generale"の翻訳である。貴方がまだフランス語で数学を読んでいないなら、始める絶好の機会と場所だ。翻訳を虎の巻として使って、その言語を習ったことがなくても可能だと分かるだろう。やってみなさい。

私は学生の時、独語を習っていなかったので、虎の巻として英語版か仏語版を使いながら独語原書を読んだことがありました。すぐ独語に馴染めました。
では何故、私のみならず多くの人が原書を重視するかと言いますと、翻訳はどうしてもミスプリントやマイナーエラーが混入される可能性があるからです。エッセイや読み物なら別にどうってことはないでしょうが、数学専門書ですから出来る限りエラーの無いものを選ぶべきなんです。
勿論原書にもエラーがあるかも知れませんが、それはもう仕方がないことです。

つづく
0205現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 22:57:43.12ID:cqs+IUeE
つづき

私は原書しか読まないのですが、翻訳のいい加減さを実感した実例があります。私は学生時代、函数論を故小平邦彦博士の名著"複素解析"を読んで勉強しました(この場合、原書が日本語ですから問題ありません)。
ずっと後に、今から約5年ほど前、この本が英訳版"Complex Analysis"としてケンブリッジ大学出版から刊行されましたが、当時ケンブリッジにいた知人がこの本を購入して読んだのですが、どうも変だと感じ、私が日本語原書で勉強したことを知っている知人はわざわざ立派なハードカバーの英訳本を私に送り、原書と比べてくれないかと言って来ました。
そして英訳本を読んで私はショックを受けました。数学論文や専門書に書かれる文章は何語であろうが言い回しが殆ど決まっていますから、英文自体に特に問題は無くて、説明文や証明の中にある数式や記号に非常に間違いが多かったのです。
例えば、極限を取る際の0と∞の混同、τとtの混同、不等号における等号成立の混同、不等号の向きの混同、2とzの混同、曲線の記号と複素数体の記号の混同、その他もろもろ多数。一見して単純ミスと分かる場合はいいですが、そのまま意味が通じる時もあります。
これでは海外の初心者は安心して読めないし、もしかして"I don't think much of Kodaira."[小平は大したことないな]と思っているかも知れません。これらは結局翻訳者の原書からの書き写し間違いが原因です。遅くともゲラ刷りの段階でしっかり校正していれば防げたはずです。
小平博士の本を翻訳することは世界的に見てどれ程の影響力があるかを考えれば、こんないい加減な仕事をしないはずだと私は思います。そして、英訳本のお粗末さゆえ、結果的に小平博士の名誉を傷つけたことは翻訳者に大いなる罪があります。
知人には私の作った訂正一覧と証拠品として日本語原書を送りましたが、その返事には御礼とともにケンブリッジ大出版に交渉すると書いてありましたが、その後改訂されたとは聞いていません。

つづく
0206現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:01:31.07ID:cqs+IUeE
>>203 関連

この数学は原書を読みなさいという話、随分前に引用したと思う
まあ、私もこれを参考に、できるだけ原書を併読するようにしている
訳本を、虎の巻としてね(^^;
0208現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:22:31.68ID:cqs+IUeE
>>203
> 1970年代にブルバキと元出版社との間に長い法廷闘争があったことを皆さんも御存知でしょう。

裁判? しらなかったな
ブルバキ数学史〈上〉〈下〉は、ちくま学芸文庫で出ているみたい
https://www.amazon.co.jp/dp/4480089772
ブルバキ数学史〈上〉 (ちくま学芸文庫) 文庫 ? 2006/3
ニコラ ブルバキ (著), Nicolas Bourbaki (原著), 村田 全 (翻訳), 杉浦 光夫 (翻訳), 清水 達雄 (翻訳)

商品の説明
内容(「BOOK」データベースより)

「構造」の観点から20世紀の数学全体を基礎づけ直したフランスの若き数学者集団ブルバキ。彼らの壮大な試みはユークリッドの『原論』を模して『数学原論』40余冊として結晶した。
最新の各理論の指導的理念やその形成展開の過程はどのようなものであったのか。膨大な原典史料を駆使して、理論の背後にある思考様式や哲学を含め考察したものが、「歴史覚えがき」として著された本書である。
「構造」を「歴史」から逆照射する、数学者自身によるユニークな数学史。数学専攻の学生・研究者はもちろん、「構造主義」哲学に関心ある読者には必読。文庫版は3篇を増補した決定版。上巻は「一様空間」まで。
著者略歴 (「BOOK著者紹介情報」より)

村田/全
1924年、神戸市生まれ。北海道大学理学部数学科卒業。立教大学名誉教授

清水/達雄
1928年、東京生まれ。東京大学理学部数学科卒業。元清水建設研究所研究員

杉浦/光夫
1928年、愛知県生まれ。東京大学理学部数学科卒業。東京大学名誉教授(本データはこの書籍が刊行された当時に掲載されていたものです)
0209現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:27:34.78ID:cqs+IUeE
>>208 関連

http://hblo.blog.shinobi.jp/Entry/648/
はやしのブログ ブルバキ数学史:2006/03/11
(抜粋)
ちくま学芸文庫から『ブルバキ数学史』が出ているのを今日本屋で発見して、「おお」とのけぞった。この『数学史』に限らず、ブルバキとおれとは浅からぬ付合いがあるだけに、なかなかに感慨深い。

「ブルバキ」というのは、50歳定年制を布く数学者グループで、そのメンバにアンドレ・ヴェイユ(かのシモーヌのお兄さん)、ジャン・デュウドネ、アレクサンドル・グロタンディークといった、一癖も二癖もあるような連中が含まれる。
その記述スタイルは「公理、命題、証明」というセリーがひたすら続き、例などの提示はほとんどないという「味気ない」をまさに具体化したようなもの。初学者にやさしくないことこの上ない(ブルバキもその『数学原論』第一巻で「初学者向けではない」と自ら宣言していたように記憶する)。
ただ、その一貫性、簡潔さ、そして一般性は他の追随を許すものではなく、いきおいそこにある種の凛とした美しさを感じることになる。

おれもそういう美しさにやられた口で、学部生のころは明倫館で何十冊にもなる『原論』をちょぼちょぼ買い集めてはページを繰り、定理の証明を書き下したりして愉しんでいた。
さらには、そういうふうに「一人で愉しんでいる」のみならず、ブルバキネタで卒論まで書こうとかなり真剣に思いもしたが、それは何が何ぼでもやりすぎだ、ということで見送った。
ただ、今となってみれば全然オッケーだったような気もする(おれがいたところはバリバリ文科系にもかかわらず、少なくとも学生に関しては「数学アレルギー」を持っている人が少なく、友だちが集まっては数学の問題を出しっこして解いたりしたものだった)。

つづく
0210現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:28:14.66ID:cqs+IUeE
つづき

今日見かけた『数学史』は、各『原論』に載っていた「歴史的覚書」をコンパイルしたもので、単なる「歴史的事実の寄せ集め」というものではなく、「数学的概念の発展史」とも言うべきもので、序に「大学一年程度の数学知識で読める」とは書いてあるものの、ちゃんと読もうとするとかなり手ごわい。
手ごわいがちゃんと読めば、ある数学的概念が、いつごろ萌芽として潜在的に発生し、それがいつごろ顕在化したのか、という生態がとてもよく分かり面白い。集合・論理や微積分など、高校で既習済みのところなんかは比較的読みやすいので、そういう分かりそうなところを拾い読みするだけでもパースペクティヴが拡がると思う。

つわけで、誰にでもオススメ、というわけではないけれども、何かの機会があったら手にとってパラパラめくってもいいんじゃないかな。ちなみに、ブルバキそのものについて書かれたものとして『ブルバキ―数学者たちの秘密結社』という本もあって、これも面白いです。

(引用終り)
0211現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:39:19.65ID:cqs+IUeE
>>208 関連

http://blog.goo.ne.jp/sendatakayuki0123456789/e/b53afa13321bf2020cae7cdb346abf03
読書ノート ニコラ・ブルバキ著 「数学史」上下  ちくま学芸文庫 - ブログ 「ごまめの歯軋り」:2011年09月07日 | 書評
http://sendatakayuki.web.fc2.com/etc5/syohyou272.html
ニコラ・ブルバキ著 「数学史」 
 村田全・清水達雄・杉山光夫訳 ちくま学芸文庫 上・下 (2006年3月)
ユウクリッド「原論」からブルバキ「数学原論」にいたる数学史の構造主義的アプローチ
(抜粋)
ブルバキの旗印は「構造」であり、「形式論的経験主義」だといわれている。そしてこの「構造主義」は、当時の哲学と密接に関係し、その影響下にあったといわれる。

「構造主義」とは、狭義には1960年代に登場して発展していった20世紀の現代思想のひとつであり、広義には、現代思想から拡張されて、あらゆる現象に対して、その現象に潜在する構造を抽出し、その構造によって現象を理解し、場合によっては制御するための方法論を指す言葉である。
構造とはその要素間の関係性を示すものである。今日では、方法論として普及・定着し、数学、言語学、精神分析学、文芸批評、生物学、文化人類学などの分野で構造主義が応用されている。
数学において、ブルバキというグループが公理主義的な数学の体系化を進めているが、その中心人物であるアンドレ・ヴェイユは言語学者エミール・バンヴェニストからの影響を認めている。
文化人類学において婚姻体系の「構造」を数学の群論で説明した。群論は代数学(抽象代数学)の一分野で、クロード・レヴィ=ストロースによるムルンギン族の婚姻体系の研究を聞いたアンドレ・ヴェイユが群論を活用して体系を解明した話は有名である。
現代思想としての構造主義は原則として要素還元主義を批判し、関係論的構造理解が特徴である。ロラン・バルト(文芸批評)、ジュリア・クリステヴァ(文芸批評、言語学)、ジャック・ラカン(精神分析)、ミシェル・フーコー(哲学)、ルイ・アルチュセール(構造主義的マルクス主義社会学)など人文系の諸分野でその発想を受け継ぐ者が多い。
ユングのアーキタイバル・イメージ(元型)を手がかりとしたアプローチも構造主義といえる。

つづく
0212現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:40:06.30ID:cqs+IUeE
つづき

本書の訳者である村田全氏は数学史には3つのアプローチがあると云う。ひとつは本書のような数学の中における自律の発展史という見方である。
第二に人類文化史や社会経済史、哲学史、自然科学史など全体の歴史の中のひとつの要素として数学の歴史を捉える見方である。第三に数学の中へ持ち込まれた他の影響を調べるアプローチもあるという。
いずれにせよ文化科学や社会科学においてそれぞれの歴史学が存在する(政治史、経済史、哲学史などなど)が、数学や自然科学には歴史という見方が稀薄である。これには自然科学は実学で現在でも立派に通用しているから、歴史的にしか存在しないものは乗越えられたという見方からきているようだ。
古代ギリシャの論証体系の確立に始まり、近代には記号論的演算力の切れ味が応用され、17世紀には科学革命の推進力となった。今日では圧倒的な数理科学にまで成長した。この数学の驚異的発展の恩恵は測り知れない。
ところが数学の発展はいつも実学の要求に応じて開発されたものかというと、全くそうではない。20世紀においても数学は理論数理物理学の欠かせない手段となったが、それが物理学が利用したまでの事であって、数学は自律的抽象化の道を歩んだにすぎない。
数学者の関心の的が「時代の子」として物理学に注がれることは事実だが、別にその請負仕事ではなかった。数学の歴史には20世紀を分かれ目として、19世紀的な輝かしい具体的数学と、20世紀的現代抽象数学がある。ブルバキは当然現代抽象数学の先端を行くものであろう。

つづく
0213現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:41:17.48ID:cqs+IUeE
つづき

数学基礎論

ブルバキは論理の形式化、数学における真理の概念、対象、モデル・構造、集合論、集合論の逆理と基礎の危機、超数学と論を進める。
ギリシャの論証法から、ルネッサンスから近世を経て、非ユークリッド幾何学、ヒルベルトの「幾何学基礎論」に到流れのなかで、数学的真理が経験の即しつつ形式化されてゆく過程を示している。数学構造論としては一番集合論が似合う。
ブルバキは論理の無矛盾性よりは、より構造的な決定(選択)のほうに重点が置かれている。ブルバキはユークリッドの数学の特質を次の3つに整理している。
@論理学の形式化を導いたのはいつも数学であった。
Aギリシャ公理論は経験的起源を持つ。
Bギリシャ数学の数学的存在の特質を作図可能性であると云う。
この見解に対して訳者の村田全氏はサボーの見解を引いて、エレア学派の哲学が上位に立つと反論しているが、ここにはその詳細は議論できない。
ユウクリッドの原論以来、自然数(正の整数)という段階的な対象に関する理論が論理と一番なじむが、連続的数は対象として論理となじまないようである。
ブルバキは連続を避けているように思われる。数学の真理性とは何だろう。記号論ー形式論理なのだろうか。そしてそれは純粋に思惟的自律的なものだろうか。
ブルバキはその形式的理論なるものをあくまで現実的実在に対する1個の理論モデルと考え、その理論モデルを全体として理解し、統一的な数学の存在を認めているようだ。
訳者の村田全氏はこれを「形式論的経験主義」と呼んでいる。数学の真理性が認識の原理の中にあるのか、それとも自然の中に存在するのか、これは永遠の問いである。

(引用終り)
0214現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:51:44.79ID:cqs+IUeE
>>212 関連

>数学者の関心の的が「時代の子」として物理学に注がれることは事実だが、別にその請負仕事ではなかった。数学の歴史には20世紀を分かれ目として、19世紀的な輝かしい具体的数学と、20世紀的現代抽象数学がある。ブルバキは当然現代抽象数学の先端を行くものであろう。

ここ、まさにブルバキの時代はそうなのだが、20世紀末からは様変わり(下記)

>>103 受賞者記念講演録 | 京都賞:
物理と数学を巡る冒険
エドワード・ウィッテン
より

「ここでお話ししておかなければならないのは、17世紀、18世紀、それに19世紀の
大半でさえ、数学者は同時に物理学者でもあるのが普通だったのに、ところが20
世紀になると、数学と物理学という2 つの学問は別々の道を歩むようになったよ
うです。その原因は、数学の分野における数々の進歩により、物理学との距離が離
れていったからだと思われます。しかしそれ以外にも、1930年頃から、物理学の研
究が、相対論的量子場理論など数学的解釈がきわめて難しいと思われる方向に向
かったことが挙げられます。」>>109

「サイバーグとの共同研究は、4 次元空間の研究に数学的に関係する部分もありま
した。それを、数学者は一般にサイバーグ・ウィッテン理論と呼びます。実は、こ
のことからある興味深い事実が明らかになります。それは、私が研究生活を始めて
から現在に至るまでの間に、数学と物理学の距離が非常に近くなった部分もあれ
ば、依然として大きく離れている部分もあるということです。」>>119

つづく
0215現代数学の系譜11 ガロア理論を読む垢版2017/01/01(日) 23:52:01.82ID:cqs+IUeE
つづき

大栗>>69より
「1990年以来の過去5回のICMでは、フィールズ賞受賞者のおよそ4割が場の量子論や超弦理論に関係する分野で研究をされていたので、今回はどうなるのだろうかと思っていました。

今回の受賞者のひとりはスタニスラフ・スミルノフさんで、ある種の2次元の統計模型がスケール極限で共形対称性を持つことを示し、物理学者のジョン・カーディさんの予想していた公式に数学的証明を与えました。
場の量子論に数学的基礎を与えることは数理物理学の長年の課題ですが、2次元の共形場の理論では確実な進歩が起きています。前回の2006年のICMでフィールズ賞を受賞されたウェンデリン・ウェルナーさんの業績も2次元の共形場の理論に関係するものでした。」
「もうひとりの受賞者のセドリック・ビラニさんへの授賞対象は気体分子の運動論で、非平衡の状態からどのように平衡状態への移行が起きるのかの理解を進められたのだそうです。
物理学の提起する問題は、依然として数学の新しい発展を触発し続けているようです。」

(引用終り)
0216現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 00:04:43.36ID:MUXssChK
>>199
>私達は同じ事をするために動かされている違いない(そして、代数トポロジーに関して何の種類のレポートを今日作ったのかと思う)。

原文(訳文だけでは分かり難い)
We should all be so moved to do the same. (And I wonder what kind of report on algebraic topology we would produce today.)
0217132人目の素数さん垢版2017/01/02(月) 01:43:52.10ID:HxlgBhaG
>>170
用語が正式かはともかくとして2つの数列が同値かどうかは二択でしょう
>>40
> 無限を扱うには,(2)有限の極限として間接に扱う,を実行してみよう
Δrの極限をとることで得られた無限数列は以下の(a), (b)のどちらなのですか?
(a) (s1-r1, s2-r2, ... , s(n-1)-r(n-1), 0, 0, 0, ... ) (シッポは全て0)
(b) (s1-r1, s2-r2, ... , s(n-1)-r(n-1), 1, 1, 1, ... ) (シッポは0でない)

参考までに
http://rio2016.2ch.net/test/read.cgi/math/1480758460/484
> 同値類の定義からΔrの無限数列のシッポは全て0になることは確定しているから
> 極限を考えた場合の無限数列のシッポは全て0になって決定番号は無限大にはならない
>
> 最初にシッポの0をカットして有限数列にしても極限を考えるときに
> ある番号nから先の「s'n-sn, ...」が再度全て0になる
という書き込みに対してのスレ主のレスは
http://rio2016.2ch.net/test/read.cgi/math/1480758460/489

>>166
100列の無限数列の(異なる)決定番号{d1, d2, ... , d100}に対応させて100個の項だけが
0である無限数列(a1, a2, ... , a(d1)=0, ... , a(d100)=0, ... )を出題することを考える
この数列と代表元との比較をして一致するシッポに0が一切含まれないケースを考えれば出題者は
100個の0が数列のどの位置にあっても100個全ての0を含む有限数列を作ることが可能であることが
数列の出題時に仮定されていることになる
その有限数列からa(d1), a(d2), ... ,a(d100)を取り出し{d1, d2, ... , d100}を作れば良いので
スレ主が挙げる「すその超重い分布」は考えなくてもよい
0218現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:24:43.41ID:MUXssChK
>>215 関連

https://www.ted.com/talks/cedric_villani_what_s_so_sexy_about_math/transcript?language=ja
セドリック・ヴィラニ: 数学の何がそれほど魅惑的なのか | TED Talk Subtitles and Transcript | TED.com: Posted Jun 2016
(抜粋)
0:11
フランス人が 他の国民より 巧みな事は何でしょう? そんな世論調査をしたなら トップ3の答えは 愛、ワイン、ワイニング(泣き言)

0:25
(笑)

0:26
かもしれませんが それに加えて もう1つ提案すると 数学です パリ程 数学者の多い街は 世界中どこを捜してもありません これ程 数学者にちなんだ 名前の街路もありません 統計からすると 数学のノーベル賞とも言われ 40才以下の数学者に与えられる フィールズ賞の受賞者人口比は フランスが世界一です

0:57
数学の何が フランス人を そんなに魅惑するのでしょうか? 数学なんて 抽象的でつまらないとか またはルールと数字を使っての計算に 過ぎないように思えるでしょう
数学は抽象的かも知れませんが 退屈ではなく 計算が全てでもありません 数学とは論証と証明こそが 数学者の仕事の中核を成し 想像力 すなわち 我々が最も称賛する能力を使う 真理の追求です
何ヶ月も思考を重ねた上 問題が解け やっと正しい証明が 論証し上がった時の喜び と言ったらありません 偉大なる数学者アンドレ・ヴェイユが この喜びを? 冗談抜きに? 性的快感に例えています 違いは その感覚が何時間も 時には何日も継続するという事です

1:49
見返りが大きいのです 数学的真理は この物質世界全体に潜んでいます 我々は それを五感で 感じる事は出来なくとも 数学というレンズを通して 見る事が出来ます
では 暫く目を閉じて 身の回りで起きている事を 考えてみて下さい あなたの周りの空気中にある 見えない無数の粒子が 常にあなたの体に ぶつかってきています それは まったく不規則です それでも 動きの統計的な値は 数理物理学で正確に予測できます では 目を開けて その粒子の速度の統計に 目を向けてみましょう

つづく
0219現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:26:55.13ID:MUXssChK
つづき

2:31
これは かの有名な 釣り鐘形のガウス曲線? 誤差の法則? 平均的挙動に対する 偏差を表したものです この曲線は 粒子の速度を 人口統計が年齢分布を表すように 統計で表したもので 最も重要な曲線の1つです これは幾度となく 多くの理論や実験から現れる 普遍的な一大真理として 我々数学者には とても大切なものです

3:08
ガウス曲線に関して 有名な科学者フランシス・ゴルトンが こう言いました 「ギリシャ人がこの法則を知っていたら これを神格化していただろう これは無秩序の最高法規だ」
この至高の女神を最もうまく 具現化したのがゴルトンボードです この中には 狭いトンネルがあり それを通り 小さなビー玉が 右へ 左へ また左へというように ランダムに落ちていきます 完全に無秩序な混沌とした動きです こんな無秩序な軌道が共に 何を起こすか見てみましょう





4:18
出ました 無秩序の至高の女神 ガウス曲線が 『サンドマン』の主人公ドリームのように この透明の箱に閉じ込められています ここでは 実験で お見せするだけですが この曲線以外はあり得ない理由を 私のクラスでは説明します 至高の女神の神秘に触れ 美しい偶然の一致が 美しい論証に取って代わるのです

4:50
科学とはこのようなものです 美しい数学的な論証は 数学者の喜びであるだけでなく 我々の世界観を変えてしまいます 例えば アインシュタイン ペラン スモルコフスキー 彼らは 無秩序な軌道の集合とガウス曲線を 数学的に分析して この世に存在する全てのものは 原子で成っていると証明しました

つづく
0220現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:27:58.45ID:MUXssChK
つづき

5:18
数学者が 我々の世界観を覆したのは これが初めてではありません 2千年以上前 古代ギリシャの時代には そのような事が既に起きていました 当時 世界のほんの一部しか 探検されておらず 地球は無限に広がっている かのようだったでしょう 知恵者のエラストテネスは 数学を使い 僅か2%の誤差という驚く程の正確さで 地球の周長を測ったのです

5:50
もう1つの例は 1673年に ジャン・リシェが カイエンヌでは振り子の動きがパリより 少し遅くなることに気がつきました この観察だけから 数学を巧妙に使い ニュートンは 地球の両極が ほんの少し平坦なことを 正確に導き出しました その扁平率は0.3%と僅かで 地球全体を実際見たとしても 気がつかない程でしょう

6:25
これらの例が示しているのは 数学が我々に直観の世界を 超えさせてくれ 果てしなく見える地球の 大きさを測定させ 目には見えない原子や 我々が五感で感知できないものを 検知させてくれるということです
この私のトークから 覚えておく事があるとしたなら それは1つ 我々の直観を越えた所にある 知覚では理解し難いものを 数学は探索させてくれるということです

6:58
皆さんも経験している 現代の例がこれです ネットでの検索です ワールド・ワイド・ウェブ 10億を超えるページ全部 調べ上げたいと思いますか? それだけの計算能力があればですが データに潜む情報を見出すための 数学モデルがなければ 使い物にならないでしょう

7:19
分かり易い問題で考えてみましょう こう想像して下さい あなたは ある事件を扱っている刑事で 1人1人異なった見解を 持った証人が多くいたとします 誰を最初に事情聴取しますか 合理的に見ても 主要目撃者ですよね こうです 証人7が ある話をするとします
その情報の発信源を 証人7に尋ねると 証人3から聞いたと言うのです その次には 証人3は 証人1が その話の源だと 言うかも知れません さあ 証人1が主要証人となり その人からの事情聴取を 絶対に最優先したいと思いますよね
でも このグラフから 証人4が主要目撃者だとも 見なされるので 彼の方を先に事情聴取した方が いいかもしれません 大勢の人の口から 彼の名が上がるからです

つづく
0221現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:30:09.07ID:MUXssChK
つづき

8:11
この場合は簡単ですが もし 非常に多くの人が証言する となったら どうします? また このグラフは 複雑な事件で証言する人々を 表しているようですが 相互にURLを参照し合う ウェブサイトを 表しているのでもあります これでは どのサイトが 最も信頼できるのか あまり はっきりしません

8:39
ここで登場するのが「ページランク」 Google初期の主要機能の1つです このアルゴリズムは 数学的無秩序の法則を使って 最も関連性の高いウェブサイトを 自動的に決定します これはゴルトンボードの実験で 見られた無秩序の法則と同じ原理です
では このグラフに 小さなデジタル・ビー玉を送り込み バラバラに通してみましょう それぞれサイトに到着し 次から次にリンクを 無秩序に通り抜けます どの玉も そうです 玉が少しずつ積み上がり それぞれのサイトの閲覧数? デジタル・ビー玉の数が記録されます

9:23
さあ行きますよ 無秩序に バラバラと 時々 全く無秩序にジャンプを起こして もっと面白くしましょう

9:33
ご覧下さい カオスの状態から解決法が生まれます ビー玉の数が一番多いのは 他のサイトに比べて リンクが多いサイトであり より多く参照されているサイトです これで どれが 最初に見てみたいウェブサイトか はっきりと分かります
ここでもまた 解決法が無秩序から生まれます もちろん それ以来 Googleはもっと洗練された アルゴリズムを導入していますが ページランクは既に実に うまく機能していました

10:05
それでも問題は起きますが その頻度は ほんの百万回に1回程です デジタルの到来で 数学的分析が応用出来る 問題が増えて来て 数学者の仕事は増々有用になり 数年前 2009年の ウォール・ストリート・ジャーナルによると 「職種ランキング100」の調査で 百の仕事の内のトップに のし上がるまでになりました

つづく
0222現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:31:42.55ID:MUXssChK
つづき

10:36
数学者は 世界で最高の仕事です 理由は その応用の幅広さです コミュニケーション理論 情報理論 ゲーム理論 圧縮センシング 機械学習 グラフ解析 調和解析に加え 確率過程 線形計画 流体シミュレーションもあり それぞれ 様々な産業界で 大いに応用されています
これらを通して 数学は大きな利益をもたらします そして 認めざるを得ないことは 数学を使い富を得る事に関しては ダントツで米国が世界一です その象徴の才気ある億万長者や 素晴らしい巨大企業は全て 究極のところ 良く出来たアルゴリズムに 頼っているということです

11:28
これら全ての美しさ 有用さと豊かさで 数学は より一層魅惑的に見えるのです しかし数学者の研究生活が 楽だなんて思わないで下さい 解決までには 当惑 苛立たしさ 理解に向けての 絶望的な闘いで一杯なのです

11:50
私の数学者としての人生で 最も印象深かった ある日のことを お話ししましょう 最も印象深い夜だったと 言うべきかも知れません 当時 私はプリンストン高等研究所にいました
アルベルト・アインシュタインが 何年も研究を続けた場所で 数学の研究には世界で最も聖なる地だと 言っても間違いがありません
その夜 私は 捕らえ所のない証明に 取り組んでいて それは不完全なままでした これは電子の集合体である プラズマの 矛盾する安定性に関するものでした
完璧なプラズマの世界では 我々に馴染みの安定性を作り出す 衝突も摩擦もありません
しかし 少しでもプラズマの平衡が崩れると 電場は 結果として ひとりでに消え去る つまり 減衰することになります まるで何か不可解な摩擦力が 働いたようにです

つづく
0223現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:33:23.56ID:MUXssChK
つづき

12:53
この矛盾する現象は 「ランダウ減衰」と呼ばれ プラズマ物理における 最も重要な事象の1つで その存在は数学で証明されました とはいっても この現象は完全には 数学的に理解されていませんでした
かつての私の教え子であり 主要共同研究者のクレマン・ムーオと共に? その時パリにいたのですが? 何ヶ月もその証明に 取り組んでいました
実は 私は 解けたと勘違いして 公表してしまっていたのですが 実際には その証明は成り立っていなかったのです
百ページ以上の複雑な数学的論理 多くの発見や 膨大な計算にも拘らず うまく行きませんでした
プリンストンでの その夜は 証明を構築する過程の論理が うまく繋がらなく気がどうかなりそうでした エネルギーと経験 そしてあらゆる手法を 駆使していたのに 何もうまく行きませんでした
夜中の1時 2時 3時になっても 同じ状態でした 4時頃になり 落ち込んだまま就寝し その数時間後 目覚め 「子供たちを学校に連れて行く時間だ」 とその時 何だ これは? 頭の中で こう言う声が 確かに聞こえたのです 「第2項目を 式の反対側に持って行き フーリエ変換して L2空間で逆変換せよ」



14:21
これだ! それが解決への第一歩でした

つづく
0224現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:35:11.40ID:MUXssChK
つづき

14:26
このように 休息していたと思っていたのに 実は私の脳は働き続けていたのです そんな時には 野心も同僚の事も頭にはありません 取り組んでいる問題と自分だけです

14:43
そうは言ったものの 自分の辛苦が報われ 昇進するのも悪くはないですね ランダウ減衰の膨大な証明が完了してから 私は幸運な事に 最も切望されているフィールズ賞を インドの大統領の手から ハイデラバードで 2010年の8月19日に頂きました 数学者にとって夢の様な光栄です 死ぬまで この日を忘れないでしょう

15:13
どう思われますか その時の私の気持ちは? プライド? もちろん それに加え これを可能にしてくれた 協力者の方々ヘの感謝の念です
これは人々と共同の冒険だったからです
共同研究者以外の人々とも 共有すべき事なのです
誰でも数学研究のワクワク感を味わえ その陰に潜む人々の情熱的な物語を 共有出来ると信じています
アンリ・ポアンカレ研究所の 私のスタッフと共同研究者たちと 世界の数学的表現アーティストと共に アンリ・ポアンカレ研究所で 実に特殊な独自の数学博物館創立に 力を注いでいます

15:57
数年後に パリに来られたら 美味しいパリパリのフランスパンと マカロンを 賞味なさった後 どうぞアンリ・ポアンカレ研究所へ お越し下さい そして 数学の夢を一緒に見ましょう

16:13
ありがとうございました

16:14
(拍手)

(引用終り)
0225現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:41:22.35ID:MUXssChK
>>224 関連

http://www.ambafrance-jp.org/article7649
フランスの数学大使、セドリック・ヴィラニが来日 - La France au Japon:在日フランス大使館 更新日 30/05/2014
(抜粋)
フランスの天才数学者セドリック・ヴィラニさんが5月14日から16日まで、自著『定理が生まれる』日本語版刊行を記念して、フランス大使館と早川書房の招きで来日しました。
明治大学の会場を埋めた聴衆(2014年5月16日)

 フランス大使館と早川書房は5月中旬、『Theoreme vivant』の邦訳『定理が生まれる』の刊行を記念して、著者のセドリック・ヴィラニさんを日本に招待しました。

 若き天才数学者セドリック・ヴィラニさんは、航海日誌のようにつづられた著書の中で、フィールズ賞の受賞理由となった定理の誕生について語っています。10年以上の歳月をかけてボルツマン方程式に取り組んできたヴィラニさんは、もっぱら運動理論と最適輸送問題を研究しています。

 『定理が生まれる』のPRの一環として早川書房が企画した数多くのインタヴュー(5月18日付の日経新聞など)に応えたほか、そのたびに年齢層の異なる聴衆を前に3回の講演を行いました。

 1回目は中高生を対象とした講演で、東京国際フランス学園で行なわれました。「世界がまだダーウィンを知らなかった頃」と題する講演を聴いた生徒たちは、複雑な理論を単純明快な言葉で語るヴィラニさんの講演に目を輝かせていました。

 2回目は数学を専攻する学生と研究者を対象とした講演で、東京大学の数理科学研究科の招待で同大学駒場キャンパスで行われました。「リッチ曲率」に関するこの講演には、150人以上の学生や研究者が集まりました。

 3回目は数学以外を専攻する学生を対象とした講演で、欧州留学フェアの特別企画として明治大学で行われました。180人以上の学生が会場に訪れ、サイン会など著者との交流も行われました。

 今回の来日でセドリック・ヴィラニさんはまさに数学大使として大活躍しました。
(引用終り)
0226現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 07:58:39.04ID:MUXssChK
>>225 関連

http://mathsoc.jp/meeting/kikaku/2010aki/
日本数学会・2010年度秋季総合分科会・総合講演と企画特別講演:9月23日

http://mathsoc.jp/meeting/kikaku/2010aki/2010_aki_ukai-p.pdf
鵜飼 正二(東工大) ボルツマン方程式の研究 --過去と未来-- 日本数学会・2010
概要 ボルツマン方程式に関するこれまでの数学的研究を特に大域解の存在理論を中心に紹介するとともに,最近の発展が著しいいわゆるグラッドの切断近似を仮定しないボルツマン方程式の解の平滑化作用に関して,そのメカニズムを明らかにするとともに,未解決問題について概観する.
キーワード ボルツマン方程式, グラッドのカットオフ近似, 大域解, 非カットオフポテンシャル, 準楕円性, 平滑化作用, Gevreyクラス, 不確定性原理
Abstract・ Video・ Presentation
(抜粋)
空間一様ボルツマン方程式

弱解(エントロピー解) (Villani ’98, [35]):

解の存在定理- カットオフなし
空間一様の場合の最初の大域的弱解の存在定理は田中(’78)のマクスウ
エル型ポテンシャルに対するものである。一般のポテンシャルに対する
弱解の存在定理はずっと後にVillani (’97)で与えられた。

しかし空間非一様の場合の解の存在定理は未だ満足のいくものではな
い。最近やっと古典解の時間局所的存在と平衡解の近傍での大域解の存
在が証明できるようになった。

[1] R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg. Entropy
dissipation and long-range interactions. Arch. Ration. Mech. Anal.,
152:327?355, 2000.

[35] C. Villani. On a new class of weak solutions to the spatially
homogeneous boltzmann and landau equations. Arch. Rational
Mech. Anal., 143:273?307, 1998.

(引用終り)
0228現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 08:33:44.25ID:MUXssChK
つづき

1 Introduction
The starting point of Cedric Villani's work goes back to the introduction of entropy in the nineteenth century
by L. Carnot and R. Clausius. At the time, entropy was a vague concept and its rigorous definition had to
wait until the fundamental work of L. Boltzmann who introduced nonequilibrium statistical physics and the
famous H functional. Boltzmann's work, though a fundamental breakthrough, did not resolve the question
concerning the nature of entropy and time arrow; the debate on this central question continued for a century
until today. J. von Neumann, in recommending C. Shannon to use entropy for his uncertainty function,
quipped that entropy is a good name because ”nobody knows what entropy really is, so in a debate you will
always have the advantage".

The first result of Villani I will report on concerns the fundamental connection between entropy and its
dissipation. In this work, we will see that rigorous mathematical analysis is not just a display of powerful
analytic skill, but also leads to deep insights into nature. Based on this work, Villani has developed a general
theory, hypercoercivity, which applies to broad systems of equations. In a separate direction, entropy was
used by Villani as a fundamental tool in optimal transport and the study of curvature in metric spaces.
Finally, I will describe Villani's work on Landau damping, which predicts a very surprising decay (and thus
the word damping) of the electric field in a plasma without particle collisions, and therefore without entropy
increase. This is in sharp contrast with Boltzmann's picture that the time irreversibility comes from collision
processes.

つづく
0229現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 08:34:07.95ID:MUXssChK
つづき

5 Conclusion
In Villani's work, we have seen not only rigorous mathematical analysis providing deep insights into physical
behavior, but also important new mathematics emerging from the study of natural phenomena, in the spirit
of Maxwell and Boltzmann. Besides his research articles, Villani has written extensive surveys and books
[48, 50, 49, 51], and, through these, as well as the insights of his work, he has inspired a generation of
young mathematicians with deep, rich, physically motivated mathematical questions. We are witnessing the
beginning of Villani's spectacular career and in
uence in shaping the directions of analysis and mathematics.

(引用終り)
0232現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 08:49:42.36ID:MUXssChK
ふーん

?url
=http%

最後、いろいろ改行を入れて、上記を切ったら、OKだった
いま、2行をつなぐとNGだと

運営たちは狂っている・・・
0233現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 08:52:13.57ID:MUXssChK
>>230 は、>>227の40↑ (en) Horng-Tzer Yau, ≪ The Work of Cedric Villani ≫, ICM Proceedings, Congres international des mathematiciens,? 2010 (lire en ligne [archive] [PDF]). のURLだったのだが・・
これを通すのに、30分ほどロスした
が、NGワードが分かったので、次から役立つ
0234現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:04:25.14ID:MUXssChK
>>228
(google訳)
1はじめに
Cedric Villaniの研究の出発点は、L.CarnotとR. Clausiusによる19世紀のエントロピーの導入に戻ります。
当時、エントロピーは漠然とした概念であり、その厳密な定義は、非平衡統計物理学と有名なH関数を導入したL. Boltzmannの基本的な作業まで待たなければならなかった。
ボルツマンの仕事は、基本的な画期的な進歩であっても、問題を解決しなかった
エントロピーと時間の性質についてこの中心的な問題に関する議論は、今日まで1世紀にわたって続けられた。
J.フォン・ノイマンは、C. Shannonに不確実性関数のためにエントロピーを使用するよう勧告するにあたり、「誰もエントロピーが本当に何であるかを知っているわけではないので、エントロピーは良い名前だ」と断言した。

Villaniの最初の結果は、エントロピーとその散逸の間の基本的な関係についての懸念を報告します。
この作業では、厳密な数学的分析は、強力な分析スキルの表示ではなく、自然に関する深い洞察につながることがわかります。
この作業に基づいて、Villaniは広範な方程式系に適用される一般的な理論である高保磁力を開発しました。
別の方向では、最適な輸送とメートル法空間における曲率の研究の基本的なツールとして、Villaniがエントロピーを使用しました。
最後に、Landanの減衰に関するVillaniの研究について説明します。これは、粒子衝突のないプラズマの電界の非常に驚異的な減衰(したがって、減衰という単語)を予測し、したがってエントロピーが増加しないことを予測します。
これは、ボルツマンの写真とは対照的に、不可逆性の時間は衝突過程から来ているということです。
0235現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:05:10.32ID:MUXssChK
>>229
(google訳)
5。結論
Villaniの研究では、マックスウェルとボルツマンの精神において、肉体的な振る舞いに深い洞察を与える厳密な数学的分析だけでなく、自然現象の研究から生まれた重要な新しい数学も見てきました。 彼の研究論文に加えて、Villaniは広範な調査と書籍を書いている
[48、50、49、51]、そしてこれらを通して、彼の仕事の洞察を深く、豊かで、肉体的に動機づけられた数学的な質問を持つ若い数学者に鼓舞した。
私たちはVillaniの壮大なキャリアの始まりと、分析と数学の方向性を形作ることに目を向けています。
0236現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:06:45.48ID:MUXssChK
>>229 つづき

Villani has written extensive surveys and books
[48, 50, 49, 51], and, through these, as well as the insights of his work, he has inspired a generation of
young mathematicians with deep, rich, physically motivated mathematical questions.
0237現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:18:53.04ID:MUXssChK
>>226 関連

http://mathsoc.jp/meeting/kikaku/2010aki/2010_aki_ukai-p.pdf
鵜飼 正二(東工大) ボルツマン方程式の研究 --過去と未来-- 日本数学会・2010
(抜粋)
ボルツマン方程式はL.ボルツマンが1872年に導いた非平衡希薄気体の
運動方程式である.彼の目的は当時定式化が完成した熱力学をニュート
ン力学により基礎付けることにあった.

当時は既に全ての物理現象は単一の基本原理により記述されね
ばならないという信念(principle of the first principle)が広く受け入れら
れており、熱力学をニュートン力学に基づいて構築しようという試みは
ごく自然なものであった.

ボルツマンの出発点は気体分子運動論である.これは気体が互いに衝
突を繰り返している多数の粒子からなり,気体の巨視的性質はその相対
的な運動で説明が出来るとするものである.このアイデアは18世紀に既
に萌芽が見られるが,19世紀に入り原子の存在こそまだ実証されていな
かったが原子論が新しいパラダイムとして認知され,熱は粒子の運動に
他ならないという熱運動論が広く支持されるようになるに従い説得力を
持つようになっていた.

つづく
0238現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:19:28.00ID:MUXssChK
つづき

このアイデアがニュートン力学と相性が良いのは明らかであろう。原
理的には全ての粒子の位置と速度をニュートンの運動方程式から求めれ
ば気体の微視的状態が分かる。しかし解くべき方程式の個数は膨大(アボ
ガドロ数)であり、解くことはおろか、それと同数の初期データを準備す
ることは実行不可能である。しかし多数の粒子が衝突を繰り返すと個々
の粒子は個性を失い、平均的・統計的な扱いが意味を持つようになる。
ボルツマンが着目した統計量は1粒子相空間(位置-速度空間) におけ
る気体粒子の密度(単位体積あたりの粒子質量の合計)である。
古典的な密度分布は実空間の統計量であるが、相空間では粒子速度と
いうミクロの情報を含めることができる。相空間の選び方はもちろん一
意でなく、2粒子相空間、3粒子相空間…も可能であるが、1粒子相空
間は古典的な実空間に次いで簡単な構造を持ち、しかもミクロ情報を扱
うことができる。

ボルツマンは彼の方程式から
? 熱力学の第一法則(エネルギー保存則)
? 熱力学第二法則(エントロピー増大の法則)
が証明できると主張した.

つづく
0239現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:19:56.39ID:MUXssChK
つづき

マクスウエル分布は,マクスウエルがボルツマン方程式に先立ち1859
年に統計的考察により導いたものである.明らかにQ(M) = 0が成り立つ
ので、ρ, u, T がt, xによらない定数ならばMはボルツマン方程式の定常
解である。すなわち
? 平衡状態はマクスウエル分布以外にあり得ない.
? マクスウエル分布はボルツマン方程式に埋め込まれている.

これよりボルツマンは熱力学のニュートン力学的基礎を築いたと主張
した。しかしこれに対して多くの反論が提起され、ボルツマンとの間で
激しい論争が繰り広げられたことは科学史上の有名な挿話である.
W.トンプソン,J. ロシュミット,E. ツェルメロ,…
? H定理は時間に関して非可逆.
? ニュートン力学は時間に関して可逆.
最終的にボルツマンに軍配が上ったのは1970年代に入ってからである.
? ランフォードによるボルツマン-グラッド極限の存在証明。 
ボルツマン方程式の統計力学的依存性.
? 多くの研究者によるボルツマン方程式の解の存在理論の整備.

ボルツマン方程式の数学解析
先駆的研究:
? ヒルベルト展開(1912).(数学の問題,第6)
? チャップマンーエンスコグ展開(1916-17)

つづく
0240現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:20:29.60ID:MUXssChK
つづき

時間大域的解の存在定理
最初の存在証明はカーレマン(1932)に遡る.ただし、f が変数xに依存し
ない場合(空間一様)の,剛球気体についての結果.
(参考) ナヴィエ-ストークス方程式のルレイによる弱解の構成: 1934
しかしその後長い間殆ど研究の進展がなかった。その理由の1つのは衝
突断面積Bの持つ強い特異性である.

グラッドのカットオフ近似
この困難を回避するため1963年にグラッドは特異点の近傍でB を有界関
数で置き換えることを提案した。このときQは積分作用素として適切に
定義できる.
この近似の導入でその後のボルツマン方程式の解析が大きく進展し
た。現在この近似はグラッドのカットオフ近似と呼ばれている。この近
似は画期的で、ボルツマン方程式の解析に多くの成功をもたらした。
特に大域解の存在理論の研究は大きく進展した。実際、これまでに、
全く原理の異なる3つの理論的枠組みが開発された.

つづく
0241現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:20:46.26ID:MUXssChK
つづき

初期値問題の大域解- カットオフ近似
1. L∞理論:平衡解に近い解、スペクトル解析+ブートストラップ論法
鵜飼(’74, ’76), 西田-今井(’76), 静田-浅野(’78) …
2. L1理論:振幅に制限のない解、繰り込み理論+H定理
Diperna-Lions(’89), Hamdache (’92) …
3. L2理論:平衡解に近い解、マクロ・ミクロ分解+エネルギー法
Liu-Yang-Yu(’04), Guo(’04)…
ほぼ15年ごとに技術革新が生み出されてきた.
次の技術革新が待たれる.

(引用終り)
(ここらで1/3程度)
0242現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:28:35.95ID:MUXssChK
>>237 つづき

”当時は既に全ての物理現象は単一の基本原理により記述されね
ばならないという信念(principle of the first principle)が広く受け入れら
れており、熱力学をニュートン力学に基づいて構築しようという試みは
ごく自然なものであった.”

Villani のフィールズ賞はこの延長上
物理→数学
20世紀の後半から、この流れが復活したようだ

もっとも、Villaniがなにをしたのか、いまいちよくわからん
だれか、日本語の解説を書いてくれないかね(^^

”弱解(エントロピー解) (Villani ’98, [35]):”、”弱解の存在定理はずっと後にVillani (’97)で与えられた”というから、超関数理論を応用したのかな・・?
0243現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:52:01.52ID:MUXssChK
>>236 関連
>as well as the insights of his work, he has inspired a generation of
>young mathematicians with deep, rich, physically motivated mathematical questions.

http://www.kagawa-nct.ac.jp/CN/staff/sawada/math/danwa3html/danwa3.pdf
平成10・11年度 国専協・教育改善共同プロジェクト 数学談話会 平成11年1月

特別講演(薩摩順吉氏)(東京大学教授)Junkichi SATSUMA  東京大学工学部物理工学教室
大学で数学をどう教えるか −数学専攻でない学生への数学教育−
(抜粋)
筆者は後述するような日本的分類では数
学者ではない.数学を応用する立場で研究
を行なっており,最近では専門を問われれ
ば“ 算術”であると答えることにしている.
しいていえば,数理物理学専攻といえばよ
いであろうか.

学問としての数学の変化

数学は諸科学の基礎的言語としての役割
を果たす領域を拡げてきたとともに,それ
自身内的な発展をとげてきた.

.同時に,数学の内容
はきわめてむずかしくなってきており,分
野の細分化も一段とすすんでいる.そのた
め,自分の専門分野の論文でも,それを明
晰判明に理解するには多大の時間と労力を
必要とし,自分の専門とまったく関係ない
分野の論文を明晰判明に理解することはた
いていの場合ほとんど不可能になってきて
いる4.ましてや,数学者でない人間に
とってはまさに秘教である.

つづく
0244現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:52:28.75ID:MUXssChK
つづき

長期間専門的訓練を受け選別された少数の祭司たちが,
民衆には絶対わからない言語を使って秘儀
を行なっているわけである3.

数学の発展過程の中で,上記のような形
容が使われるほど一般化抽象化が進んだの
であるが,それは今世紀に入ってからがい
ちじるしい.

特に1940 年代からフランス
の数学者集団ブールバキ(BOURBAKI)が
数学全般に対して行なった厳密化は代表的
なものである.こうした中で,数学は磨き
あげられ,美しく整った論理的建造物,す
なわち純粋数学の殿堂ができあがった5.

殿堂の建設をすすめてきたことは,基礎的
言語としての役割を果たすべき諸科学との
かかわりあいを弱める結果となった.

元来渾然一体としていた物理と数学の間の壁も
厚くなってしまった.しかし,そのような
傾向は近年変化してきている.たとえば,
最近の数理物理学の発展,特に非線形問題
の研究の進展は,両者の接近を再びうなが
す一つの重要な要素となってきている.そ
こでは解析学だけでなく,代数学や幾何学
とのからみあいも生じてきている.

つづく
0245現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:52:57.68ID:MUXssChK
つづき

ここで,日本特有の状況についてふれて
おきたい.日本では古くから純粋数学指向
の傾向が強かった.理学部数学科はほとん
ど純粋数学者で占められており,応用数学
は数学研究の中で低い水準のものであると
みなされてきた.もちろん数学科の中にも
応用数学関係の講座も存在するが,応用と
いっても世界的にみるときわめて数学の色
彩の強いものである.日本で応用数学とい
う場合,一般には数学の中の応用分野をい
うのであり,前にふれたように,この意味
で筆者は数学者でないのである.

日本独特の感覚として,いわゆる“ ムラ
意識”がある.ウチの大学,ウチの会社と
いうように集団の内と外を区別する.研究
者の世界も同じである.特に数学の世界で
は,外の人間との交流を拒否する“ 優越的
孤立主義”ともいうべき伝統が存在してい
る6.そして各分野の中でもグループ分け
が比較的はっきりとしており,グループを
意識せずに交流をはかるのはそう簡単なこ
とではない.昔の和算の頃も,流派を立て
門外不出で絶対他には教えないという風潮
があり,行なっていることは実質的に違わ
ないのに流派が違うと話が通じないことも
あった7.

つづく
0246現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:53:30.46ID:MUXssChK
つづき

それほどではないが,似た状況
が今でも存在しているともいえるであろう.
外国ではこういった障壁はあまりない.
また研究の上で数学という言葉が示す範囲
も広い.たとえば筆者が過去に訪問したア
メリカの地方大学の理学部数学科の場合,
その構成は数学以外に基盤をもつ応用数学
者が半数,情報コンピュータ関係の研究者
が4 分の1,そして残りの4 分の1が日本的
な意味での数学者であった.そうした中で
は,数学の各分野間の交流および数学外の
人間との交流も活発であり,またグループ
があってもそれは柔軟性をもっている.一
つの研究対象があったとき,容易に関連す
る分野の研究者とのつながりがもて,研究
をすすめていく上で効率的なグループが形
成されることになる.

日本でも近年は,京都大学数理解析研究
所を中心に,数学と他の分野,特に物理と
の境界領域における積極的な研究活動,研
究会活動が行なわれるようになってきた.

つづく
0247現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 09:54:21.37ID:MUXssChK
つづき

要するに

数学を専門としない学生にとっても数学
は基礎的言語であるので,むずかしいとい
って放棄することはできない.何のために
数学をやるのかという問いに対して,ごく
少数が頭のトレーニングと答えたほか,ほ
とんどすべての学生は専門で必要であるか
らと答えている.そのようなとき,数学精
神の育成という観点からだけでの教育は不
十分である.実際に使える数学も教えなけ
ればならない.コンピュータの発達は抽象
また,幅広い応用数学者のグループである
C& A(Computation and Analysis)は,数
学科出身以外の研究者もとり込んで着実な
活動を行なっている.しかし,日本的な体
質はそう簡単に抜けきれるものではないと
いうことも事実である.

数学の必要性を要請し,同時にわかりやす
く学ぶ方法を提供した.筆者の知りえた範
囲で,実際に数式処理を用いた教育や,視
覚化を利用した教育に対する学生の反応は
非常によいとのことである.
最近の学生は無気力であるとか無感動で
あるとかいわれる.しかし,アンケートの
結果によればそういう傾向はほとんどみら
れない.青春期は新しいものに対して好奇
心をもつ世代である,という事実は変わら
ない.数学に対する動機づけは,その好奇
心を刺激することによって可能であると筆
者は考える.限られた時間内に豊富になっ
た数学の全貌を示すことはそう容易ではな
い.しかし,補助的手段も使いやすくなっ
たという状況のもとで,大切なところは“要
するに”,そして視覚化も利用して“ たと
えば”,さらに“ なぜこんなことを”という
ことを説明しながら教育を行なえば,もっ
と学生をひきつけるものとなるのではない
だろうか.

研究をすすめながらすぐれた教育を行な
うことは,たしかに困難なことである.先
にふれたように,大学における教育環境も
決して充実しているとはいえない.しかし,
冒頭にのべたような学生の反応が存在する
中で,数学を専門としない学生に対する数
学教育をもっと真剣に考えることが今必要
なのではないであろうか.

(引用終り)
0249132人目の素数さん垢版2017/01/02(月) 10:18:16.10ID:g1Bdr5Rg
おっとsageてしまった
馬鹿スレ主を晒しage
0250現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 10:33:45.79ID:MUXssChK
>>247 補足

¥さんは、対岸の火事という
もちろん、私にとっては、無関係な世界の火事ではある

が、好みはあるだろうが、ブールバキ(BOURBAKI)が数学教育のベストではないだろう。
数学専攻でない学生にも、数学専攻の学生にも

一つは、2000年以降の数学の発展を、ブールバキ(BOURBAKI)は追い切れていない。おそらく、今後も追い切れるものではない

一つは、薩摩順吉氏が書いているように、コンピュータの発達を取り込むことが重要で、ブールバキ(BOURBAKI)だけではできない

一つは、数学の発展で、登る山が高くなりすぎた。いま、エベレストに無防備で登る人はいない。酸素ボンベなどの装備は不可欠。数学での装備は、コンピュータだろう。将来はAIかも

まあ、要するに登るべき山が、ある高さ以上に高くなると、裾から徒歩で登るべきかどうか? 徒歩で登っては、途中で人生の時間としても、経済的にも成り立たなくなっているのかもしれない
0251現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 10:34:01.69ID:MUXssChK
>>247 補足
(薩摩順吉氏)
「自分の専門分野の論文でも,それを明
晰判明に理解するには多大の時間と労力を
必要とし,自分の専門とまったく関係ない
分野の論文を明晰判明に理解することはた
いていの場合ほとんど不可能になってきて
いる4.ましてや,数学者でない人間に
とってはまさに秘教である.
長期間専門的訓練を受け選別された少数の祭司たちが,
民衆には絶対わからない言語を使って秘儀
を行なっているわけである3.」

それでも、物理学者などは、秘儀をまねて、自家薬籠中に取り込む人が多い感じだ
ウィッテンや大栗先生など
0252現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 10:34:17.93ID:MUXssChK
>>247 補足
(薩摩順吉氏)
「ここで,日本特有の状況についてふれて
おきたい.日本では古くから純粋数学指向
の傾向が強かった.理学部数学科はほとん
ど純粋数学者で占められており,応用数学
は数学研究の中で低い水準のものであると
みなされてきた.もちろん数学科の中にも
応用数学関係の講座も存在するが,応用と
いっても世界的にみるときわめて数学の色
彩の強いものである.日本で応用数学とい
う場合,一般には数学の中の応用分野をい
うのであり,前にふれたように,この意味
で筆者は数学者でないのである.

日本独特の感覚として,いわゆる“ ムラ
意識”がある.ウチの大学,ウチの会社と
いうように集団の内と外を区別する.研究
者の世界も同じである.特に数学の世界で
は,外の人間との交流を拒否する“ 優越的
孤立主義”ともいうべき伝統が存在してい
る6.そして各分野の中でもグループ分け
が比較的はっきりとしており,グループを
意識せずに交流をはかるのはそう簡単なこ
とではない.」

東大村とか京大村とか、おおきな村に住民登録している優等生は別として
地方の村に住民登録した人は、村で暮らしていくのか暮らしていけるのか
いろいろ考えるべきことがあるだろう
0253132人目の素数さん垢版2017/01/02(月) 10:39:28.13ID:g1Bdr5Rg
指摘から逃げるくらいなら最初からデタラメ言うなや笑
0254現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 11:17:35.17ID:MUXssChK
戻る
>>165
>証明を何度書いてもスレ主は読まず、スレ主自身では証明を書かない。
>これでは、もはやどうしようもないであろうと悟った。

YES!
証明が”初出”でないなら、書かずに、出典を示してくれ。できれば、WebかPDFか。出版物でも可。その場合、ページと概要くらい書いてくれ。キーワードが分かれば、代用のページが検索できるだろう

証明が初出なら、もし重要な証明なら、こんなところに書くのはもったいない。どこかarXivにもでも投稿してから、そのリンクを示した方がいいぞ
例えば、Sergiu Hart氏>>47や時枝>>2-4にゲーム論的確率理論を適用して、厳密に確率99/100を導くなど

こちらから見れば、証明が初出でないなら、こんな見にくい(視認性の悪い)場所にごちゃごちゃ書いて貰うより、出典を示して貰う方が良い。
自分が書くときは、出典を示すようにしている

もし、証明が初出で、素人が書いたものなら、誤りが含まれている可能性大だ。そんなものを、こんな見にくい(視認性の悪い)場所にごちゃごちゃ書いても、読まされる方はたまらん
赤ペン先生をやらされているごとくだ。なんでおれが、赤ペン先生? それメンターさんの仕事だ。おっちゃん、いっちゃわるいが、思い当たるところがあるだろう

それが、おれが証明を読まない
かつ、基本的に書かない理由だ
0256現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 11:20:14.87ID:MUXssChK
>>255 つづき

で、>>248-249 >>253
Tさん、悪いが、時枝ほどの人がだまされたんだ。

文系に理解できるかどうか? 理解させる自信はない。 だが、お分かりのように、理系の時枝記事賛同者はほとんどいなくなった

せいぜい、前スレ 499 返信:132人目の素数さん[sage] 投稿日:2016/12/23(金) 02:29:18.79 ID:06iuOQ6r
「時枝記事の存在価値は>>1-3の戦略が
標準的な確率論の下で正当化できるかではなく、
あの戦略を正当化できるような新規な確率論を
構築することができるかにある。そのことは
時枝自身が>>4にネタバラシしているので、
そこを外した議論の意義は薄い。

数学者たちが無視しているのは、>>4の意味での
時枝問題が雲をつかむような話で、
特に肯定的なアイディアも無いが
否定するのは悪魔の証明でしかない
エンガチョな問いかけだからだよ。」くらい

過去、確率の専門家さんは、時枝は確率論が分かってないといい
おそらく院生クラスの人は、「与太話」だと

それが理系のセンスだよ
0257現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 11:54:35.59ID:MUXssChK
>>256 補足

http://d.hatena.ne.jp/keyword/%B0%AD%CB%E2%A4%CE%BE%DA%CC%C0
悪魔の証明とは - はてなキーワード: 記載日不詳
(抜粋)
[英] devil's proof

[ラ] probatio diabolica

悪魔の証明とは、「ある事実・現象が『全くない(なかった)』」というような、それを証明することが非常に困難な命題を証明すること。
例えば「アイルランドに蛇はいる」ということを証明するとしたら、アイルランドで蛇を一匹捕まえて来ればよいが、「アイルランドに蛇はいない」ということの証明はアイルランド全土を探査しなくてはならないので非常に困難、事実上不可能であるというような場合、これを悪魔の証明という。

新約聖書にあるサタンがイエスを試した逸話から来ている。ある論争に際して、そもそも挙証が困難な命題の証明を相手に迫ることもひとつのディベートのテクニックではあるが、それを悪魔の証明だ、と相手が指摘することが挙証責任を転嫁する際の決めぜりふであるということには必ずしもならない。

注意点

「『全くない』ことを証明するのは不可能に近い」のであって、「『全くない』のは確実である」という意味ではない。

また、「ある一連の事実が『全て本当にあった』」ことを証明することも、言い換えれば「その一連の事実に『嘘は全くない』」ことを証明することであり、同様に不可能に近い。

(補注:すなわち「ある事実・現象の有り無しを『100%』確定するのは不可能に近い」ということである)

科学関連議論への補足

ここ数年、疑似科学や似非科学の議論で「悪魔の証明」という用語を多用する人が居るが、これも要注意である。「悪魔の証明」という比喩は、たしかに法律分野ではある程度認知されているが、科学・数学分野では20世紀はじめの有名な大論争を経て、今ではより厳密な用語を使った精緻な議論が可能となっている。
科学の専門家を自称しながら、科学議論であえてこの分野違いで不適切な用語(「悪魔の証明」)を持ち出す人が居たら、それは厳密な議論による追求を避けて何かを誤魔化そうとしているソフィストの類(あるいはその影響下にある人)かもしれない。
0258現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 12:06:16.15ID:MUXssChK
>>257 補足

悪魔の証明が下記かどうか不明だが、ヒットしたので一応貼っておく
https://ja.wikipedia.org/wiki/%E8%8D%92%E9%87%8E%E3%81%AE%E8%AA%98%E6%83%91
(抜粋)
荒野の誘惑(あらののゆうわく)はキリスト教の聖書正典である新約聖書に書かれているエピソードの1つ。キリスト教教理において重要な役割を果たしており、キリスト教文化圏の芸術作品の中で繰り返し用いられるモチーフでもある。

洗礼者ヨハネから洗礼を受けた後、イエスは霊によって荒れ野に送り出され、そこに40日間留まり、悪魔(サタン)の誘惑を受けた。マルコによる福音書(1:12,13)、マタイによる福音書(4:1-11)、ルカによる福音書(4:1-13)の福音書に記述がある。以下は、マタイ伝とルカ伝によるもの。

悪魔の誘惑

悪魔はイエスをエルサレムに連れて行き、宮の頂上に立たせて言った、「もしあなたが神の子であるなら、ここから下へ飛びおりてごらんなさい。『神はあなたのために、御使たちに命じてあなたを守らせるであろう』とあり、また、『あなたの足が石に打ちつけられないように、彼らはあなたを手でささえるであろう』とも書いてあります」。
イエスは答えて言われた、「『主なるあなたの神を試みてはならない』と言われている」。
悪魔はあらゆる試みをしつくして、一時イエスを離れた。それからイエスは御霊の力に満ちあふれてガリラヤへ帰られると、そのうわさがその地方全体にひろまった。(出典/口語訳聖書 Public Domain)[1]
0259現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 12:07:34.99ID:MUXssChK
>>257 補足

悪魔の証明が下記かどうか不明だが、ヒットしたので一応貼っておく
https://ja.wikipedia.org/wiki/%E8%8D%92%E9%87%8E%E3%81%AE%E8%AA%98%E6%83%91
(抜粋)
荒野の誘惑(あらののゆうわく)はキリスト教の聖書正典である新約聖書に書かれているエピソードの1つ。キリスト教教理において重要な役割を果たしており、キリスト教文化圏の芸術作品の中で繰り返し用いられるモチーフでもある。

洗礼者ヨハネから洗礼を受けた後、イエスは霊によって荒れ野に送り出され、そこに40日間留まり、悪魔(サタン)の誘惑を受けた。マルコによる福音書(1:12,13)、マタイによる福音書(4:1-11)、ルカによる福音書(4:1-13)の福音書に記述がある。以下は、マタイ伝とルカ伝によるもの。

悪魔の誘惑

悪魔はイエスをエルサレムに連れて行き、宮の頂上に立たせて言った、「もしあなたが神の子であるなら、ここから下へ飛びおりてごらんなさい。『神はあなたのために、御使たちに命じてあなたを守らせるであろう』とあり、また、『あなたの足が石に打ちつけられないように、彼らはあなたを手でささえるであろう』とも書いてあります」。
イエスは答えて言われた、「『主なるあなたの神を試みてはならない』と言われている」。
悪魔はあらゆる試みをしつくして、一時イエスを離れた。それからイエスは御霊の力に満ちあふれてガリラヤへ帰られると、そのうわさがその地方全体にひろまった。(出典/口語訳聖書 Public Domain)[1]
0261132人目の素数さん垢版2017/01/02(月) 12:12:52.52ID:g1Bdr5Rg
>>254
ぐちゃぐちゃ言い訳乙www
0262現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 13:15:32.06ID:MUXssChK
>>242 関連

https://en.wikipedia.org/wiki/Landau_damping
(抜粋)
In physics, Landau damping, named after its discoverer,[1] the eminent Soviet physicist Lev Landau (1908?68), is the effect of damping (exponential decrease as a function of time) of longitudinal space charge waves in plasma or a similar environment.[2]
This phenomenon prevents an instability from developing, and creates a region of stability in the parameter space.

Landau damping can be manipulated exactly in numerical simulations such as particle-in-cell simulation.[5] It was proved to exist experimentally by Malmberg and Wharton in 1964,[6] almost two decades after its prediction by Landau in 1946.[7]

Mathematical theory: the Cauchy problem for perturbative solutions

The rigorous mathematical theory is based on solving the Cauchy problem for the evolution equation (here the partial differential Vlasov?Poisson equation) and proving estimates on the solution.

First a rather complete linearized mathematical theory has been developed since Landau.[14]

In a recent paper[17] the initial data issue is solved and Landau damping is mathematically established for the first time for the non-linear Vlasov equation.
It is proved that solutions starting in some neighborhood (for the analytic or Gevrey topology) of a linearly stable homogeneous stationary solution are (orbitally) stable for all times and are damped globally in time.
The damping phenomenon is reinterpreted in terms of transfer of regularity of f {\displaystyle f} f as a function of x {\displaystyle x} x and v {\displaystyle v} v, respectively, rather than exchanges of energy.

17 Mouhot, C., and Villani, C. "On Landau damping", Acta Math. 207, 1 (2011), 29?201 (quoted for the Fields Medal awarded to Cedric Villani in 2010)
0266現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 13:25:06.91ID:MUXssChK
>>69 関連

2014年フィールズ賞マリアム・ミルザハニ "力学"ってあるね
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%AA%E3%82%A2%E3%83%A0%E3%83%BB%E3%83%9F%E3%83%AB%E3%82%B6%E3%83%8F%E3%83%8B
(抜粋)
マリアム・ミルザハニ(マルヤム・ミールザーハーニー[5]、波: ???? ????????? ?、英: Maryam Mirzakhani、1977年5月[6] - )は、イラン人の数学者であり、スタンフォード大学で2008年9月1日から数学の教授を務めている[7][8][9]。
彼女の研究分野はタイヒミュラー理論(英語版)、双曲幾何学、エルゴード理論、シンプレクティック幾何学である[6]。2014年に彼女はフィールズ賞を受賞し、これは女性として初、かつイラン人としても初であった[10][11][12][13]。

彼女は、モジュライ空間におけるトートロジー集合の交差数に関するエドワード・ウィッテンの推測に新たな証明を与え、またコンパクトな双曲面における単純な閉測地線の長さに関する漸近線の公式を導き出した。
次いで彼女の研究は、モジュライ空間のタイヒミュラー力学に移った。特に、タイヒミュラー空間における地震のフローはエルゴード的であるという、ウィリアム・サーストンが提唱し長らく解決されなかった予想を彼女は解決することができた。

2014年にミルザハニは「リーマン面とそのモジュライ空間の力学と幾何学に関する顕著な業績」を理由にフィールズ賞を受賞した[18]。
0267現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 13:32:40.13ID:MUXssChK
>>69 関連

2014年フィールズ賞マルティン・ハイラー 特に確率偏微分方程式ってあるね。応用面も強そうだ
https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%AB%E3%83%86%E3%82%A3%E3%83%B3%E3%83%BB%E3%83%8F%E3%82%A4%E3%83%A9%E3%83%BC
マルティン・ハイラー(Hairer Martin、1975年11月14日 - )はオーストリア国籍の数学者。王立協会会員。英国のウォーリック大学、米国のニューヨーク大学を経て、2010年よりウォーリック大学教授。専門は確率解析、特に確率偏微分方程式。父はジュネーブ大学の数学者、アーネスト・ハイラー、配偶者は同じくウォーリック大学の数学者である、Xuemei Li。

https://en.wikipedia.org/wiki/Martin_Hairer
(抜粋)
Research

Hairer's nomination for the Royal Society reads:
“ Professor Martin Hairer is one of the world's foremost leaders in the field of stochastic partial differential equations in particular, and in stochastic analysis and stochastic dynamics in general.
By bringing new ideas to the subject he made fundamental advances in many important directions such as the study of variants of Hormander's theorem, systematisation of the construction of Lyapunov functions for stochastic systems,
development of a general theory of ergodicity for non-Markovian systems, multiscale analysis techniques, theory of homogenisation, theory of path sampling and, most recently, theory of rough paths and the newly introduced theory of regularity structures.[8] ”
Under the name HairerSoft, he develops Macintosh software.[9]
0268132人目の素数さん垢版2017/01/02(月) 13:40:13.54ID:g1Bdr5Rg
>>40
アホレスの後始末しなくていいの?wwww
0269132人目の素数さん垢版2017/01/02(月) 13:42:11.32ID:g1Bdr5Rg
>>256
お前の理系のセンスでは>>117には答えられないの?www
なんであからさまに逃げ回るのかなー??www
0270現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 13:43:43.67ID:MUXssChK
>>69 関連

2014年フィールズ賞Artur Avila Cordeiro de Melo 物理数理系か
https://en.wikipedia.org/wiki/Artur_Avila
(抜粋)
Artur Avila Cordeiro de Melo (born 29 June 1979) is a Brazilian and French mathematician working primarily on dynamical systems and spectral theory. He is one of the winners of the 2014 Fields Medal,[2] being the first Latin American to win such award. He is a researcher at both the IMPA and the CNRS (working a half-year in each one).

At 19 he began his doctoral thesis on the theory of dynamical systems. Completed in 2001, when he traveled to France to do post-doctoral.[6] It works in the areas of dimensional dynamic and holomorfa.[7]
Since 2003 works at the Centre National de la Recherche Scientifique (CNRS) in France, and since 2008 is Directeur de recherche at this property. His post-doctoral supervisor was Jean-Christophe Yoccoz.[8]

Considered a prodigy as a teenager in 2005, at age 26, Arthur became known among mathematicians can prove by the "Conjecture of the ten martinis" problem proposed in 1980 by the American Barry Simon.
Simon promised to pay ten martini doses who explained his theory about the behavior of "Schrodinger operators", mathematical tools related to quantum physics. Artur solved the problem with mathematician Svetlana Jitomirskaya [9] and was presented with a few rounds of martini.

Prizes

In 2011, he was awarded the Michael Brin Prize in Dynamical Systems. He received the Early Career Award from the International Association of Mathematical Physics in 2012,[11] TWAS Prize in 2013[12] and the Fields Medal in 2014.[13]
0272132人目の素数さん垢版2017/01/02(月) 13:44:25.46ID:g1Bdr5Rg
コピペで荒らすなクソ野郎
自分のブログでやれよ

数学の会話ができねえなら消えろ
>>117から逃げ続けるなら去れ
0276132人目の素数さん垢版2017/01/02(月) 13:56:25.71ID:g1Bdr5Rg
>>274
なんで煽りには反応するのに>>117の数学的指摘には答えられないの?www

分からないからでしょ?
あるいは自分が間違ってるのを認めたくないんだよねwww

数学板なのに数学を語らないなら消えてよ
wikiのコピペで都合の悪いレス>>114を埋めようなんて卑怯ですよ、理系のじいさん
0277132人目の素数さん垢版2017/01/02(月) 14:11:24.05ID:P/oX8M+m
>>275
それは単にお前が数学的指摘から逃げ回ってるからだな
0278132人目の素数さん垢版2017/01/02(月) 14:47:39.58ID:HxlgBhaG
>>256
だから時枝記事は数当て戦略を正当化できる確率論があれば数当て戦略が成立するということ
であってスレ主が無条件に無限数列の出題を認めて数当てを開始できると仮定しているので
あれば(本人は意識していないだろうが)戦略を正当化できる確率論があるという仮定をした上で
戦略不成立の根拠を挙げていることになる

そのような仮定の上でスレ主が戦略不成立の根拠を挙げればおかしな所が何かしら必ず
出てくるからそれを見つけて指摘しているだけですよ
0279132人目の素数さん垢版2017/01/02(月) 16:05:18.51ID:P/oX8M+m
>>256
だれも
 測度論で時枝の戦略の確率が正当化される
とは言ってないわけだがw
(何回同じこと言ってんの??何回同じこといわせんの?)
そもそも時枝自身が記事でネタばらししているわけで。
そんなのは争点でもなんでもない。

国語も不自由してるのかスレ主は?可哀想にw

お前のコピペはお腹いっぱいだよー
早くお前の得意な数学の話をしようぜ
>>117の回答はまだあ?www
0280132人目の素数さん垢版2017/01/02(月) 16:11:18.94ID:P/oX8M+m
>>32
> 決定番号で、∞とか、ωを考える必要は無いんじゃないかな?
> lim_{m→∞}(可能無限)を考えれば十分だろ

・決定番号が有限値でないことがあるから時枝の戦略は成り立たない
・キマイラ数列∈/R^Nが存在するから時枝の戦略は成り立たない
・決定番号の確率分布は裾が重いから時枝の戦略は成り立たない
・決定番号の確率分布では期待値や分散が求まらないから時枝の戦略は成り立たない
・R^Nはヒルベルト空間外だから時枝の戦略は成り立たない
・ヒルベルトのホテルのパラドックスを考えると時枝の戦略は成り立たない
・決定番号は宇宙に存在する原子数よりも大きくなるから時枝の戦略は成り立たない
・エントロピーはほとんど変化しないから時枝の戦略は成り立たない
・"確率の専門家"が疑問を呈したから時枝の戦略は成り立たない
・"院生クラスの誰か"が与太話とコメントしたから時枝の戦略は成り立たない
・なにはともあれ個人的に時枝の戦略は不成立だと思う

いまは上の3つかな?w
いつ終わるのかなコレ
0282132人目の素数さん垢版2017/01/02(月) 18:32:03.32ID:EDQ8/sIF
>>281
Hart氏のgame1で?
できればぜひ聞かせてほしい。

ここで測度論的と言うのは、決定番号dの確率測度を実数列の初期分布から求めることを指しているけど。
0283132人目の素数さん垢版2017/01/02(月) 18:48:24.38ID:EDQ8/sIF
>>281
別スレに行きます?
ゴミに埋もれるこのスレでやります?
あなたの好きな方でいいですよ
0285132人目の素数さん垢版2017/01/02(月) 19:37:04.82ID:EDQ8/sIF
>>284
ははみつかってたか
OK、行きましょう
0286132人目の素数さん垢版2017/01/02(月) 19:38:28.12ID:EDQ8/sIF
>>284
OK、あちらでやりましょう
0287132人目の素数さん垢版2017/01/02(月) 19:39:22.79ID:EDQ8/sIF
移動しましょう!
0288132人目の素数さん垢版2017/01/02(月) 19:41:52.45ID:EDQ8/sIF
連投失礼
0289現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:34:25.87ID:MUXssChK
>>276-288
ばかじゃない?
自由成るべき2CHで、他人に対して、会話をしてくれないとか>>272
会話なんて人に強要すべきものじゃないだろ?

数学は、ディベートか?
もちろん、ソクラテスメソッドなるものもあって、会話は重要と思うが・・
数学は、自分が自信を持って、あなたが証明を1本書けばいいんでないの?

それができないから、会話を強要するわけだ(^^
「現代数学の系譜11 ガロア理論を読む28」だ?
せこいね、Tさん

まあ、どうぞご勝手にだ
商標的には、信用のただ乗りというやつで、中国人が得意なんだが

時枝問題専用に、”現代数学の系譜11 ガロア理論を読む”でもないだろうが(^^
スレが続けばおなぐさみか
介入しないで見てますよ
0290現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:38:39.67ID:MUXssChK
>>250 関連

http://www.jams.or.jp/notice/
International Society for Mathematical Sciences 一般社団法人 国際数理科学協会

http://www.jams.or.jp/Notice.html
Notices from the ISMS

http://www.jams.or.jp/notice/Notices0607.pdf
Notices from the ISMS July 2006(pdf)

http://www.math.nsc.ru/LBRT/g2/english/ssk/euclid.html
APOLOGY OF EUCLID S. S. KUTATELADZE April 21, 2005
ABSTRACT. This is a short apology of the style of the Elements by Euclid and Bourbaki.
(抜粋)
Any serious criticism of the books by Bourbaki bases on pretensions to their content rather than style. Bourbaki’s treatise is evidently incomplete. Many important mathematical theories are absent or covered inadequately.
A few volumes present the dead ends of exuberant theories. All these shortcomings are connected with the major capital distinction between the books by Euclid and Bourbaki.
In his Elements Euclid set forth the theory that was almost complete in his times, the so-called “Euclidean” plane and space geometry. Most of this section of science was made clear once and forever in the epoch of Euclid.

つづく
0291現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:39:37.14ID:MUXssChK
つづき

(google翻訳ベース微修正)
Bourbakiの本の重大な批判は、スタイルではなくコンテンツに対する嫌悪感に基づいている。 Bourbakiの論文は明らかに不完全です。 多くの重要な数学的理論は不在であるか、または不十分にカバーされている。
いくつかのボリュームは、豊かな理論の行き詰まりを示しています。 これらの欠点はすべて、EuclidとBourbakiの本の主要な区別と結びついています。 彼の要素でユークリッドは、彼の時代にはほぼ完成した理論、いわゆる「ユークリッド」平面と空間幾何を描いた。 ユークリッドの時代には、科学のこのセクションのほとんどが一度も永遠に明らかにされました。

つづく
0292現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:40:14.28ID:MUXssChK
つづき

The Bourbaki project was implemented in the period of very rapid progress in mathematics. Many books of the treatise became obsolete at the exact moment of publication.

In particular, functional analysis had been developing contrary to what one might imagine reading the book Topological Vector Spaces.

But to a failure was doomed the heroic and ambitions plan of Bourbaki to present the elements of the whole mathematics of the twentieth century in a single treatise along the methodological lines of Euclid.

Mathematics renews and enriches itself with outstanding brilliant achievements much faster than the books of Bourbaki’s treatise were compiled.

There is no wonder that the mathematical heroes who create the twentieth century mathematics have distinctly and immediately scented the shortcomings of Bourbaki. The treatise encountered severe criticism and even condemnation since it omits many important topics.

As usual, this serious criticism convened all sorts of educationists, would-be specialists in “propaedeutics” and “methodology” who are hardly aware of what is going on in the real mathematics.

Everyone knows that to criticize a book for incompleteness is a weak argument since it is strange to judge an article for what is absent in this article.

Grudges against the content of the treatise transform by necessity to the criticism of its form.
The terseness, conciseness, and lapidary of the style of exposition fall victim to criticism and even ostracism by the adversaries of the malicious “bourbakism” in education.

つづく
0293現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:40:47.54ID:MUXssChK
つづき

(google翻訳ベース微修正)
Bourbakiプロジェクトは、数学の非常に急速な進歩の期間に導入されました。論文の多くの書籍は出版の瞬間に時代遅れになった。

特に、関数解析は、(Bourbakiの)本「位相学的ベクトル空間(Topological Vector Spaces)」のイメージとは反対に発展していった。

しかし、Bourbakiの英雄的で野心的な計画は、ユークリッドの方法論的な線に沿って、一冊の論文で20世紀の数学全体の要素を提示することに失敗しました。

数学は、Bourbakiの論文集よりもはるかに速く、傑出した優れた業績で更新し、豊かになった。

20世紀の数学を生み出す数学の英雄たちは、Bourbakiの欠点をはっきりと即座に味わいました。この論文は、多くの重要な話題を省略しているため、深刻な批判や非難に遭った。

いつものように、この深刻な批判は、「準備」と「方法論」について、あらゆる種類の教育者や専門家を集めたが、彼らは実際の数学で何が起こっているのかほとんど気づいていないのである。

ある項目が欠けていることを判断するのは奇妙なので、不完全さについて本を批判することは、弱い議論であることは誰もが知っています。

論文の内容に対する恨みは、必然的に形の批判に変わる。
表現様式の簡潔さ、コンパクトさ、そして磨き抜かれた表現の部分は、教育における悪意のある「ブルバキズム」の敵対者による批判や追放の犠牲者になります。

つづく
0294現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:41:04.08ID:MUXssChK
つづき

There are no royal ways to mathematics; the road to mathematics was paved by Euclid. The style of Euclid not only lives in the books by Bourbaki but also proliferates in hundreds of thousands of students' notes throughout the world. This style is an achievement and article of pride of our ancient science.

(google翻訳ベース微修正)
数学には王道はありません。 ユークリッドによって数学への道が舗装されました。 ユークリッドのスタイルは、Bourbakiの本に収められているだけでなく、世界中の数十万の学生ノートにも広まっています。 このスタイルは、私たちの古代科学の誇りである成果である。

(引用終り)
0295現代数学の系譜11 ガロア理論を読む垢版2017/01/02(月) 21:48:56.17ID:MUXssChK
>>166 補足
>あと、時枝記事以外で、>>47のSergiu Hart 氏のPDFに、game1とgame2が載っているよ
>game2は、選択公理を使わないバージョンで、有理数の無限小数展開を基本にした数当てgameだ。これは正に、上記の超重い分布が当てはまる。game1も、時枝の記事とは微妙に違っている。Sergiu Hart 氏の方が記述がすっきりしている

まあ、まずgame2で考えてみれば、時枝>>2-4が成立しない理由が一つ見つかるだろう
それに加え、game1ではさらなる困難が加わり
時枝記事では、並べ変えという要素が加わり、さらに難しく・・・という難しさの順だと思う

だから、game2から考えることをお薦めしておくよ(^^;
0296現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 00:13:05.72ID:trvSnYCN
>>295 補足

戻る
>>39 より
https://ja.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E5%B0%8F%E6%95%B0
循環小数
ロバートソン(J.Robertson,1712-1776)の方法
循環小数
a + b ( 10^ n /(10^ n - 1) )

b ( 10^ n /(10^ n - 1) )が、循環節
aが、冒頭の循環していない有限小数部分
(引用終り)

>>42など過去なんども書いてきたが、再度書く

循環節b ( 10^ n /(10^ n - 1) )が、数列のしっぽとして同値類を決定する。ここで、便宜のため、b'=b ( 10^ n /(10^ n - 1) ) と書くことにする

で、代表元をb'として、話を単純にしよう(こうしても一般性を失わない)

いま、ミニモデルとして、区間[0,1)内の有限小数で、少数第5位までの数として考えよう

a=0.a1a2a3a4a5

と書ける

つづく
0297現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 00:15:51.79ID:trvSnYCN
つづき

a5 ≠ 0 なら、少数第6位から数列は一致する。整数部分の0を無視すると、決定番号d=6となる

さて確率を考えよう。ここで、場合の数を計算することで確率が求まることに注意しよう

a5 = 0 の場合の数は、10^4通りある。一方、a1a2a3a4a5の全ての順列は、10^5通りある。

従って、a5 = 0 の場合の確率は、10^4/10^5=1/10。 a5 ≠ 0の確率は、(10^5 - 10^4)/10^5=9/10。つまり、決定番号d<=5の確率0.1,決定番号d=6の確率0.9。

さて、いま数列を2つ a+ b', a'+ b'' あるとして、b'≠b''で、b''は別の循環小数とする

a'=0.a'1a'2a'3a'4a'5 とする

同様に、a'5 = 0 の場合の確率は、10^4/10^5=1/10。 a'5 ≠ 0の確率は、(10^5 - 10^4)/10^5=9/10。決定番号d<=5の確率0.1,決定番号d=6の確率0.9。

a'+ b''の決定番号が他の列の決定番号よりも大きい確率は、
a'+ b''の決定番号d=6で、かつa+ b'の決定番号d<=5を考えて、確率0.09 (=0.9*0.1) となる。この場合が、ほぼ支配的だ。だから、a+ b'の決定番号が他の数列より大きくない確率は、ほぼ9割。

この場合、時枝記事>>3の類推からすれば、2列なので確率は1/2=0.5にすぎないというべきところなのだが・・

さて、3列で、a+ b'、a'+ b''、a''+ b''' を考える。
同様にして、a''+ b'''が、他の二つより大きい確率は、a''+ b'''の決定番号d=6で、かつ他の二つの決定番号d<=5を考えて、確率0.009 (=0.9*0.1*0.1) となる。この場合が、ほぼ支配的だ。だから、a''+ b'''の決定番号が他の数列より大きくない確率は、ほぼ99%。

この場合、時枝記事>>3の類推からすれば、3列なので確率は1/3=0.33・・・にすぎないというべきところなのだが・・

つづく
0298現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 00:17:00.46ID:trvSnYCN
つづき

ところで、a''+ b'''の決定番号が他の数列より大きくない確率は、ほぼ99%で、結構な話だが、決定番号d=6が問題で、d+1=7 以降の箱を開けて、b'''の循環節は分かるが、d=6も循環節なのだ。

だから、真にランダムなa''の部分は当てられない。

ミニモデルとして、少数5位を考えたが、一般化して少数n位を考えても同じ

まとめると
1.2列で1/2、3列で1/3、・・・という単純な確率計算には、ならない!
2.当てられるのは、循環節にすぎない
0299現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 00:21:13.77ID:trvSnYCN
>>298 つづき

ここでは、10進法を考えたが、P進法を考えることができ、Pはもっと大きく取れる
そうなると、>>298はもっと極端なことになる

P→∞の極限も考えることができる
つまり、a1a2a3a4a5にいろんな数を当てはめることができる。結論は言わずもがなだろう
0300132人目の素数さん垢版2017/01/03(火) 01:08:24.07ID:56XTT4pn
>>289
> 介入しないで見てますよ

ご配慮感謝。有言実行よろしくどうぞ。
0302現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 07:44:21.74ID:trvSnYCN
>>298-299 補足
要するに

1.Sergiu Hart 氏のgame2(game1や時枝記事におなじ)では、確率分布が、裾の超重い分布になり、裾が全体を支配することになる
2.そのような、確率分布では、単純に100列で確率99/100は導けない(ミニモデルで>>297に示した通り)
3.だから、100列で確率99/100は、要証明事項だ
4.かつ、裾の超重い分布では、生じる事象はほとんど全てが、超重い裾の部分で生じることになる
 つまり、列の長さL→∞にすると、有限のL内で起こる事象の発生確率は0だ
 即ち、有限の範囲の箱は当てられない
5.この結論は、時枝>>4
「n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
 その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
 当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
 勝つ戦略なんかある筈ない,と感じた私たちの直観」
 と一致するのだ
0303現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 10:05:10.38ID:trvSnYCN
>>294 関連
再録
現代数学の系譜11 ガロア理論を読む24 http://rio2016.2ch.net/test/read.cgi/math/1475822875/
654 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/10/29(土) 13:43:22.34 ID:vwUy6eEC [25/46]

あなたのまったく逆を渕野先生が書いている。>>361
”厳密性を数学と取りちがえるという勘違い”
https://www.amazon.co.jp/dp/4480095470
数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房 2013

数学的直観と数学の基礎付け 抜粋(ああ、文字化けがあるので、修正した)

数学の基礎付けの研究は,数学が厳密
でありさえすればよい, という価値観を確立しようとして
いるものではない.これは自明のことのようにも思える
が,厳密性を数学と取りちがえるという勘違いは,たとえ
ば数学教育などで蔓延している可能性もあるので,ここに
明言しておく必要があるように思える.

多くの数学の研究者にとっては,数学は,記号列として
記述された「死んだ」数学ではなく,思考のプロセスとし
ての脳髄の生理現象そのものであろうしたがって,数学
はその意味での実存として数学者の生の隣り合わせにある
もの,と意識されることになるだろうそのような「生き
た」「実存としての」(existentialな)数学で問題になるの
は,アイデアの飛翔をうながす(可能性を持つ)数学的直
観」とよばれるもので,これは, ときには,意識的に厳密
には間違っている議論すら含んでいたり,寓話的であった
りすることですらあるような,かなり得体の知れないもの
である.

>>505より
数とは何かそして何であるべきか デデキント 訳解説 渕野昌 筑摩書房 2013
数学的直観と数学の基礎付け
訳者による解説とあとがき P314 だ
(引用終り)

再度
"厳密性を数学と取りちがえるという勘違いは,たとえ
ば数学教育などで蔓延している可能性もあるので,ここに
明言しておく必要があるように思える."
0304現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 10:13:47.89ID:trvSnYCN
(再録)
>>223-224 天才 セドリック・ヴィラニのひらめきが、下記。まさに、
渕野先生「アイデアの飛翔をうながす(可能性を持つ)数学的直
観」とよばれるもので,これは, ときには,意識的に厳密
には間違っている議論すら含んでいたり,寓話的であった
りすることですらあるような,かなり得体の知れないもの
である.」の実例

223 自分:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/01/02(月) 07:33:23.56 ID:MUXssChK [7/59]
つづき

12:53
この矛盾する現象は 「ランダウ減衰」と呼ばれ プラズマ物理における 最も重要な事象の1つで その存在は数学で証明されました とはいっても この現象は完全には 数学的に理解されていませんでした
かつての私の教え子であり 主要共同研究者のクレマン・ムーオと共に? その時パリにいたのですが? 何ヶ月もその証明に 取り組んでいました
実は 私は 解けたと勘違いして 公表してしまっていたのですが 実際には その証明は成り立っていなかったのです
百ページ以上の複雑な数学的論理 多くの発見や 膨大な計算にも拘らず うまく行きませんでした
プリンストンでの その夜は 証明を構築する過程の論理が うまく繋がらなく気がどうかなりそうでした エネルギーと経験 そしてあらゆる手法を 駆使していたのに 何もうまく行きませんでした
夜中の1時 2時 3時になっても 同じ状態でした 4時頃になり 落ち込んだまま就寝し その数時間後 目覚め 「子供たちを学校に連れて行く時間だ」 とその時 何だ これは? 頭の中で こう言う声が 確かに聞こえたのです 「第2項目を 式の反対側に持って行き フーリエ変換して L2空間で逆変換せよ」



14:21
これだ! それが解決への第一歩でした

つづく

224 自分:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/01/02(月) 07:35:11.40 ID:MUXssChK [8/59]
つづき

14:26
このように 休息していたと思っていたのに 実は私の脳は働き続けていたのです そんな時には 野心も同僚の事も頭にはありません 取り組んでいる問題と自分だけです
(引用終り)
0305現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 10:21:26.28ID:trvSnYCN
人の直観、それはゲーデルの加速定理(下記)の例かもしれない
ディラックのデルタ関数。デルタ関数なしでも、同じことは古い関数論で可能かもしれない・・。が、デルタ関数を導入することで、議論がすっきり見通しよくなるのだ
https://ja.wikipedia.org/wiki/%E3%82%B2%E3%83%BC%E3%83%87%E3%83%AB%E3%81%AE%E5%8A%A0%E9%80%9F%E5%AE%9A%E7%90%86
ゲーデルの加速定理
(抜粋)
ゲーデルの加速定理(ゲーデルのかそくていり、英: Godel's speedup theorem)は ゲーデル (1936)で証明された。この定理によれば、弱い形式的体系では非常に長い形式的証明しか存在しないが、より強い形式的体系では極めて短い形式的証明が存在する、というような文が存在する。

クルト・ゲーデルはそのような性質を持つ文を具体的に構成した。それはn階算術の体系で証明可能な命題であってn+1階算術ではより短い証明を持つものが存在するというものである。

ハービー・フリードマンは上の性質を満たすような明示的で自然な例をいくつか見つけた。それはペアノ算術やほかの形式的体系における文であり、その最短の証明は非常に長い(Smory?ski 1982)。
0306現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 10:26:22.61ID:trvSnYCN
数学はつねに未完成(不完全性定理)

http://www.h5.dion.ne.jp/~terun/doc/fukanzen.html
不完全性定理 - 哲学的な何か、あと科学とか: 日付不詳
(抜粋)
不完全性定理 1930年頃

一般的に言って、
「数学的に証明された」ことについては、もう議論の余地はない。

どんなに年月が経とうと、決して反論されることもなければ、
科学理論のように、よりすぐれた理論に取って代わられることもない。
主義主張にも善悪にも関係なく、また、どんな嫌なヤツが言ったとしても、
数学的に証明されたことは常に正しい。

まさに絶対的な正しさ。
「数学的証明」こそ、永遠不変の真理なのである。

だからこそ、数学を基盤にし、証明を積み重ねていけば、
いつかは「世界のすべての問題を解決するひとつの理論体系」
「世界の真理」
に到達できるのではないかと信じられていた。

さて、1930年頃のこと。
数学界の巨匠ヒルベルトは
「数学理論には矛盾は一切無く、
 どんな問題でも真偽の判定が可能であること」
を完全に証明しようと、全数学者に一致協力するように呼びかけた。
これは「ヒルベルトプログラム」と呼ばれ、
数学の論理的な完成を目指す一大プロジェクトとして、
当時世界中から注目を集めた。

そこへ、若きゲーテルがやってきて、
「数学理論は不完全であり、決して完全にはなりえないこと」
を数学的に証明してしまったから、さあ大変。

ゲーデルの不完全性定理とは以下のようなものだった。

1)第1不完全性原理
 「ある矛盾の無い理論体系の中に、
  肯定も否定もできない証明不可能な命題が、必ず存在する」

2)第2不完全性原理
 「ある理論体系に矛盾が無いとしても、
  その理論体系は自分自身に矛盾が無いことを、
  その理論体系の中で証明できない」

不完全性定理は述べる。
「どんな理論体系にも、証明不可能な命題(パラドックス)が必ず存在する。
 それは、その理論体系に矛盾がないことを
 その理論体系の中で決して証明できないということであり、
 つまり、おのれ自身で完結する理論体系は構造的にありえない」
0307現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 10:57:52.14ID:trvSnYCN
>>303-306

どこかで渕野先生が書いていたように思うが
数学はつねに未完成(不完全性定理)だから、豊かなのだと

で、数学の厳密性は、数学を使う他の分野から見れば、安心なのだ。数学的な証明が与えられると、あとはそれを基礎にどんどん進んでいける安心感
一方で、これだけ数学の内容が豊富になって、各分野のレベルが高くなると、なんらかの加速装置(加速定理)が求められているように思う

それが、マクレーンの圏論であったり、グロタン先生の代数幾何の仕事だったように思う。加速装置を作ったという視点
だが、もう全てを追い切れないのかもしれない

Bourbakiに欠けているのは、天才 セドリック・ヴィラニのひらめき(=渕野先生「アイデアの飛翔をうながす(可能性を持つ)数学的直観」)や、加速装置(加速定理)という視点
加速装置を作るべし(創造)という視点

まあ、いわば、Bourbakiは、山に登るのに一歩一歩。「数学には王道はありません」と
だが、物理系のウィッテン>>103( 受賞者記念講演録 | 京都賞)や、立川ら >>78(AGT 対応の数学と物理)が、やったことは、取りあえずドローン飛ばして、山の地形を調べますと

そうすると、数学者がふもとから見ている風景とは違うランドスケープが見える
それが、20世紀後半から頻繁になってきた。それも、Bourbakiのスコープ外だろうと。王道は、(作らないと)ないかも知れないが、ランドスケープ( 直観的理解(渕野かな))は重要だねと

そこは忘れないようにしたい

追伸
余談だが、
積分の順序を云々するまえに、やるべきこと(ランドスケープを得るべし)があるだろうと
リーマンは、まさにリーマン球で一変数複素関数論のランドスケープを与え、リーマン球は非ユークリッド幾何の1例となった
0308132人目の素数さん垢版2017/01/03(火) 11:54:55.58ID:r+v/8wFp
>>254
おっちゃんです。
厳密でない数学を否定してはいない。
だが、ZFCの公理系に含まれる選択公理と相反する公理を付け加えた公理体系の中では偽になり、
かつZFCの中では真になるような、公理体系によって真偽が変わる命題は存在する。
例えば、決定性公理や確率論のソロヴェイの公理など。
そのような命題は、いつでも自由に応用出来るとは限らない。
ZFCと、ZFCとは相反する公理系とをごちゃ混ぜにしたような公理系の構成は出来ないから、
そのような命題を下手に現実社会で応用すると、論理的には正しいが、数学的には間違いになることがある。
決定性公理が前提となる1つの公理になっているゲーム理論も、そのような理論である。
ゲーム理論の公理系に反するような、ZFCで証明出来る命題は存在する。
選択公理を使わないと証明出来ない命題はそうなる。
選択公理を前提にしたZFCの数学の体系と決定性公理を前提にしたゲーム理論の数学の体系とは矛盾する。
多くの人にとって、数学的に1番身近な公理体系がZFCだから、ZFCの中で時枝問題を考えましょうということ。
そうすると、時枝問題は正しくなる。少なくともこのことを、スレ主は否定していることになる。
0309132人目の素数さん垢版2017/01/03(火) 12:10:41.20ID:FPvZOdpu
こら、運営のおっさん、さっさと焼かんかい
0310現代数学の系譜11 ガロア理論を読む垢版2017/01/03(火) 12:43:51.30ID:trvSnYCN
>>308
おっちゃん、どうも。スレ主です。
このスレで証明を書かないのはありがたい!(^^

>多くの人にとって、数学的に1番身近な公理体系がZFCだから、ZFCの中で時枝問題を考えましょうということ。
>そうすると、時枝問題は正しくなる。少なくともこのことを、スレ主は否定していることになる。

時枝自身>>4が書いている
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.

しかし,素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.」だ

つまり、”その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立”を否定している
本当にそうなか? ”まるまる無限族として独立”なる無定義用語を使っていませんか?
”確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される”から、「その箱のXは、−−他の箱から情報は一切もらえない」が導かれると思うよ

証明を書くには、”他の箱から情報をもらう”とは? という定義が必要だろうし
でも、”勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた”というから

ともかく、ある無限数列のしっぽから、その数列のどれかの箱Xが情報を貰うということだから、箱Xは独立でなく、なんらかの関連が付くということだろ?
それは、「任意の有限部分族が独立のとき,独立」を破り、矛盾を生じると思うよ

それは時枝も矛盾を感じているから、”私たちの直観は,無意識に(1)に根ざしていた”という言い訳1行で済ませているが、本来要証明だ(証明できないだろうが)
0311132人目の素数さん垢版2017/01/03(火) 12:55:09.22ID:XwgPLitH
>>302
決定番号ごとに数列を出題するわけではなくて出題された1つの数列から
複数の決定番号を求めるからスレ主が書いた場合分けは関係なくなるよ

100列の場合だと{d1, ... , d100}_1, {d1, ... , d100}_2, ... から選ぶことに
なるので{d1, ... , d100}の100個の数字だけを考えれば単純に100列で確率99/100
0312132人目の素数さん垢版2017/01/03(火) 16:45:07.26ID:r+v/8wFp
>>312
>つまり、”その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立”を否定している
>本当にそうなか? ”まるまる無限族として独立”なる無定義用語を使っていませんか?
各 i=1,2,… に対して、P_i を確率測度とし、見本空間 S_i が有限集合、事象 E_i も有限集合である
確率空間 (S_i, E_i, P_i) を考えて、X_i は E_i における確率変数とする。
そして、可算無限個の確率空間 (S_i, E_i, P_i) i∈N\{0} の直積 Π(S_i, E_i, P_i) を考える。
そうすることで、確率変数 X_1, X_2, … は独立な可算無限個の確率変数となる。
”まるまる無限族として独立”は、そう意味として解釈出来る。
0314132人目の素数さん垢版2017/01/03(火) 17:30:43.17ID:r+v/8wFp
>>310
>ともかく、ある無限数列のしっぽから、その数列のどれかの箱Xが情報を貰うということだから、
>箱Xは独立でなく、なんらかの関連が付くということだろ?
>それは、「任意の有限部分族が独立のとき,独立」を破り、矛盾を生じると思うよ
で、>>312のように確率空間や確率変数 X_1, X_2, … を定めたら、確率空間 (S_i, E_i, P_i) と
i, i≧2 個以上の有限個の確率空間の直積 Π_{k=1,i}(S_k, E_k, P_k) を考える。
そうして、有限個のときのことを考えて、極限を取って、確率を求めることにより、
時枝問題での勝つ確率は1なることが分かる。勿論、確率空間の設定はこれだけでは不十分。
以前やった高校の確率論で極限を取って時枝問題で勝つ確率を1と求めたことは、
そのことを確率測度を使わずにしましたということ。矛盾は生じない。
0316132人目の素数さん垢版2017/01/03(火) 17:47:46.46ID:XwgPLitH
>>310
> (1)無限を直接扱う,
この無限は実無限のこと
> ”確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される”
これは可能無限

> ともかく、ある無限数列のしっぽから、その数列のどれかの箱Xが情報を貰うということだから、
> 箱Xは独立でなく、なんらかの関連が付くということだろ?
代表元(r1, r2, ... , rn, ... )のたとえば2番目を5にしたいと思ったらr2だけを個別に変えることは
できずに属する類を変化させて(r'1, r'2=5, ... ,r'n, ... )とまるごと変えることになる

無限数列と代表元のシッポを一致させることで間接的に(実)無限を扱っているのだから
シッポの箱は関連づいている(そのシッポの箱を探すことが時枝戦略)
0317現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 00:08:57.13ID:3+lYjsf1
どうも。スレ主です。
静かになったね
ほぼ、Tさん一人で騒いでいたのか・・

まず、ID:XwgPLitHさんから
>>311
>決定番号ごとに数列を出題するわけではなくて出題された1つの数列から
>複数の決定番号を求めるからスレ主が書いた場合分けは関係なくなるよ

意味わからんし、違うと思うよ
>>3「問題に戻り,閉じた箱を100列に並べる」だから、あくまで100列。1つの数列にあらず

「箱の中身は私たちに知らされていないが,・・・これらの列はおのおの決定番号をもつ.」だから、100列から100個の決定番号を求めるだな
0318現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 00:13:21.89ID:3+lYjsf1
>>316
>代表元(r1, r2, ... , rn, ... )のたとえば2番目を5にしたいと思ったらr2だけを個別に変えることは
>できずに属する類を変化させて(r'1, r'2=5, ... ,r'n, ... )とまるごと変えることになる

>無限数列と代表元のシッポを一致させることで間接的に(実)無限を扱っているのだから
>シッポの箱は関連づいている(そのシッポの箱を探すことが時枝戦略)

意味不明
悪いが、Tさんのスレ(下記)でやってくれ。あそこは、早くもさびれかかっているから、歓待されるぜ

現代数学の系譜11 ガロア理論を読む28
http://rio2016.2ch.net/test/read.cgi/math/1483314290/
0319現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 00:26:09.34ID:3+lYjsf1
つぎ、おっちゃん ID:r+v/8wFp

>>312
時枝のこころを、おもんばかるだけなら、読心術であって、数学の問題じゃないんだが・・・(つまりは国語読解問題だな(^^

そもそも時枝>>4「素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.」

と時枝は書いている
つまり、

まるまる無限族として独立なら
 ↓
他の箱から情報は一切もらえない
 ↓
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた

なので、”まるまる無限族として独立”→”(1)に根ざしていた”が成立するから、「(1)無限を直接扱う」のことなんだろうね

だから、「(2)有限の極限として間接に扱う」と解釈してはいけないのだ!!

だから、おっちゃんの”見本空間 S_i が有限集合、事象 E_i も有限集合である”は、アウト
0320現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 00:34:21.04ID:3+lYjsf1
>>314
>そうして、有限個のときのことを考えて、極限を取って、確率を求めることにより、
>時枝問題での勝つ確率は1なることが分かる。

国語読解、読めてないね

時枝>>4より「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
いったい無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
(独立とは限らない状況におけるコルモゴロフの拡張定理なども有限性を介する.)
しかし,素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」

と書いてあるけど、

時枝自身がやっていること、>>2-3は、まさに「(1)無限を直接扱う」じゃないですか?
>>2-3の文の中のどこに、「(2)有限の極限として間接に扱う」があるんだ?

そこに大きな矛盾がある
時枝の論旨が一貫していない!
0321132人目の素数さん垢版2017/01/07(土) 02:05:40.59ID:l9ycOFYj
> 意味わからんし、違うと思うよ
一つの箱にたとえば0から9の数字が全て10個入っているとみなして計算すればスレ主の言う
「超重い裾の部分」が出てくるかもしれないがその場合には出題者が必ず10個の内9個を取り除く
ことが考慮されていない

> 意味不明
袋の中には各同値類に対する代表元はそれぞれ一つしか入っていない

時枝記事の内容を理解していなかったら意味不明と書くしかないのでしょうけれども

> 「(1)無限を直接扱う」じゃないですか?
もし任意の無限数列の可算無限個全ての数字を出題者が直接指定する方法があるのならば
無限を直接扱うということになる
(出題者が指定すべき情報は無限個)

> 「(2)有限の極限として間接に扱う」があるんだ?
>>2で同値関係を導入する理由は循環小数のように有限個の数字を繰りかえすパターンでなら
無限数列を直接扱えるが他の場合でも数列のシッポの繰りかえしパターン0, 0, 0, ... を
代表元を用いて変換すれば有限個の情報で間接的に任意の無限数列を表すことができるから
(出題者が指定すべき情報は有限数列と(極限値となる)無限数列が属する類)
0322現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 06:47:58.54ID:3+lYjsf1
>>321
ID:l9ycOFYjさん、どうも。スレ主です。

まずお願いですが、レスアンカー下記を、次回から使って頂けませんかね
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q109084020
2chなどでよく見かけますが、アンカー?ってどうやってつける... - Yahoo!知恵袋: 2006/8/20
(抜粋)
>>123
のように”半角”の「>」を2回のあとに”半角”で数字を入力すると「>>123」の部分が青くリンク表示になる。
記号も数字も半角でないとダメ。

247から250までを指したいなら「>>247-250」のように番号と番号の間に「-」(ハイフン)を入れる。


http://dic.nic
ovideo.jp/a/%E3%83%AC%E3%82%B9%E3%82%A2%E3%83%B3%E3%82%AB%E3%83%BC
レスアンカーとは (レスアンカーとは) [単語記事] - ニコニコ大百科:初版作成日: 08/11/17 03:26 ◆ 最終更新日: 11/08/14 08:58
(抜粋)
レスアンカーとは、主にインターネット掲示板で使われる、他の書き込みにリンク(レス)されるための書式である。
主に、アンカーや安価と略される。

概要

インターネット上の掲示板(特に2ちゃんねる)では主に、過去の書き込みに対して返答する際に、その書き込みが誰にあてられた物かを明確にするために用いられる事が多い。

基本的に多くの掲示板では、半角引用符2つにレス番号で自動リンクが張られる。(例:>>1
0324現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 07:10:10.24ID:3+lYjsf1
>>321
ID:l9ycOFYjさん、端的に言って悪いが
1.時枝>>2-4を再度よく読んでください
2.それから、>>47 http://www.ma.huji.ac.il/hart/puzzle/choice.pdf PUZZLES ”Choice Games”Sergiu Hart November 4, 2013 も時間があれば
3.その上で
1)”一つの箱にたとえば0から9の数字が全て10個入っているとみなして計算すれば「超重い裾の部分」が出てくるかもしれないがその場合には出題者が必ず10個の内9個を取り除くことが考慮されていない”:
 申し訳ないが、理解できない
2)”もし任意の無限数列の可算無限個全ての数字を出題者が直接指定する方法があるのならば無限を直接扱うということになる(出題者が指定すべき情報は無限個)”:
 それ(「任意の無限数列の可算無限個全ての数字を出題者が直接指定する方法」)は、選択公理だと思います
 ここまでは>>317関連

3)”代表元を用いて変換すれば有限個の情報で間接的に任意の無限数列を表すことができる”:
 これは、>>320関連ですな
 で、「有限個の情報で間接的に任意の無限数列を表すことができる」の意味がわからん・・・??
 代表元の集合は、濃度としては無限でしょ
 無限数列に(有限の長さの)名前をつけて、xとかsとかx1とかs1とか、それは時枝でもSergiu Hart氏でもやっている通りだし・・・??
0325現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 08:23:48.44ID:3+lYjsf1
>>314
おっちゃんに戻る

>そうして、有限個のときのことを考えて、極限を取って、確率を求めることにより、
>時枝問題での勝つ確率は1なることが分かる。

なにが有限個なのかさっぱり分からんが、Sergiu Hart氏>>47 で、数列有限長では、
”Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1, ..., 9}, respectively.”

とあるよ。つまり、数列有限長では、game1では当たらないし、game2は当たる確率1/10だと

でさらに、「時枝問題での勝つ確率は1なる」と、時枝>>3の「めでたく確率99/100で勝てる」の1/100の差はなんだ??

>以前やった高校の確率論で極限を取って時枝問題で勝つ確率を1と求めたことは、

高校の確率論ってなんだ? 大数の法則? 中心極限定理? それ裾の軽い分布でしか成立しないぞ・・
0326現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 08:31:58.11ID:3+lYjsf1
まず、みなさんが、裾の重い分布をよく理解することだ(下記)
裾の重い分布とは:裾が減衰する(例えば時間が経つと確率が小さくなるなど)場合で、軽い場合は早く減衰するが、重いと緩やかにしか減衰しない。その場合、突然大きなイベントが起きるようなことで、大数の法則や中心極限定理が不成立。期待値(平均値)や分散(標準偏差も)が存在しない分布だ
(下記参照)
http://www.wikiwand.com/ja/%E8%A3%BE%E3%81%AE%E9%87%8D%E3%81%84%E5%88%86%E5%B8%83
裾の重い分布 - Wikiwand:
(抜粋)
裾の重い分布あるいはヘヴィーテイルとは、確率分布の裾がガウス分布のように指数関数的には減衰せず[1]、それよりも緩やかに減衰する分布の総称。 また類似の用語に、ファットテイル、裾の厚い分布、ロングテール、劣指数的(subexponential)などがある。

http://www.orsj.or.jp/queue/
日本オペレーションズ・リサーチ学会 待ち行列研究部会:待ち行列チュートリアル講演資料
http://www.orsj.or.jp/queue/contents/14tu_masuyama.pdf
■ 第8回学生・初学者のための待ち行列チュートリアル
(2014年6月21日, 於東京工業大学)
「Big Queues −裾の重い分布と希少事象確率−」 増山 博之 (京都大学)
(抜粋)
分布族Lは, Hより数学的に良い性質を持っているが, まだ不十分
→ 劣指数分布族の導入
3.3 劣指数分布族
裾の加法性から数学的に美しい結果を生み出される!!
0327現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 08:32:54.28ID:3+lYjsf1
つづき

で、裾が超重い分布とは?
一般の数学的な取り扱いは、ほとんどされていないが、裾が減衰しない分布
あるいは、時枝>>2の決定番号のように、裾が減衰しないどころか、かえって増大する分布について、私が命名した
そんなもの(分布)で、真っ当な、確率計算ができるはずがないだろう

おわり
0328現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 08:53:45.09ID:3+lYjsf1
過去スレより引用(ID:f9oaWn8Aさんは、私が確率の専門家と呼ばせて貰っている人だ。「うーん,正直時枝氏が確率論に対してあまり詳しくないと結論せざるを得ないな」なんて、時枝と同じ大学教員クラスでないと言えないから)
http://rio2016.2ch.net/test/read.cgi/math/1466279209/538
現代数学の系譜11 ガロア理論を読む20
538 返信:132人目の素数さん[] 投稿日:2016/07/03(日) 23:54:57.90 ID:f9oaWn8A
うーん,正直時枝氏が確率論に対してあまり詳しくないと結論せざるを得ないな
>>6
>確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
の認識が少しまずい.
任意有限部分族が独立とは
P(∀i=1,…n,X_i∈A_i)=Π[i=1,n]P(X_i∈A_i)ということだけど
これからP(∀i∈N,X_i∈A_i)=Π[i=1,∞]P(X_i)が成立する(∵n→∞とすればよい)
これがきっと時枝氏のいう無限族が直接独立ということだろう.
ということは(2)から(1)が導かれてしまったので,
「(1)という強い仮定をしたら勝つ戦略なんてあるはずがない」時枝氏の主張ははっきり言ってナンセンス
確率変数の独立性というのは,可算族に対しては(1)も(2)も同値となるので,
”確率変数の無限族の独立性の微妙さ”などと時枝氏は言ってるが,これは全くの的外れ
(引用終り)
0329現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 09:21:14.08ID:3+lYjsf1
>>328 補足
>確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される

この無限集合に対する定義は、ふつうだよ。頻出で、別に、コルモゴロフの発明でもないと思うし、確率論に限らないだろう

つまり、
定義M「無限集合Aがαという性質であるとは、任意の部分集合がαのとき,α,と定義される」*)と言い換えることができる

これを、定義Mの否定、つまり”無限集合Aがαという性質を持たない”としてみよう。そうすると、”ある部分集合がαでない”あるいは”αでない部分集合が存在する”となる

命題X”無限集合Aがαという性質を持たない”→命題Y”ある部分集合がαでない”となる(対偶をとるための言い換え)
対偶をとると
not 命題Y”任意の部分集合がα”→not 命題X”無限集合Aがαという性質を持つ”

つまり、”無限集合Aがαという性質を持たない”の定義として、”ある部分集合がαでない”あるいは”αでない部分集合が存在する”を認めるならば、
その対偶として、定義M「無限集合Aがαという性質であるとは、任意の部分集合がαのとき,α,と定義される」*)となるわけで、
これは、時枝>>4"(2)の扱いだ"(時枝>>4 「(2)有限の極限として間接に扱う」)と大げさに宣うほどのことでもない。ごく普通で、”有限”無関係

実際、定義Mの*)の文では、”有限”の文言を削ったが、それで十分数学の無限集合の持つ性質の定義として、成り立つ
かつ、時枝の定義>>4 「確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される」を包含している
0330現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 09:29:54.87ID:3+lYjsf1
>>329 補足
>定義M「無限集合Aがαという性質であるとは、任意の部分集合がαのとき,α,と定義される」*)と言い換えることができる

これは、確率論の舞台である、完全加法族 https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%85%A8%E5%8A%A0%E6%B3%95%E6%97%8F
とは無関係

つまり、ルベーグ非可測集合うんぬんとは無関係

それは、時枝>>4にある通りだが、Tさんやおっちゃんは、ごちゃごちゃになってないか?

特にTさんは、”ルベーグ非可測”がすべての免罪符になると(「”ルベーグ非可測”だから全ての奇妙なことが許される」みたいな論法なんだよね)
0331132人目の素数さん垢版2017/01/07(土) 09:38:09.04ID:s9wNyUJV
>>325
おっちゃんです。
>でさらに、「時枝問題での勝つ確率は1なる」と、
>時枝>>3の「めでたく確率99/100で勝てる」の1/100の差はなんだ??
時枝記事と同様な設定で有限個の確率を考えたときのことが下の行の主張である。
極限を取って、可算無限個の確率を考えたときのことが上の行の主張である。
全くスレ主は何回同じことをいわせるんだ。

>以前やった高校の確率論で極限を取って時枝問題で勝つ確率を1と求めたことは、
高校の確率論ってなんだ? 文字通りそのまんま。
以前スレ主が挙げた伊藤清の確率論だったかにも一番はじめに載っている。
分からないなら、チョットスレ主は確率論が専門の槙子にでも聞いてみろよ。
ピッチピッチの姉ちゃんだから、もしかしたら優しく教えてもらえるぞ。
0332現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 09:40:23.99ID:3+lYjsf1
>>4 もどる
ついでに

>逆に非可測な集合をこさえるには選択公理が要る(ソロヴェイ, 1970年)から,この戦略はふしぎどころか標準的とさえいえるかもしれない.
>しかし,選択公理や非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.

数学ロジックとして、全く奇妙だ

前段で、選択公理を使って標準的といっておきながら
後段で、「しかし,選択公理や非可測集合を経由したからお手つき」だと

後段の”選択公理や非可測集合”の部分で、選択公理と非可測集合とを並列にするところが変
”しかし,非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.”が正しいだろ?

つまり、選択公理は標準で、非可測集合経由が非標準
0333132人目の素数さん垢版2017/01/07(土) 09:45:32.89ID:s9wNyUJV
>>325
>>331
>>以前やった高校の確率論で極限を取って時枝問題で勝つ確率を1と求めたことは、
>高校の確率論ってなんだ? 文字通りそのまんま。
の部分は

>以前やった高校の確率論で極限を取って時枝問題で勝つ確率を1と求めたことは、
>高校の確率論ってなんだ?
文字通りそのまんま。

というように、「文字通りそのまんま。」から>>331でのスレ主宛ての文を書き始めることになる。
スレ主は>>325で「文字通りそのまんま。」の文を書いてはいないことに注意。
0334132人目の素数さん垢版2017/01/07(土) 09:50:17.39ID:s9wNyUJV
スレ主は標準的なZFCでの確率論と、
ゲーム論的確率論とを混同して考えている。
0335現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 10:01:05.04ID:3+lYjsf1
>>331
おっちゃんらしいな
だから、私にとってはありがたい

まあ、老婆心ながらご忠告すれば

1.”伝え方で全てが決まる!「伝え方が9割」”
http://ptskunx.hatenablog.com/entry/2016/09/29/213000
【感想】伝え方で全てが決まる!「伝え方が9割」を読んでみた - あ、ねこさとろぐ(別館です): 20160929
(抜粋)
ベストセラーになっているし、有名な本。
伝え方に技術がある
普段、気が許せる家族や友人と会話しているときって、思ったことをパッパッと言っている人は多いんじゃないかなぁ。
ぼくもそのうちの一人。
頭の中で思いついたことをすぐに言ってしまうから、よく「威圧的な言い方」とか言われたこともあったなぁ。

https://matome.na
ver.jp/odai/2136796747105433201
20万部のベストセラー「伝え方が9割」ってどんな本? - NAVER まとめ:2013年05月08日

2.基本は一話完結。そのレスの中で話しが理解できるよう。勿論、引用やリンクは可だが、自分が例えば三日前に言ったことを勝手に前提にして議論を進めるのは不可だ
http://okwave.jp/qa/q6491181.html
一話完結とは... - アニメ・声優 | 【OKWAVE】: 2011-02-01
(抜粋)
一話完結とは、その1話で物語が終わるもの

3.1に関連するが”おれの言っていることが分からないのは、おまえが悪い”というのは、よほどのことでね。例えば>>331を全くの第三者が読んで、おっちゃんの言い分をどこまで支持してくれるか
 余談だが、米国のディベート術は、AとBと2者の論争技術ではなく、それを見ている複数のC達の支持をどちらが多く集めることができるかの技術だと

追伸
おっちゃんの証明な
証明1を書いて
証明1の訂正を書いて
証明1の訂正の訂正を書いて
 ・
 ・
 ・
”伝え方で全てが決まる!「伝え方が9割」”の視点からはどうなんかね?
証明1をきちんと書き直すのが筋だと思う
手間だ? なら、それを読まされる側も手間だし、そんなものは読む気にならんってこと
”伝え方で全てが決まる!「伝え方が9割」”だよ
0338132人目の素数さん垢版2017/01/07(土) 10:09:13.37ID:s9wNyUJV
>>325
>>331
>分からないなら、チョットスレ主は確率論が専門の槙子にでも聞いてみろよ。
>ピッチピッチの姉ちゃんだから、もしかしたら優しく教えてもらえるぞ。
の部分は同じことを何回もいわせるポンコツスレ主へのジョーダンで書いた文章だから、
この部分は真に受けるなよw 迷惑かけることになるから、本当に聞くことはやめろよ。
0339現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 10:10:16.44ID:3+lYjsf1
>>334
>スレ主は標準的なZFCでの確率論と、
>ゲーム論的確率論とを混同して考えている。

それはありえない
「ゲーム論的確率論」は詳しくしらないので、ありえないと思う

追伸
おっちゃんな、米国のディベート術的にはな、「あなたのこういうところが、ゲーム論的確率論とを混同してる」と、具体的に指摘するんだな
そういう理由付けというか、判断の根拠を明示することも、第三者のC達の支持を集めるための技術なんだよ
0341132人目の素数さん垢版2017/01/07(土) 10:32:26.90ID:s9wNyUJV
>>339
私が詳しくは知らないゲーム論的確率論で考えたときの時枝問題の答えは 1-ε であり、
記事本文にも答えの確率は「1-ε」と書かれている。
標準的なZFCでの確率論で考えたときの時枝問題の答えは1である。
では、何故記事では時枝問題の答えが「1-ε」と書かれていたのか? という疑問が生じる。
通常は標準的なZFCでの確率論で考えて時枝問題の答えは「1」と考えるのに、
εの説明も記事では書かれてなく時枝問題の答えを「1-ε」と書くことは不自然である。
記事を書く側や印刷する出版社の人にとっても「1」を「1-ε」と書くのは不自然である。
それ程不自然な書き方である。他に合理的な理由がすぐには思い当たらず、
記事の「1-ε」は「1」の間違いと考えるのが自然である。
「1」を「1-ε」と見なして考えていることが、スレ主が標準的なZFCでの確率論と、
ゲーム論的確率論とを混同して考えていることの1つの証拠だと思われる。
0342現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 10:45:40.25ID:3+lYjsf1
>>162 関連

あまり理解していないが、参考に貼っておく

http://www.ipmu.jp/ja/IPMUNews35
Vol.35 (Sep 2016) | Kavli IPMU-カブリ数物連携宇宙研究機構:
http://www.ipmu.jp/sites/default/files/imce/press/N35_J02_Feature.pdf
Feature 阿部 知行「類似と数学」
(抜粋)

1940年3月、戦争の混乱の中、兵役に就かなかっ
たことを理由に逮捕された一人の数学者がフラン
ス・ルーアンのボンヌ・ヌヴェール刑務所の獄中か
ら哲学者である彼の妹に向けて14ページにわたる
手紙を送った。その中で彼はこう述べている。「数
論*1と(有限体上の関数体の理論と)の類似は強固で
あり、明らかです…一方で(有限体上の)関数体と
「リーマン体」に関しては…後者から得られた知見
を前者で適用したとき我々は極めて強力な手段を手
にするのです…」*2 彼の名はアンドレ・ヴェイユ。
後にリーマン予想*3の類似から有限体上の多様体の
ゼータ関数に関する驚くべき予想を提唱し、現代数
学に至るまで絶大な影響力を及ぼした人物である。

1.ヴェイユの哲学

方程式を研究する一つの方法は方程式を図形ととらえることで
ある。例えば、y = x2 という方程式を考えよう。中
学生の時にこの方程式は放物線を表すことを習った
はずである。放物線ととらえれば図形なので、幾何
学的なアプローチが可能になってくる。この考えの
もと、多変数連立方程式を幾何学的にとらえようと
するのが代数幾何学と言われる数学分野である。

代数幾何学は様々な数学の交差点に位置
している。代数多様体があれば、その整数解ででき
る図形を考えることができる。この整数解を研究す
るのは数論である。一方で代数多様体の複素数解で
できる図形を考えることができる。こうすると複素
幾何学と結びつく。

代数幾何という同じ土台にのっていながら全く違
う世界。しかし、これらの世界の間にも我々の感覚
を超える関係、類似、があり、上の図2のように三
位一体で考えたとき数学の真実にたどり着けるとい
うのがヴェイユの哲学(この哲学を主張するのは彼
が初めてではないと彼自身断りを入れている)であ
る。
0343現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 10:51:33.27ID:3+lYjsf1
>>341
これだから、おっちゃんがすき

>時枝問題の答えは 1-ε

時枝>>3 「めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.」

だな

1.100列で、確率99/100=1- 1/100と書ける
2.n列で、確率(n-1)/n=1- 1/nと書ける
3.nを大きく取ると、1/nはどんどん小さくなる。そこで、ε=1/nと書き直す。すると、確率 1- ε と書ける

単純な理解で良いと思う
0344132人目の素数さん垢版2017/01/07(土) 11:28:55.75ID:s9wNyUJV
>>343
>で
>1.100列で、確率99/100=1- 1/100と書ける
>2.n列で、確率(n-1)/n=1- 1/nと書ける
>3.nを大きく取ると、1/nはどんどん小さくなる。そこで、ε=1/nと書き直す。すると、確率 1- ε と書ける
>
>単純な理解で良いと思う
それなら、可算無限個のときのことを考えるには n→+∞ とすればいいことは分かるな。
で、n→+∞ とすると 1/n→+0 だから ε→+0 とすればいいこと位分かるだろう。
半年近く前から、スレ主はそのことを私に何回もいわせていたんだよ。
0345現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 11:33:14.00ID:3+lYjsf1
前スレ 関連
687 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/31(土) 23:21:19.64 ID:VK/jj9Lp
>>519 関連
http://www.numse.nagoya-u.ac.jp/PFM/Calc_Theory.htm
計算理論 | 名古屋大学大学院工学研究科 マテリアル理工学専攻 小山研究室(計算組織学研究グループ):
http://www.numse.nagoya-u.ac.jp/PFM/docs/mathmatics/Differential_Eq.pdf
数学関連 偏微分方程式 by T. Koyama
(抜粋)
P19 付録

まず、正則であることから、コ−シ−・リ−マンの偏微分方程式(x方向とy方向からへ近づけた場合の極限値が、において一致しなくてはならない条件から導かれる関係式)が成立する。

コ−シ−・リ−マンの偏微分方程式 : ∂u/∂y=?∂v/∂y, ∂u/∂y=∂v/∂y

なお、コ−シ−・リ−マンの偏微分方程式は、熱力学の分野ではマックスウェルの関係式として良く知られている。
すなわち、多変数関数における微分可能条件(微分したい位置において極限が存在する条件)から、一般的にコ−シ−・リ−マンの偏微分方程式は導かれ、熱力学では変数として、温度、エントロピ−、体積、圧力、濃度、化学ポテンシャル等が取られるが、複素関数論では、複素平面状のx,yの2変数が取られていると解釈できる。

https://ja.wikipedia.org/wiki/%E3%83%9E%E3%82%AF%E3%82%B9%E3%82%A6%E3%82%A7%E3%83%AB%E3%81%AE%E9%96%A2%E4%BF%82%E5%BC%8F
(抜粋)
マクスウェルの関係式(マクスウェルのかんけいしき、英: Maxwell relations)とは、熱力学における温度、圧力、エントロピー、体積という4つの状態量の間に成り立つ関係式。
ジェームズ・クラーク・マクスウェルによって導出された。これらの関係式によって、測定が困難なエントロピーの変化量を、圧力、温度、体積の変化という、測定がより簡単な量で置き換えることができる[1]。

導出
マクスウェルの関係式は、内部エネルギー U、ヘルムホルツエネルギー F、ギブズエネルギー G、エンタルピー H の4つの熱力学ポテンシャルにおいて、2階偏導関数が連続で偏微分の順序が交換できるとすれば導かれる。
0346現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 11:38:37.11ID:3+lYjsf1
>>344
つー>>335

>それなら、可算無限個のときのことを考えるには n→+∞ とすればいいことは分かるな。
>で、n→+∞ とすると 1/n→+0 だから ε→+0 とすればいいこと位分かるだろう。
>半年近く前から、スレ主はそのことを私に何回もいわせていたんだよ。

それで無問題だ! 同意見だよ。 だが、それなら
>>341
「標準的なZFCでの確率論で考えたときの時枝問題の答えは1である。
では、何故記事では時枝問題の答えが「1-ε」と書かれていたのか? という疑問が生じる。
通常は標準的なZFCでの確率論で考えて時枝問題の答えは「1」と考えるのに、
εの説明も記事では書かれてなく時枝問題の答えを「1-ε」と書くことは不自然である。
記事を書く側や印刷する出版社の人にとっても「1」を「1-ε」と書くのは不自然である。
それ程不自然な書き方である。他に合理的な理由がすぐには思い当たらず、
記事の「1-ε」は「1」の間違いと考えるのが自然である。
「1」を「1-ε」と見なして考えていることが、スレ主が標準的なZFCでの確率論と、
ゲーム論的確率論とを混同して考えていることの1つの証拠だと思われる。」

は、なんだね?
独り言か?
何が言いたいんだ?
0347132人目の素数さん垢版2017/01/07(土) 11:57:34.26ID:s9wNyUJV
>>347
>「1」を「1-ε」と見なして考えていることが、スレ主が標準的なZFCでの確率論と、
>ゲーム論的確率論とを混同して考えていることの1つの証拠だと思われる。」
という書き方からも分かるように、根拠のない主張だから、
ゲーム論的確率論で考えたときのことは、T氏などの他人と議論してくれ。
私には、ゲーム論的確率論で考えたときの時枝問題の答えは分からない。
もしかしたら本当に 1-ε だったりするかも知れないぞ。
0349現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:19:00.07ID:3+lYjsf1
>>345 関連

と言っても、期待した内容とは違うが、非常に面白文献だね。”対称系の変換物理学において,その理論の根幹を成すのは“重力を介して事象を眺める” というプロセスである.”か・・
https://www.researchgate.net/publication/297738858_Transformation_Physics_and_Camouflage_in_Japanese
https://www.researchgate.net/profile/Tomohiro_Amemiya2/publication/297738858_Transformation_Physics_and_Camouflage_in_Japanese/links/56e2a05b08aebc9edb1b91d7.pdf?origin=publication_detail
招待論文
変換物理学とカモフラージュ 雨宮智宏†a) 瀧雅人††b) 金澤徹† 平谷拓生† 荒井滋久† 電子情報通信学会論文誌C Vol. J99?C No. 4 pp. 67?83 c一般社団法人電子情報通信学会2016
† 東京工業大学量子ナノエレクトロニクス研究センター †† 理化学研究所理論科学連携研究推進グループ
(抜粋)
あらまし2006 年にScience 誌から発表された光学迷彩の理論は,発表と同時に様々な物理現象に応用され,
今や世界的な発展を遂げている.光,流体,音,そして熱,それぞれの迷彩を作り出す際に,理論の根幹を成す
のは“重力を介した物理現象の置き換え” である.本論文では,それらを「変換物理学」と総称し,マイルストー
ンとなった論文を辿りながら,各種迷彩の設計理論に言及する.併せて,近年になって提案された,変換物理学
の発展系ともいえる「非対称光学迷彩」についての解説も行う.

1. まえがき
1972 年,プリンストン高等研究所のラウンジでの
午後のお茶会の最中,当時の素粒子物理学の世界的権
威であったフリーマン・ダイソン博士はミシガン大学
から来ていた若き数学者ヒュー・モンゴメリー博士と
話をする機会を得た.数学者に全く興味のなかったダ
イソンだったが,モンゴメリーとはこのときが初対面
ということもあり,社交辞令の意味も込めて,至極一
般的な話でその場をつくろうことにした.
「モンゴメリーさんはどのような研究をなさっている
のですか?」
科学者同士が時間を費やすには,鉄板の話題である.
「ゼータ関数のゼロ点の間隔を調べております.最近

つづく
0350現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:19:46.75ID:3+lYjsf1
つづき

の研究で,このような式になることが分かってきま
した.」
モンゴメリーはメモ用紙を取り出すと,おもむろに数
式を書き始めた.

(sin πu/πu)^2 ・・・(1)

モンゴメリーの研究は,数学最大の未解決問題とも言
われるリーマン予想において,素数が出現する間隔を
明らかにしたものである.数学者なら飛び上がって喜
びそうな話題も,物理学者であるダイソンにとっては
全く興味のないものであった.内心では「面倒な事を
聞いてしまった」と思いながらも,モンゴメリーが書
いたそのメモを覗き込んだ瞬間,ダイソンの顔色が豹
変した.
「これは驚きだ! 最近,私が導出した原子核のエネル
ギー間隔の式と全く同じじゃないか!」
ウランなど重い原子核の持てるエネルギー数値は飛び
とびの離散値であることが知られているが,その値を
求める式の形が,モンゴメリーが導出した式と全く同
じというのである.「物理学における原子核」と「数学
における素数」が結びついた歴史的瞬間であった[1].

つづく
0351現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:20:19.43ID:3+lYjsf1
つづき

「ある事象が,直接的には全く関係のない別の分野
の事象と結びついている」といったことは科学の歴史
において往々にして起こり得る.上記以外にも,物理
学におけるゲージ理論と数学におけるファイバー束の
接続問題が等価であったり,経済学において派生証券
のプレミアムを決定するブラック・ショールズの方程
式が熱力学における拡散方程式と繋がっているなど,
例を挙げれば枚挙に暇がない.異分野間のそうしたつ
ながりは,ときに重大な発見に結びついたり,あるい
は難問の解決をみたりする.

近年盛んに研究されているカモフラージュ(camouflage)
の理論もその代表例といえるだろう.光,流体,
音,そして熱,それぞれのカモフラージュを作り出す
上で,根幹となっているのは“重力を介した物理現象
の置き換え” である.それらの理論は「変換○○(○
○には,光学,音響学,熱力学などの各種物理現象名
が入る)」と呼ばれているが,本論文ではそれらを総
称して,変換物理学(transformation physics) と
する.以降の節では,変換物理学の概要,及びそれを
用いたカモフラージュ理論について著者らの研究も交
えながらまとめさせて頂ければと思う.

つづく
0352現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:21:21.98ID:3+lYjsf1
つづき

4. アナログ重力,流体,ブラックホール
4. 1 アナログ重力
これまで特定の光学の系が,曲がった空間の物理と
して書き直すことができることを見てきた.じつはこ
のような物理現象の書き換えは偶然に可能になったも
のではなく,その背後にはアナログ重力(analogue
gravity) の考え方がある.アナログ重力とは,一言
で言うと様々な波動現象が,重力の物理として書き換
えられる,という理論的な提唱である.もう少し定量
的に言うと,ある物理系での波動方程式が,曲がった
空間における波動方程式に数学的に書き直すことがで
きるのである.

6. 変換熱力学と熱迷彩

つづく
0353現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:21:40.92ID:3+lYjsf1
つづき

8. むすび
光,流体,音,そして熱,それぞれの迷彩を作り出
すための理論を解説してきたが,それぞれのマイルス
トーンとなった論文を辿ることで,変換物理学の意図
するところを多少なりお伝えできたとすれば幸いであ
る.対称系の変換物理学において,その理論の根幹を
成すのは“重力を介して事象を眺める” というプロセ
スである.カモフラージュに必要な媒質のパラメータ
を直接的に求めるのではなく,別の物理現象を介して
全体を眺めることで,それが容易になることが変換物
理学の強みとなる.
また,それと併せて,近年になって提案された非対
称系の変換光学についての解説も行った.この理論は
時間反転対称性を破ることができるという点において,
従来の理論とは一線を画している.同様に,流体,音
などについても非対称の変換物理学が存在する可能性
がある(図1 を再度確認のこと).この場合,電子の
動きではなく,より汎用性のある全く別の物理現象に
置き換えて考える必要があるかもしれない.これにつ
いても,近い将来,新たな進展があるだろう.
また,カモフラージュに限らず,変換物理学に似た
ようなことは様々な分野に存在する.近年発展が著し
いトポロジカル絶縁体などはその典型であり,工学に
おける固体電子物性と数学における位相幾何学が上手
く結びついた例である.今後も同じような流れで分野
間に新しいブレイクスルーが起きることを期待したい.
多くの研究が成熟しつつある現代において,そのよう
な異分野間の繋がりにこそ,今後の科学の発展はある
のではないだろうか.

(引用終り)
0354現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:32:51.43ID:3+lYjsf1
>>347-348

これだから、おっちゃんがすき

おれの考えは、>>343に書いた通り

1.100列で、確率99/100=1- 1/100と書ける
2.n列で、確率(n-1)/n=1- 1/nと書ける
例えば、2列で、確率1/2
例えば、3列で、確率2/3
 ・
 ・
 ・
例えば、1000列で、確率999/1000
例えば、10000列で、確率9999/10000
 ・
 ・
 ・
3.nを大きく取ると、1/nはどんどん小さくなる。そこで、ε=1/nと書き直す。すると、確率 1- ε と書ける

標準的なZFCも、ゲーム論的確率論も、くそもねー
上記、1〜3で、選択公理は使っていないよ。そんなこととは無関係に、こう(上記の)解釈できるよと
だから、数学の問題としては、100列で、確率99/100 ・・・ n列で、確率(n-1)/nが導けるか?
確率 1- εとかくか、n→∞で、 lim 1- ε=1と書くか、そんなことは些末なはなし
0355132人目の素数さん垢版2017/01/07(土) 12:42:29.39ID:s9wNyUJV
>>354
非可測集合の存在性を認めるときに選択公理が必要になる。
時枝記事では非可測集合について言及しているが。
0356現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:44:09.75ID:3+lYjsf1
>>345 関連

小山先生
>多変数関数における微分可能条件(微分したい位置において極限が存在する条件)から、一般的にコ−シ−・リ−マンの偏微分方程式は導かれ、熱力学では変数として、温度、エントロピ−、体積、圧力、濃度、化学ポテンシャル等が取られるが、複素関数論では、複素平面状のx,yの2変数が取られていると解釈できる。

この一文に導かれて、キーワード
「熱力学 マクスウェルの関係式 コ−シ− リ−マン 複素関数」
で検索をかけると、>>349ヒット

予想外だった
熱力学 マクスウェルの関係式→コ−シ− リ−マン 複素関数 の導出文献が出ないかと思ったが
>>349は、電磁気学のマクスウェルらしい

瀧雅人先生、>>83,>>91 AGT対応で既出
AGT対応と>>349は関連しているのだろうか? まだ読んでないが・・
0357現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:53:54.43ID:3+lYjsf1
>>355

これだから、おっちゃんがすき

>>354
1.100列で、確率99/100=1- 1/100と書ける
2.n列で、確率(n-1)/n=1- 1/nと書ける
例えば、2列で、確率1/2
例えば、3列で、確率2/3
 ・
 ・
 ・
例えば、1000列で、確率999/1000
例えば、10000列で、確率9999/10000
 ・
 ・
 ・
3.nを大きく取ると、1/nはどんどん小さくなる。そこで、ε=1/nと書き直す。すると、確率 1- ε と書ける
(引用終り)

ここまでは、有限の世界なんだ
例えばなんでも良いが、Dr.トランプに因んで、100人で(普通の)ルーレットゲームを100回したとする
100人で偏りがない前提なら、ある人が1番(トップ賞)になる確率は、1/100。1番(トップ賞)にならない確率は、99/100。確率の和は1

「偏りがない前提」は、上記を何度も繰り返せば良い。これぞ大数の法則なり
そして、”(普通の)ルーレットゲームを100回”(有限)という前提を置いたことで、すその軽い確率分布の仮定を満たすのだよ
0358現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 12:57:50.88ID:3+lYjsf1
Dr.トランプは、下記Dr.スランプのパロな(ダジャレ解説)

https://ja.wikipedia.org/wiki/Dr.%E3%82%B9%E3%83%A9%E3%83%B3%E3%83%97
『Dr.スランプ』(ドクタースランプ、Dr.SLUMP)は、鳥山明による日本の漫画作品。
(抜粋)

ドラゴンボールへの出演
鳥山の次作『ドラゴンボール』でも一時期、ペンギン村が舞台となる話がある(其之八十一 - 八十三)。『Dr.スランプ』のキャラクターも出演し、話の大筋にも絡む。
0360132人目の素数さん垢版2017/01/07(土) 13:03:48.88ID:s9wNyUJV
>>357
>「偏りがない前提」は、上記を何度も繰り返せば良い。これぞ大数の法則なり
>そして、”(普通の)ルーレットゲームを100回”(有限)という前提を置いたことで、
>すその軽い確率分布の仮定を満たすのだよ
これまでの議論では確率分布など考える必要性はないとされていたが。
何いっているんだ?
0361現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 13:12:51.48ID:3+lYjsf1
>>356

>瀧雅人先生、>>83,>>91 AGT対応で既出
>AGT対応と>>349は関連しているのだろうか? まだ読んでないが・・

>>349のPDFの後ろに、筆者紹介があるね

瀧雅人
2004 年3 月東京大学理学部物理学科卒,
2009 年3 月同大大学院理学系研究科物理
学専攻修了,博士(理学).同年4 月より
京都大学基礎物理学研究所研究員を経て,
2013 年4 月より理化学研究所理論科学連
携研究推進グループ専任研究員.現在,5-D
N=1 超対称ゲージ理論,Alday-Gaiotto-Tachikawa (AGT)
対応の研究に従事.

で、”Alday”で文書内検索かけたがヒットせず

但し、「現在,5-D N=1 超対称ゲージ理論,Alday-Gaiotto-Tachikawa (AGT) 対応の研究に従事.」という自己紹介だから
無関係でもないんだろうね
0362132人目の素数さん垢版2017/01/07(土) 13:16:43.62ID:s9wNyUJV
>>357
ついでに、>>2
>幾何的には商射影 R^N→ R^N/〜の切断を選んだことになる.
>任意の実数列S に対し,袋をごそごそさぐってそいつと同値な
>(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ
の部分でも選択公理は使われているかも知れないな。
0363現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 13:17:29.76ID:3+lYjsf1
>>360

これだから、おっちゃんがすき

つー>>326-327

>これまでの議論では確率分布など考える必要性はないとされていたが。

高校数学の範囲だな
裾の重い分布は、高校数学の外だよ〜。高校数学では、大数の法則成立かつ中心極限定理成立を学ぶがね〜
0365132人目の素数さん垢版2017/01/07(土) 14:53:55.29ID:s9wNyUJV
>>363-364
やはり、ZFCの中で考えることになるじゃないか。ちなみに、>>343
>>時枝問題の答えは 1-ε

>時枝>>3 「めでたく確率99/100で勝てる.
>確率1-ε で勝てることも明らかであろう.」

>だな
>で
>1.100列で、確率99/100=1- 1/100と書ける
>2.n列で、確率(n-1)/n=1- 1/nと書ける
>3.nを大きく取ると、1/nはどんどん小さくなる。そこで、ε=1/nと書き直す。すると、確率 1- ε と書ける
のような書き方は証明(この場合は解答)の体裁をなしていないのに、
選択公理はいらないとかいって何をいっているんだよ。
そもそも、>>2の R^N に同値関係〜を定義するところで選択公理が必要になる。
0366132人目の素数さん垢版2017/01/07(土) 15:05:00.46ID:l9ycOFYj
>>324
3. 1) スレ主は同じ類に属する二つの数列をランダムに選んで比較したときの決定番号について
論じていることになるが出題者は任意の数列を自分で選んで出題できる
任意の数列snに対して箱に入れる(or入れた)数字からなる数列をbnとすると出題者は何らかの
方法を用いて{bn-sn}=(0, 0, ... , 0, ... )と必ずできる

少なくとも決定番号の手前までは出題者は自分で箱に入れる数字を選ばないといけないので
完全代表系を最初に1組用意して任意の無限数列を選んで出題できることを仮定すれば
ある無限数列Snを考えた時点で決定番号も(Sn, d)のように同時に求めていることになる

2) 他の箱に情報を与えないことを確定させるために選択公理は用いないで個別に(a1から順番に)
直接全ての数字を指定するということ

3) 2)の方法がダメであれば出題者が扱える無限数列は限定される
もっとも簡単な例は(a1, a2, ... , an, 0, 0, ... )や(a1, a2, ... , 1, 1, ... )などであって
同じ数字をならべれば良いがそれらの箱は当然同じ数字であるという情報を共有している

同値関係を導入して代表元が(r1, r2, ... )_kのように書ければ有限数列(a1, a2, ... , an)の
後ろにkをならべてkを数字のように扱いa1, a2, ... , k, k, ... とすることで無限数列
(a1, a2, ... , an, r(n+1), r(n+2), ... )とみなすことが可能になる
出題者は有限数列と(極限値となる)無限数列が属する類の情報(有限個)を指定することで
無限数列の全ての数字を指定したことになる
ただしr(n+1), r(n+2), ... は同じ代表元に由来するという情報を共有していることになる
0367現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 17:25:50.08ID:3+lYjsf1
>>365

これだから、おっちゃんがすき

自分>>360 で、「これまでの議論では確率分布など考える必要性はないとされていたが。何いっているんだ?」と言ったろ?

でな、>>354から引用すると

1.100列で、確率99/100=1- 1/100と書ける
2.n列で、確率(n-1)/n=1- 1/nと書ける
例えば、2列で、確率1/2
例えば、3列で、確率2/3
 ・
 ・
 ・
例えば、1000列で、確率999/1000
例えば、10000列で、確率9999/10000
 ・
 ・
 ・
3.nを大きく取ると、1/nはどんどん小さくなる。そこで、ε=1/nと書き直す。すると、確率 1- ε と書ける

標準的なZFCも、ゲーム論的確率論も、くそもねー
上記、1〜3で、選択公理は使っていないよ。そんなこととは無関係に、こう(上記の)解釈できるよと
だから、数学の問題としては、100列で、確率99/100 ・・・ n列で、確率(n-1)/nが導けるか?
確率 1- εとかくか、n→∞で、 lim 1- ε=1と書くか、そんなことは些末なはなし
(引用終り)

”n列で、確率(n-1)/n=1- 1/nと書ける”は、日常ほとんどの場面で成り立つんだ
ここは、時枝マジックの手品のタネの一つでね

日常ほとんどの場面で成り立つから、時枝>>2-3でも成り立つと錯覚させている

そこを詳しく説明すると、前>>357ではルーレットゲームにしたが、話を単純にするために、1〜100の数字を書いたカードを裏向にして、100人でカードを引いて、出た数が大きい人が勝ちとしよう
100を引いた人が1番の勝ちで、99が2番・・・、1が100番だ
ある人が、1番の勝ちになる確率は1/100で、1番の勝ちにならない確率は99/100だ。和は、1だ。

ルーレットだろうが、カードだろうが、サイコロだろうが、関係ない
ただ、裾の軽い確率分布なら、大数の法則と中心極限定理が成立するから、「1番の勝ちになる確率は1/100で、1番の勝ちにならない確率は99/100だ。和は、1」が成り立つ

そして、上記はすべて有限だから、選択公理は必要ない
0368現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 17:33:19.86ID:3+lYjsf1
>>366
ID:l9ycOFYjさん、悪いが、言っていることが理解できない
下記スレで、Tさんの手伝いをしてやってくれ

現代数学の系譜11 ガロア理論を読む28
http://rio2016.2ch.net/test/read.cgi/math/1483314290/

数学は、ディベートじゃない>>14
おれは頭が悪いから理解できないだけだと思う。Tさんが理解してくれれば、そして、あなたが正しければ、それで良い。それが数学だ

繰り返すが、数学は、ディベートじゃない>>14
0369現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 17:35:52.96ID:3+lYjsf1
リンク訂正再投稿

>>366
ID:l9ycOFYjさん、悪いが、言っていることが理解できない
下記スレで、Tさんの手伝いをしてやってくれ

現代数学の系譜11 ガロア理論を読む28
http://rio2016.2ch.net/test/read.cgi/math/1483314290/

数学は、ディベートじゃない>>289
おれは頭が悪いから理解できないだけだと思う。Tさんが理解してくれれば、そして、あなたが正しければ、それで良い。それが数学だ

繰り返すが、数学は、ディベートじゃない>>289
0370現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 18:01:14.61ID:3+lYjsf1
>>368-369 補足
回答になってないが、まず、前スレより再録

334 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/17(土) 11:39:43.39 ID:sIK9xcpB
>>183-184 にもどる
https://ja.wikipedia.org/wiki/%E5%BE%AA%E7%92%B0%E5%B0%8F%E6%95%B0
循環小数
ロバートソン(J.Robertson,1712-1776)の方法
循環小数
a + b ( 10^ n /(10^ n - 1) )

b ( 10^ n /(10^ n - 1) )が、循環節
aが、冒頭の循環していない有限小数部分
(引用終り)

時枝>>2の数列しっぽ同値類で、ロバートソンの方法類似の表現が考えられるね

代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・)
ここで、同じ類の元を一つ取る
r'= r(s')= (s'1,s'2,s'3 ,・・・,s'm ,・・・)

しっぽの”・・・)”の部分は、同値類なので同じ(後述の差を取ると、なくなる部分)

いま、簡単に n<mとしよう
そうして、数列の差を考える

r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ,0,0,0・・・)

しっぽの”0,0,0・・・)”の部分は、しっぽの同値類なので、差を取ると0になる。そこで、これをなくなると見なす

Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) として
Δrは、個別には、有限の長さの数列になり、ロバートソンの方法類似の表現で
r'= Δr +r
とできる

Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに上限はなく、無限大の極限を考える必要がある
それは>>188と同じだ

かつ、大きな違いは、
循環小数では、箱の数字は0〜9の10通りだが、時枝やSergiu Hart氏では、箱の中は任意の実数だから、card(R)つまり(非加算)無限大通りになる
0371現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 18:12:52.47ID:3+lYjsf1
>>370 つづき

要約すると

ロバートソン(J.Robertson,1712-1776)の方法
循環小数
a + b ( 10^ n /(10^ n - 1) )

にならって、R^Nの同値類を考えて
代表r= r(s)= (s1,s2,s3 ,・・・,sn ,・・・)
ここで、同じ類の元r'を一つ取る
r'= r(s')= (s'1,s'2,s'3 ,・・・,s'm ,・・・)

いま、簡単に n<mとしよう

差r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ,0,0,0・・・)
からΔr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) を作る
(要約おわり)

ここで、発想を逆転させて、
任意の同値類の元r'は、有限の長さmの数列Δr = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) と代表数列rとの和で表されると考えることができる
ここで、簡単な表記として、Δr = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) =(d1,d2,d3 ,・・・,dm ) と書こう
つまり、Δr =(d1,d2,d3 ,・・・,dm )

だから、ロバートソン(J.Robertson,1712-1776)の方法の類似で
任意の元r'は
r'= Δr + r(s) とできる
0372現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 18:32:32.91ID:3+lYjsf1
>>371 つづき

r'= Δr + r(s) の表現から、
決定番号は、m+1 (∵ 簡単に n<mと仮定しているから)

mは有限ではあるけれども、上限はない(非有界)
だから、関数f(m)=m+1 の値域は、[2,∞) (もし代表元同士の差を考えれば、[1,∞)だが些末なことだ)

ここで、時枝>>2-3やHart氏>>47のgame1のように、他の数列の決定番号から、
例えば>>3に記載のように、最大値Dを得て、D> m+1であったとして、(D+1) 番目から先の箱だけを開け

r(s) が分かっているから、D 番目が分かると
だが、お気づきのように、この方法では、決して、Δrの部分を当てることができないことが分かる

これも、時枝マジックの手品のタネの一つ(一見どの箱でも当てられるように>>2-3に書かれているが、そうではないのだ)
0373132人目の素数さん垢版2017/01/07(土) 19:24:18.50ID:l9ycOFYj
>>371-372
> ここで、発想を逆転させて、
> Δrの部分を当てることができないことが分かる

上の書き込みや過去スレに既にあるアルよ

>>289
> 中国人が得意なんだが
0374現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 20:03:18.13ID:3+lYjsf1
>>372 つづき

過去
>>295-302に書いたが

Sergiu Hart 氏 game2でも、「当てられるのは、循環節にすぎない」>>298
と同じ事が、時枝>>2-3でも起こっているってことだ

それから、Sergiu Hart 氏 game2の循環小数モデルで、ミニモデルとして、区間[0,1)内の有限小数で、少数第5位までの数 a=0.a1a2a3a4a5 として考えた>>296

>>297辺りに書いているが、a=0.a1a2a3a4a5 を場合の数として組み合わせを考えると、a5 ≠0 つまり、少数第5位まで存在する場合が圧倒的なのだ
だから、決定番号d=6となる場合が圧倒的

ここで、少数第5位を少数第n位として、n→∞を考えることができる。これが、>>326-327に書いた、裾が超重い分布になるんだ

一方、ここで10進数を考えているが、P進数を考えることもできる
10進数だと、組み合わせは10^nで増えるが、P進数だとP^nで増える。Pは、いくらでも大きく取ることができる。Pが大きくなると裾はますます重くなる

さて、P→∞の類推として、R^Nを考えてみよう
P進数なら、箱に入る数は1〜Pの整数で、P通り
R^Nの前に自然数の集合N^Nを考えると、箱に入る数は[1,∞)の自然数で、加算無限通り (P→∞の極限がこれか)
R^Nなら、箱に入る数は[0,∞)の実数で、非加算無限通りだ

ヴィタリだ、非可測だという以前に、加算無限通りとか非加算無限通りとか、どう扱うのか?

まとめると、
10進数で考えても、少数第5位までで、決定番号d=6となる場合が圧倒的
P進数で、Pを大きくすると、その傾向はもっと著しくなり、自然数の集合N^Nや時枝のR^Nなら、確率的には、決定番号d=6は出ないという結論だろう

それで、数列の長さを第5位からどんどん長くすると、決定番号dはどんどんしっぽの先へ行き、頭の数が出る確率は0(ゼロ)
これから言えることは、100列だから確率99/100は簡単には導けないよと(無理でしょ)
0376132人目の素数さん垢版2017/01/07(土) 20:36:04.47ID:d22e2M+U
High level people almost has gone due to his ridiculousness.
0381現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 21:43:54.50ID:3+lYjsf1
>>356 関連

>熱力学では変数として、温度、エントロピ−、体積、圧力、濃度、化学ポテンシャル等が取られるが、複素関数論では、複素平面状のx,yの2変数が取られていると解釈できる。

”熱力学関係式の簡単な誘導法 〜熱力学の四角形を用いて〜”がなかなか良いわ。ここまで詳しい本は少ない。もっとも数学科では使わないし、偏微分の記号が数学系とちょっと違う
むかし、熱力学を習ったとき、とまどった。その下2つは付録
http://www.ach.nitech.ac.jp/~physchem/taga/square%20low%20of%20TD.pdf
熱力学関係式の簡単な誘導法 〜熱力学の四角形を用いて〜
(化学と教育、47(3)、p196〜p199を修正したもの)
名古屋工業大学 しくみ領域
多賀圭次郎

http://www.ach.nitech.ac.jp/~physchem/taga/thermal.pdf
やさしく図式化した大学の熱力学
1.熱平衡とエントロピー変化
名古屋工業大学 応用化学科
多賀圭次郎

http://www.ach.nitech.ac.jp/~physchem/taga/mechanical.pdf
やさしく図式化した大学の熱力学
2.力学的平衡とエントロピー変化
名古屋工業大学 応用化学科
多賀圭次郎

http://www.ach.nitech.ac.jp/%7Ephyschem/taga/0top.html
名古屋工業大学大学院 界面化学講座 多賀研究室
0382現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 21:52:03.06ID:3+lYjsf1
>>381 関連

熱力学は好きでね、久保 亮五先生の『大学演習 熱学・統計力学』を買ったけど、むずかった。ほとんど書棚の肥やしだった
https://ja.wikipedia.org/wiki/%E4%B9%85%E4%BF%9D%E4%BA%AE%E4%BA%94
久保 亮五(くぼ りょうご、1920年2月15日 - 1995年3月31日)は、日本の物理学者。東京大学、京都大学、慶應義塾大学で教授、パリ大学、シカゴ大学、ペンシルベニア大学、ニューヨーク州立大学で客員教授を務めた。

統計物理学、物性物理学の分野で国際的に知られた[1]。 特に線形応答理論の構築に貢献し、彼の提案した理論は「久保理論」の名でも呼ばれている。 1997年に生前の業績を記念して井上科学振興財団が久保亮五記念賞を創設した。

編著
『大学演習 熱学・統計力学』

参考文献
「久保亮五」(上山明博 著『ニッポン天才伝』朝日選書,2007年)

https://en.wikipedia.org/wiki/Ryogo_Kubo
Ryogo Kubo

In the early 1950s, Kubo transformed research into the linear response properties of near-equilibrium condensed-matter systems, in particular the understanding of electron transport and conductivity, through the Kubo formalism, a Green's function approach to linear response theory for quantum systems.
In 1977 Ryogo Kubo was awarded the Boltzmann Medal for his contributions to the theory of non-equilibrium statistical mechanics, and to the theory of fluctuation phenomena.
He is cited particularly for his work in the establishment of the basic relations between transport coefficients and equilibrium time correlation functions: relations with which his name is generally associated.
0383現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 22:51:42.74ID:3+lYjsf1
>>352

> 4. アナログ重力,流体,ブラックホール

ここに、Unruh 先生が登場しているので、リンクと引用をアップしておく

https://en.wikipedia.org/wiki/W._G._Unruh
William George Unruh (born August 28, 1945) is a Canadian physicist at the University of British Columbia, Vancouver, who described the hypothetical Unruh effect in 1976.

https://en.wikipedia.org/wiki/Unruh_effect
https://ja.wikipedia.org/wiki/%E3%82%A6%E3%83%B3%E3%83%AB%E3%83%BC%E5%8A%B9%E6%9E%9C
ウンルー効果(ウンルーこうか 英: Unruh effect)またはフリング・デイビース・ウンルー効果(フリング・デイビース・ウンルーこうか Fulling?Davies?Unruh effect)とは、慣性系にある観測者が何も観測しないような環境であっても、加速系にある観測者は黒体放射を観測するであろうと予言する、仮説上の効果である。
すなわち、加速系においては背景がより暖かく見えることが予言される。レイマンの用語でいえば、何もない空間で温度計を振ると、他のあらゆる温度への影響を差し引いても非零の温度を指し示すはずであるとも言い換えられる。慣性系における基底状態は、加速系では非零の温度と熱平衡にあるかのように観測される。

ウンルー効果は、1973年にスティーブン・フリングにより、1975年にポール・デイビース(英語版)により、1976年にウィリアム・ジョージ・ウンルーにより初めて記述された[1][2][3]。現状では、ウンルー効果が既に観測されたことがあるかについては明確ではなく、論争が続いている。

つづく
0384現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 22:52:31.89ID:3+lYjsf1
つづき

説明

ウンルーは真空を表わす表式が、観測者の時空上における運動経路に依存することを理論的に証明した。加速度系からみれば、慣性系からみた真空は多数の粒子が熱平衡を達成している状態、すなわち特定の温度の気体のようにみえる[6]。

最初は、ウンルー効果が直感に反するものであるように感じられるだろうが、「真空」という言葉をある方法で解釈することにより意味が通じてくる。

現代的な用語法では、「真空」という言葉は「何もない空間」と同義語ではない。真空状態でさえ、空間は宇宙を構成している量子化された場で満たされているのである。真空とはそれらの場が「可能な限り」低いエネルギーをもつような状態であるにすぎない。

どんな量子化された場のエネルギー状態も、ハミルトニアンにより定義される。ハミルトニアンは局所的条件に基くので、時間座標を含んでいる。特殊相対性によれば、互いに動いている二人の観測者は異る時間座標を用いる必要がある。
もし相対運動が加速度運動ならば、共有できる座標系は存在しない。したがって、観測者によって真空は異った見え方をすることになる。

つづく
0385現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 22:53:10.27ID:3+lYjsf1
つづき

ある観測者にとっての真空が、別の観測者の観測しうる量子状態空間内に存在しない場合もある。専門的用語では、これは二つの真空がユニタリ的に非等価な量子場の正準交換関係の表現であるために起きる。
その理由は、互いに加速している観測者のそれぞれ選んだ座標系を大域的に関連付けられるような座標変換を定義することが不可能であるためである。

加速している観測者はみかけの事象の地平線を知覚する(リンドラー座標の項を参照)。ウンルー輻射の存在は、ホーキング輻射と同じ概念的枠組みによりこのみかけの事象の地平面と関連づけることができる。一方、ウンルー効果の理論は「粒子」が何で構成されるかの定義が観測者の運動に依存することを説明する。

自由場に対して生成消滅演算子を定義する前には、場を正と負の周波数(英語版)成分に分解することが必要とされる。これは時間的キリングベクトル場を持つような時空上でのみ可能である。
この分解はデカルト座標系上とリンドラー座標系上とで異なる(ただしボゴリューボフ変換により関連付けられてはいる)。これにより、生成消滅演算子により定義される「粒子数」が二つの座標系の間で異る理由が説明できる。

リンドラー時空には地平面が存在し、また非極限ブラックホールの地平線は局所的にはリンドラー地平面と見做せる。したがって、リンドラー時空によりブラックホールおよび宇宙の地平面の局所的性質を記述することができる。したがって、ウンルー効果はホーキング輻射の地平面近傍における形式である。

(引用終り)
0386現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 23:12:10.65ID:3+lYjsf1
引っかかったので、貼っておく



http://ci.nii.ac.jp/els/110009574865.pdf?id=ART0010026004&;type=pdf&lang=en&host=cinii&order_no=&ppv_type=0&lang_sw=&no=1483797278&cp=
シュレーディンガー方程式の数理構造 檀 裕也 松山大学論集 22(1), 105-134, 2010

4 まとめ
本研究では,これまでの研究成果をベースに,近年の微細加工技術の実現に
よって明らかになってきた量子力学的な現象について調査するとともに,未だ
明らかになっていないシュレーディンガー方程式の数理構造の解明を目指し
た。数学的な立場からシュレーディンガー方程式の初期値問題を解析するとい
う点に重心を置き,波動関数の時間減衰など具体的な物理現象を含む形で,理
論を構築することができた。その際,一般の次元ユークリッド空間におけ
るシュレーディンガー方程式の初期値問題について,波動関数の存在と一意性
に関する議論を整理し,ポテンシャル項を付加した初期値問題だけでなく,場
の表現によるシュレーディンガー型方程式であってもエネルギー評価が容易に
導けることを指摘した。
一般に,波動関数のエネルギーを評価するとき,ポテンシャル項の計算で困
難が発生することが多い。そのため,ポテンシャル項のあるシュレーディンガ
ー方程式を解析するには,ポテンシャル項に対し一定の制約をつけなければな
らない。一方,自由場を記述するシュレーディンガー方程式のラプラス演算子
を変係数の二階微分項に置き換えると,計量行列の実対称性を仮定するだけ
で,波動関数のエネルギーを評価できる。すなわち,ポテンシャル項を計量行
列に変換し,初期値問題について議論できるようになる。
本研究は,量子コンピュータをはじめとする新しい量子技術に理論的基盤を
与えるなど,数理科学の分野における学術的な研究として重要な意義があると
考えられる。特に,ポテンシャル項を付け加えたシュレーディンガー方程式と
場の表現によるシュレーディンガー型方程式が同値となるための必要かつ十分
な条件を示した点はオリジナルである。

つづく
0387現代数学の系譜11 ガロア理論を読む垢版2017/01/07(土) 23:12:40.86ID:3+lYjsf1
つづき

場の表現によるシュレーディンガー方程式からポテンシャル項を導くことに
は成功した。しかし,ポテンシャル項を空間構造に置き換え,場の表現によっ
て同値のシュレーディンガー方程式を導くことは,=1の場合について証明
しただけであり,n=>2の場合は未解決である。通常のユークリッド空間を一
般化したリーマン空間における多様体を使って微分方程式を表現することがで
きると,方程式を変換して初期値問題などの議論を進めることができるため,
今後の課題として取り組みたい。

(引用終り)
0388132人目の素数さん垢版2017/01/08(日) 01:25:23.51ID:2yDUjjFF
>>374
> 100列だから確率99/100は簡単には導けないよと(無理でしょ)

問題点が分かりやすくなるので出題者がシッポが0の無限数列のみを自由に選んで出題する
ことを考えてみるとこれは「裾が超重い分布」から任意の決定番号を自由に取り出せることを
意味する
0389132人目の素数さん垢版2017/01/08(日) 03:49:45.66ID:Rad0Gs6w
>>367
>>379
おっちゃんです。
スレ主はしようもないと悟ったので、私もここから去るわ。
スレ主には付き合ってられん。
おっちゃんスレはあってもいいかも知れないな。
0391現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 07:24:12.89ID:Fnfn48Mf
>>389-390
おっちゃん、どうも。スレ主です。
そうか、それは残念だね

おっちゃんが、時枝記事擁護側にいて、いろいろ議論を引っかき回してくれることで、こちらは大いに助かった
ありがとう

今回も、時枝記事の手品のタネの重要ポイントを説明する機会を作ってくれた>>367
おっちゃんは、登場の最初から、私を助けてくれた。それには感謝している。ありがとうよ

去る者は追わず、来る者は拒まず。数学の議論は筋を曲げず
まあ、いつでも戻ってきてください

追伸
Tさんのスレ(下記)へ参加してやったらどうだ? さびれているから

現代数学の系譜11 ガロア理論を読む28
http://rio2016.2ch.net/test/read.cgi/math/1483314290/
0392現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 08:37:26.35ID:Fnfn48Mf
これ、検索でヒットしたので貼っておく。なかなか面白い

http://mathsoc.jp/publication/tushin/backnumber.html
「数学通信」バックナンバー

http://mathsoc.jp/publication/tushin/index-7-3.html
「数学通信」第7巻第3号 (2002年度)

http://mathsoc.jp/publication/tushin/0703/arai7-3.pdf
ルベーグ積分と面積0の不思議な図形たち 新井 仁之 (あらいひとし,東京大学大学院数理科学研究科)「数学通信」第7巻第3号 (2002年度)
(抜粋)
1 はじめに
本稿は,2001年12月23日と24日の二日間にわたって開催された第7回湘南数学セミナーでの講義の概要です.この講義では,「面積とは何
であろうか」という中学生でも理解できる問いかけからはじめ,前半ではいわゆるジョルダン測度の定義を変形したものを紹介しました.こ
の変形はルベーグ測度とジョルダンによる面積の定義の違いを浮き彫りにするために導入したもので,通常のジョルダン測度の定義と同値
になっています.さらにルベーグ測度の考え方をできるだけ丁寧に説き
ました.講義の後半では,ハウスドルフ測度,面積0のフラクタル図
形を動画を見せながら解説し,最後に掛谷間題に関連した動画・静止画
を用いて,ベシコヴィッチ集合の構成ならびに実解析学の未解決問題に
ついて説明しました.

6.掛谷間題
次の間題が現在専門家により研究されています.
[掛谷予想] 3次元掛谷集合のハウスドルフ次元は3か?
この間題は今のところ未解決です.現在,次のことは知られています.
定理9(ヴォルフ,1995) 3次元掛谷集合のハウスドルフ次元は少な
くとも5/2以上である.
掛谷予想は,実解析のいくつかの未解決問題と関連していることが
最近わかってきました.たとえば3次元空間において,
1)フーリエ変換のボッホナーリース総和法に関する問題が肯定的に
解ければ,掛合予想が肯定的に解ける(T.Tao,1999).
2)フーリエ変換の制限問題が肯定的に解ければ,掛谷予想が肯定的
に解ける(J・Bourgain,1991).
3)掛谷極大関数の評価に関する予想が肯定的ならば,掛谷予想
が肯定的に解ける(J・Bourgain,1991)・
etc.
これらの問題は,2変数関数の解析と3変数のそれとは違うことを
示しています.
0393現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 08:43:09.26ID:Fnfn48Mf
関連
掛谷問題のその後を検索して、下記ヒット。まだ未解決と思います。詳しくは、新井仁之先生へ

http://www.araiweb.matrix.jp/semi208/KakeyaProblem.html
WEB版 現代数学入門講座 Vol. 1 (2009年8月14日)
掛谷問題ショートコース
       東京大学 新井仁之
(抜粋)
掛谷問題

d 次元掛谷集合 (d>2) のハウスドルフ次元は何か?

d次元掛谷集合のハウスドルフ次元は d であるというのが大方の予想で,これは通常,掛谷予想と呼ばれています.

掛谷問題,掛谷予想は,解析学の多くの未解決問題と関連していることが,Taoらによって証明されています( [1], [2] 参照).
0394現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 08:52:56.86ID:Fnfn48Mf
関連

http://researchmap.jp/jo896r860-1782088/
2014/12/19
掛谷問題の特別講義@早稲田大学 by araih 新井 仁之
(抜粋)
今日は,知り合いの先生から依頼されていた早稲田大学教育学部数学科での特別講義をしました。90分の講義です。

もう一つの掛谷問題とは,掛谷氏自身が提起したものではありませんが,

    d 次元掛谷集合のハウスドルフ次元は d か?

というものです。答えは d=2 の場合はOK (Davisの定理,1971年) ですが、d>2 では未解決です。

 この問題へのアプローチはいくつかあり,今回は X 線変換を使ったものを Stein & Shakarchi のReal Analysis から紹介しました。X 線変換は CT スキャナの原理で知られる2次元ラドン変換です。

 最後に,これまでのものとは違ったアプローチの可能性についても述べました。

なお,掛谷問題については,次の解説があります:
掛谷問題ショートコース http://araiweb.matrix.jp/semi208/KakeyaProblem.html
0395現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 08:53:35.05ID:Fnfn48Mf
関連
ここら面白そうではありますが、時間がないのでまた

http://researchmap.jp/araiH/%E8%B3%87%E6%96%99%E5%85%AC%E9%96%8B/
新井 仁之 - 資料公開 - researchmap:

タイトル 実解析の発展,応用そして今後の課題 http://researchmap.jp/munetidn1-1779138/#_1779138
カテゴリ 講演資料
概要 新井仁之, 2001年度日本数学会企画特別講演のアブストラクト増補版

タイトル ブラウン運動と実解析 http://researchmap.jp/mu4hg9c31-1779138/#_1779138
カテゴリ 講演資料
概要 新井仁之, ENCOUNTER with MATHEMATICS (2001)での講演スライド

タイトル 実解析的方法とはどのようなものか http://researchmap.jp/mudxp79oj-1779138/#_1779138
カテゴリ 講演資料
概要 新井仁之, ENCOUNTER with MATHEMATICS (2001) での入門的講義スライド.
0396現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 09:10:27.87ID:Fnfn48Mf
時間がないと言っておきながら、新井仁之先生の”ブラウン運動と実解析”を前振りに使わせて貰おう
正直、ブラウン運動と実解析なにを言いたいのか全然理解できていないが(^^
(ENCOUNTER with MATHEMATICS をあたると、もう少し概要が分かるかも)

言いたいことは、ブラウン運動=ランダム現象の代表=ブラウン運動を数列と見た場合に数列は独立。かつ、無限長を考えることができる
その数理は、ほぼ確立されている

未解決問題はあるだろうが、
1次元ないし2次元のブラウン運動の数理は確立されたと(私の理解しているところは左記で、異論があるならお願いします)

http://researchmap.jp/mu4hg9c31-1779138/#_1779138
資料公開 >> コンテンツ詳細
表示内容を印刷します
タイトル ブラウン運動と実解析
カテゴリ 講演資料
概要 新井仁之, ENCOUNTER with MATHEMATICS (2001)での講演スライド
ダウンロード ewm2.pdf(1724) http://researchmap.jp/mu4hg9c31-1779138/?action=multidatabase_action_main_filedownload&;download_flag=1&upload_id=23235&metadata_id=43425
0397現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 09:32:00.81ID:Fnfn48Mf
>>2-4

時枝>>2-4にもどる

時枝記事の一番の問題は、時枝>>2-3の解法が成り立つならば、既存の例えば>>396などのブラウン運動(ランダム現象)の数理をやぶってしまうこと
(この話は、時枝記事の話題が出た当初から繰り返し書いている)

そこを、時枝は>>4で、言い訳をしている
・非可測集合を経由したから
・(無限族の)独立性に関する反省

「(無限族の)独立性に関する反省」については、>>328-330に反論がある。言い訳になってないよと
 特に、>>328はおそらく大学教員クラスの人の意見

「非可測集合を経由したから」も、一部>>329-330に私の反論を書いている
さらに、Sergiu Hart氏>>47のgame2においては、選択公理を使わないバージョンだから、「非可測集合を経由したから」という言い訳は無関係。
game2においても、当てられるのは循環節部分(説明は>>42, >>296-298)で独立性のない部分。独立性のある部分は当てられない

そして、”当てられるのは独立性のない部分。独立性のある部分は当てられない”という構造は、game1や時枝>>2-3でも成り立つ
(説明は, >>370-374

Hart氏game1や時枝>>2-3では、独立性のない部分は、可算無限数列のしっぽの先、つまりは、無限の彼方にあるので、有限部分は当てられないという理解ができる
そうであれば、”既存のブラウン運動(ランダム現象)の数理をやぶってしまうこと”はないという理解もできなくもない

”有限部分は当てられないという理解”を是とするなら、実質時枝>>2-3は不成立ということ
0398現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 09:48:50.23ID:Fnfn48Mf
>>397 つづき

時枝>>2-4のもう一つの大きな問題点は、定量評価ができていないこと

・世に、すその重い分布なるものがあって、期待値(平均値)も分散も定義できない。大数の法則も、中心極限定理も不成立。そういう分布がある
・ならば、”s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない”>>3 は、要証明事項だ
・ところで、>>374に書いたように、決定番号の確率分布は、裾が超重い分布になる。だから、100列で1/100は導けない
・なお、定量評価という意味では、”独立性のない部分は、可算無限数列のしっぽの先、つまりは、無限の彼方にあるので、有限部分は当てられない”>>397も、定量評価をすれば、すぐ分かることだ

以上

補足
>>367に書いたように、”n列で、確率(n-1)/n=1- 1/nと書ける”は、日常ほとんどの場面で成り立つんだ
ここは、時枝マジックの手品のタネの一つ
0399現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 09:57:53.21ID:Fnfn48Mf
>>397-398 補足

Sergiu Hart氏>>47のgame2(循環小数モデル 選択公理不要版) << Sergiu Hart氏game1 (可算無限 箱に任意の実数 最初に問題の数列並べておく) << 時枝>>2-3 (game1に同じだが、途中で数列を100列などに並べ替える)

game2、game1、時枝>>2-3 の順で、考えるべき要素が増えて、複雑怪奇になってゆく
なので、みなさんは、まずgame2をしっかり考えてから、時枝>>2-3を考えるようにお薦めする
0400現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 10:28:22.82ID:Fnfn48Mf
ホイテカ・ワトソン(下記)関連、”テラカン”を思い出した。”テラカン”=寺沢 寛一 メモ下記

昔どこかで、佐藤幹夫先生が、若い時(学部時代か)に”テラカン”を耽読したとか、書いていたね
佐藤幹夫の抽象に流れない、どこか物理と繋がっている数学の指向は、ここら辺りからか
(佐藤超関数(「数学」に掲載の論文)などを読むと、やはり”物理と繋がっている数学”という感じがしますね(内容の深いところは分からんが)。なお、多分岡もきっちり読んでいたか、消化していたという気がします)

https://www.amazon.co.jp/dp/4000054805
自然科学者のための数学概論 増訂版改版 単行本 ? 1983/5/18 寺沢 寛一 (著)

自然科学者のための数学概論 応用編 | 寺沢 寛一 |本 | 通販 | Amazon

http://blog.goo.ne.jp/ktonegaw/e/3cd107d2f6575cccc88dee06aa4b03ab
自然科学者のための数学概論 増訂版改版:寺沢寛一 - とね日記 - Gooブログ 2010年02月15日

前スレ
http://rio2016.2ch.net/test/read.cgi/math/1480758460/666
666 自分:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/30(金) 09:12:28.15 ID:zFouRTR2 [4/21]
ずっと以前に戻るが

前スレ20
http://rio2016.2ch.net/test/read.cgi/math/1466279209/392
392 返信:¥ ◆2VB8wsVUoo [sage] 投稿日:2016/07/02(土)
>>389
ホイテカ・ワトソンと一緒で、そういうのを持ってると自分の肥しになり
ますわ。時々眺めるだけでも、いいモンですわ。数学っちゅうんはそうい
うモンですわ。


これやね
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q14101617139
(抜粋)
Whittaker-WatsonのA Course of Modern Analysisについて- 数学 | Yahoo!知恵袋: yamyameatさん 20130207
この度数学の勉強の過程でWhittaker-Watson著の「A Course of Modern Analysis」使おうと思っている者です。

ベストアンサーに選ばれた回答 nakanochurchさん 2013/2/9

いやー、懐かしい本を話題にして呉れたねー!

A course of Modern Analysis
by
E.T. Whittaker, Sc.D., F.R.S. and
G.N. Watson, Sc.D., F.R.S.

FOURTH EDITION (pp. 608 )
Cambridge at the University Press 1935
0401現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 10:43:30.81ID:Fnfn48Mf
ちょっと落ち着いたので、以前、おっちゃんに薦められて買った野口 多変数解析関数論で、層のところを読んでみると、「おお、これ分かり易い」という感じ(加藤を読んでいたからかも)
加藤 五郎ちゃんの”コホモロジーのこころ”を読んでいて分かり難いところがあったけど、併読するとよくわかる
両方とも名著かな

”野口潤次郎の電網掲示板 ”があったのでリンクアップ

https://www.amazon.co.jp/dp/4254111398
多変数解析関数論 ─学部生へおくる岡の連接定理─ 単行本 ? 2013/4/1
野口 潤次郎 (著)

http://www.ms.u-tokyo.ac.jp/~noguchi/
野口潤次郎の電網掲示板
(Home Page of Noguchi, Junjiro)

http://phasetr.com/blog/2013/09/26/%E3%81%84%E3%81%BE%E9%87%8E%E5%8F%A3%E6%BD%A4%E6%AC%A1%E9%83%8E%E3%80%8E%E5%A4%9A%E5%A4%89%E6%95%B0%E8%A7%A3%E6%9E%90%E9%96%A2%E6%95%B0%E8%AB%96%E3%80%8F%E3%82%92%E8%AA%AD%E3%82%93%E3%81%A7%E3%81%84/
いま野口潤次郎『多変数解析関数論』を読んでいる | 相転移プロダクション: 2013/09/26かな?

https://www.amazon.co.jp/dp/4000053841
コホモロジーのこころ 単行本 ? 2003/3/25
加藤 五郎 (著)

前スレ25
http://rio2016.2ch.net/test/read.cgi/math/1477804000/362
362 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/11/19(土) 22:30:35.68 ID:0Q0Vh9CE [42/46]
>>359 関連
加藤 五郎ちゃんの前層の定義も、開集合とその包含写像をベースにした位相カテゴリーTからの集合Setsやアーベル群のカテゴリーGへの反変函手という説明
Awodeyは、位相カテゴリーTに限らず、一般のカテゴリーCをベースにした説明だ
0402現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 10:50:26.02ID:Fnfn48Mf
加藤 五郎ちゃんは、圏論ベースで、層を説明しているんだ。院生レベル向けかも
野口先生は、学部生向けで、集合と写像ベースの説明

加藤 五郎ちゃんは、前層→層→前層の層化という流れ
野口 先生ちゃんは、層→前層→前層の層化という流れ

おもしろね
0403132人目の素数さん垢版2017/01/08(日) 11:27:14.56ID:X6Cmx6l/
Everyone has gone and his ridiculousness is gonna accelerate.
0404現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 17:44:24.76ID:Fnfn48Mf
”我思う、ゆえに我あり”
”おっさん英字カキコする、ゆえにおっさんあり”

https://ja.wikipedia.org/wiki/%E6%88%91%E6%80%9D%E3%81%86%E3%80%81%E3%82%86%E3%81%88%E3%81%AB%E6%88%91%E3%81%82%E3%82%8A
我思う、ゆえに我あり
(抜粋)

ラテン語訳のCogito, ergo sum(コーギトー・エルゴー・スム、cogito = 私は思う、ergo = それゆえに、sum = 私はある)との標題が有名だが、これは第三者の訳による『真理の探求』で用いられたもので、デカルト自身がこのような表現をしたことはない。
『方法序説』の幾何学部分以外は、神学者のエティエンヌ・ド・クルセル(Etienne de Courcelles)がラテン語に訳し、デカルト自身が校閲し[1]、Ego cogito, ergo sum, sive existo との表現がされている。
デカルト自身がラテン語で書いた『哲学原理』(Principia philosophiae)ではego cogito, ergo sum 、『省察』では、Ego sum, ego existo と表現されている[2]。

解説
一切を疑うべし(De omnibus dubitandum)という方法的懐疑により、自分を含めた世界の全てが虚偽だとしても、まさにそのように疑っている意識作用が確実であるならば、そのように意識しているところの我だけはその存在を疑い得ない。
「自分は本当は存在しないのではないか?」と疑っている自分自身の存在は否定できない。―“自分はなぜここにあるのか”と考える事自体が自分が存在する証明である(我思う、ゆえに我あり)、とする命題である。コギト命題といわれることもある。
哲学史を教える場合の一般的な説明によれば、デカルトはこれを哲学の第一原理に据え、方法的懐疑に付していた諸々の事柄を解消していった、とされる。
0407現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 17:48:57.35ID:Fnfn48Mf
”except the funny strange man” を抜かすところなぞ、数理にうといか
はたまた、自分を勘定にいれない、謙譲の美徳なのか・・・、前者かも・・・
0408現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 18:07:00.79ID:Fnfn48Mf
Tさんと、おっちゃんの時枝記事>>2-4に対する議論は間違っている
間違っていることに迎合することは、2CHといえども、数学板では、さすがにまずかろう>>391 (^^

間違っていることが理解出来ず去るなら、それはそれで仕方ない
それが分からない、日本語と数学の不自由な ”the funny strange man”だった

理解できるレベルになれば
戻るもよしだ
0410現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 19:08:32.67ID:Fnfn48Mf
>>383

アナログ重力,流体,ブラックホール と、Unruh 先生

https://www.researchgate.net/publication/297738858_Transformation_Physics_and_Camouflage_in_Japanese
https://www.researchgate.net/profile/Tomohiro_Amemiya2/publication/297738858_Transformation_Physics_and_Camouflage_in_Japanese/links/56e2a05b08aebc9edb1b91d7.pdf?origin=publication_detail
変換物理学とカモフラージュ
(抜粋)

4. 2 Unruh の流体ブラックホール

本論文の主題の光学迷彩は2006 年ごろから研究が
本格化した比較的新しい研究分野であるが[3], [4],そ
の源であるアナログ重力の理論は,とても長い歴史を
もっている.アナログ重力の研究で一つの画期を成し
た論文は,1981 年に理論物理学者のW.G. Unruh が
発表した「Experimental Black-Hole Evaporation?
(実験的ブラックホール蒸発)」という文献である[17].
論文において,Unruh は流体中を伝播する波と,曲
がった時空中のスカラー場の伝搬の類似を発見した.
まずは出発点として,普通の流体現象を考えよう.流
体は非回転的で,速度場は回転をもたない∇× v = 0
とする.すると流体の運動方程式と連続の式は


この式は一見煩雑なだけの微分方程式に見えるが,じ
つは美しい幾何的解釈ができる.というのも,式(27)
は,次の計量テンソルをもつ曲がった時空中のスカ
ラー場の波動方程式に他ならないからである.


この流体と重力の類似は,単なるアナロジーでは
なく,様々な応用を与えるアイデアである.例えば
Unruh はこの論文において,Hawking の予言したブ
ラックホールからの熱輻射という量子論的現象を,こ
の流体における類似物で実験的に確認することができ
ることを示唆した.これは,ブラックホールにまつわ
る様々な理論的予言を,テーブルトップの実験で確認
できることを意味する.また我々は,Unruh の発見し
たアナログ重力の視点が,やがては光学迷彩の設計理
論へと結びついてくることを知っている.今後も様々
な物理系をアナログ重力の観点から見直すことで,思
わぬ発見が現れてくると期待される.
0412現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 20:02:11.45ID:Fnfn48Mf
>>411
EMAN先生の一般相対論 アインシュタインのテンソル式の導出、秀逸だね、感心した(^^
(文字化けあるので、原文見てください)
http://eman-physics.net/relativity/ein_eq.html
EMANの物理学・相対性理論・重力場の方程式へ:
(抜粋)
一般相対論の原理
 さあ、いよいよ仕上げである。ここまでの知識を使って、物質の存在と重力の起源を結び付ける方程式を組み立てよう。

組み立て開始
 前回話したように、ニュートン力学での重力場の源は「質量密度ρ」であった。特殊相対論では質量とエネルギーが等価であることが導かれたので、重力の源は「エネルギー密度」だと言い換えても良いだろう。
しかしエネルギー密度は単独ではテンソルではないから、式の中に持ち込むとしたら、運動量密度などと一緒にした「エネルギー運動量テンソル」を使うべきであろう。それで、これを重力場の方程式の右辺に持ってくることにする。
これはつまり「重力場の源は質量である」と考えていた古い形式を拡張して、「重力場の源はエネルギー運動量テンソルである」という考えを新しく採用することを意味する。

 右辺のエネルギー運動量テンソルが 2 階の反変テンソルなのだから、左辺も同じ形式のテンソルになるべきだろう。

仮にXij
とでも書いておこう。
Xij=Tij
 ところで「エネルギー運動量テンソル」は次の関係を満たしていた。
∂iTij=0
 これはエネルギー保存、運動量保存の式である。これは平らな時空を前提に導いた式なのだった。リーマン幾何学で学んだように、テンソルをただ微分したものはテンソルではない。ではこの式が時空が曲がっていても使えるようにしてやるにはどうすれば良いかと言うと、すでに良く分かっているだろう。
∇iTij=0
と拡張してやればよい。そうなると左辺のXijを共変微分したものも同じように 0 にならなければいけないはずだ。
∇iXij=0
 そんな性質を持った量Xijがそうそう都合よく見付かるはずが・・・いや、あったよ!!前に出てきたアインシュタイン・テンソルだ。しかしこれをそのまま使ったのでは次元が合わないので、係数kを付けて調整してやることにする。
Gij = k Tij
 これが相対論における「重力場の方程式」すなわち「アインシュタイン方程式」である。何とあっけなく導かれてしまったことか。
0413現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 20:15:36.99ID:Fnfn48Mf
>>412
宇宙項の話

http://eman-physics.net/relativity/ein_eq.html
EMANの物理学・相対性理論・重力場の方程式へ:
(抜粋)

参考サイト:「アインシュタインはなぜ宇宙項を導入したか?」http://www005.upp.so-net.ne.jp/yoshida_n/kairo01.htm

http://www005.upp.so-net.ne.jp/yoshida_n/kairo.htm
科学の回廊: 吉田 伸夫
http://www005.upp.so-net.ne.jp/yoshida_n/kairo01.htm
アインシュタインはなぜ宇宙項を導入したか?(1997/04/05)
0414現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 20:32:55.38ID:Fnfn48Mf
http://james.3zoku.com/kojintekina.com/physics/index.html
物理の窓 目次:2009年1月1日
http://james.3zoku.com/kojintekina.com/physics/physics081213.html
一般相対性理論の誕生:物理の窓 2009年1月5日
(抜粋)
3 誰が「場の方程式」を発見したか?
一般相対性理論の核心となる方程式を最初に発見したのは、じつはアインシュタインではなかったと、つい最近まで 信じられていた。ゲッティンゲン大学のダーフィト・ヒルベルトがアインシュタインよりも早く同じ結論に到達していた というのである。
アインシュタインが一般相対性理論の最終論文を書きあげてプロイセン科学アカデミーで発表したのは 1915年11月25日のことで、翌週の12月3日(2日?)には印刷公刊された。
いっぽうヒルベルトの最終論文が公刊されたのは1916年 3月31日のことだったが、論文がゲッティンゲン科学協会に提出されたのは前年の11月20日、つまりアインシュタインの 論文の5日前だった。
両者はともに重力場の方程式をみちびいているが、その先取権は、もちろん5日はやく論文を提出 したヒルベルトにあると、科学史の専門家たちは考えてきた。そればかりではない。二人は研究成果についてたがいに 情報交換をしており、アインシュタインはヒルベルトに、論文を事前に送ってほしいと依頼していた。
つまり アインシュタインは公刊前のヒルベルト論文を見るチャンスがあり、それにもとづいて自身の最終論文を完成させた のではないか、と勘ぐるむきもあったのだ。20世紀を代表する数学者と物理学者をめぐる盗作疑惑である。
1997年、イスラエル、ドイツ、アメリカの研究者チームが包括的な調査を行い、この疑惑に最終的な裁定を下した。 「遅ればせの決着―ヒルベルト=アインシュタインの先取権論争」と題された論文(レオ・コリー他「サイエンス」11月14日号) は、1915年11月に繰り広げられた二人の天才の丁々発止のやりとりを伝えてまことに興味深い。



つづく
0415現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 20:33:35.93ID:Fnfn48Mf
つづき

1997年の調査では、新たにヒルベルトの論文の校正刷が発見され、これが「遅ればせの決着」の鍵となった。この初稿ゲラ のなかでヒルベルトは、自分の理論が「一般共変」でないことを認めていた。
一般共変の方程式10個に加えて、因果律を保証する ために一般共変でない四つの方程式を付加せざるをえなかったのだ。これでは正しい結論をみちびくことはできない。校正刷には 印刷所のスタンプが押してあり、日付は12月6日となっていた。
アインシュタインの論文が公刊されたのは12月2日だから、 ヒルベルトはライヴァルの論文を見てゲラを訂正できたことがわかる。じっさいにゲラの 《gμυ》 ポテンシャルのところには注が加えられ、< アインシュタインによって最初に導入された > とのペン字が書きこまれている のだ。
ヒルベルトが先に到達したのでもないし、これまで多くの学者が信じていたように二人がそれぞれ独立に正しい方程式を みちびいたのでもなかった。
コリーらの論文はこう締めくくられている。< もしヒルベルトが「1915年11月20日提出」という 日付を訂正さえしていれば、(アインシュタインの最終論文が発表された12月2日以降ならいつでもよかったのだ)、 先取権をめぐる論争がのちのち起こることはなかったろう >
(引用終り)
0416現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 20:44:25.04ID:Fnfn48Mf
>>414 関連

https://ja.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%9B%B8%E5%AF%BE%E6%80%A7%E7%90%86%E8%AB%96
(抜粋)
一般相対性理論(いっぱんそうたいせいりろん、独: Allgemeine Relativitatstheorie、英: General theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて1915年から1916年にかけて発表した物理学の理論である。

一般相対論(General relativity)とも言われる。ニュートン力学で記述すると誤差が大きくなる現象(光速に近い運動や、大きな重力場における運動)を正しく記述できる。

一般相対性理論の発表後

アインシュタイン以後、一般相対性理論以外の重力理論も、数多く提案されているが、現在までにほとんどが観測的に棄却されている。
実質的に対抗馬となるのは、カール・ブランスとロバート・H・ディッケによるブランス・ディッケ重力理論であるが、現在の観測では、ブランス・ディッケ理論のパラメーターは、ほとんど一般相対性理論に近づけなくてはならず、両者を区別することが難しいほどである。
量子論と一般相対論の統一という物理学の試みは未だ進行中であるものの、一般相対性理論を積極的に否定する観測事実・実験事実は一つもない。

他に提案されたどの重力理論よりも一般相対性理論は単純な形をしていることから、重力は一般相対性理論で記述される、と考えるのが現代の物理学である。
(引用終り)
0418現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 21:22:06.41ID:Fnfn48Mf
>>60 戻る
>私ら凡人は、昔ニュートンが、天体(惑星)の運動を解明しようとして、まあそれだけが動機かどうか不明だが、微分積分を作った
>その数学の力で、太陽系の天体の運動が解明された
>そこに大きな数学の力と魅力を感じます

20世紀後半から、物理分野の発明・発見に、数学側が厳密な証明を与える
あるいは、物理分野で発展した考えを、数学的に洗練して、数学の理論に使う

そういう大きな流れができたように思う
それが全てではないが

数学が、他の分野の先回りをして、必要になるまえに、数学理論を準備しておいた
そういうことも多かった

が、一方で、「必要な数学理論がないから作ります」という自由度
それが、20世紀後半から21世紀の数学の流れのように思う

(ヒルベルトやゲーデルを超えて自由度が上がり、「新しい理論を作ります」と。圏論であったりトポスであったりゲーム論的確率論であったり・・。望月新一先生のIUTも「完全に新しい理論を作ります」と)
0419現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 21:39:44.15ID:Fnfn48Mf
>>418 関連



http://toyokeizai.net/articles/-/95466?page=2
物理学者は、数学者の肩に乗った小人なのか | 読書 | 東洋経済オンライン |
青木 薫 :翻訳家
2015年12月07日
(抜粋)
物理学者は数学者という巨人の肩の上の小人?

なるほど20世紀を通じて、「物理学者は、すでに死んだ偉大な数学者の発展の中から、使えるものを見て出して使っている。物理学者は、数学者という巨人の 肩の上に乗っている小人だ」的なことは、これでもかというほど繰り返し言われてきた。

けれども、近年、その関係に変化が生じている。

http://toyokeizai.net/articles/-/95466?page=3

とりわけウィッテンを筆頭に、物理学者たちの仕事が、数学者たちにインスピレーションを与えるようになってきたのだ。

http://toyokeizai.net/articles/-/95466?page=4

ニュートンは、ある人物への手紙の中で、自らを浜辺に遊ぶ少年にたとえたのだ。少年は、なめらかな小石やきれいな貝殻を見つけては、ただ喜んでいる−−目の前には、真理の大海原が手付かずのまま広がっているというのに。

目の前には未知の大海がある

そう、物理学者というのは、小石や貝殻を見つけて喜んでいる子どもなのだろう。しかしときに、ニュートンがそうであったように、大海原の存在に気づく者がいる。

いや、ニュートンは、単にそれに気づいただけでなく、立ち上がって海水に足を浸した人物なのだとわたしは思う。そしてウィッテンも、そんな物理学者のひとりなのだろう。

砂浜で貝殻の美しさにみとれて夢中になっていたのは、物理学者か数学者か、目の前の未知の大海に気がついたのは数学者か物理学者か。実は、そうした仕分けをやめるところから、未知の大海があることに気づくことができる・・・それが広い意味でのラングランス・プログラムなのだ、とフレンケルは最終講義で訴えたのではないか。

ラングランズ・プログラムに取り組んでいる数学者、そして物理学者は、今立ち上がり、新たな謎を手がかりとして、大海原に漕ぎ出そうとしているのかもしれない。
0420現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 22:17:39.78ID:Fnfn48Mf
>>419

E. Witten 氏の業績 フィールズ賞受賞者紹介 これ過去にも取り上げたと思うが
http://mathsoc.jp/pamph/history/ICM90/
日本数学会のあゆみ--1990年 ICM-90
http://mathsoc.jp/pamph/history/ICM90/sugaku4301051-058.pdf
E. Witten 氏の業績I フィールズ賞受賞者紹介 江口 徹
http://mathsoc.jp/pamph/history/ICM90/sugaku4301058-066.pdf
E. Witten 氏の業績II フィールズ賞受賞者紹介 深谷賢治
0421現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 23:03:11.87ID:Fnfn48Mf
>>420

物理からみのフィールズ賞 20世紀後半からひらうと、下記か
https://en.wikipedia.org/wiki/Fields_Medal
Fields Medal

Fields medalists
1982 Alain Connes "Contributed to the theory of operator algebras, particularly the general classification and structure theorem of factors of type III, classification of automorphisms of the hyperfinite factor, classification of injective factors, and applications of the theory of C*-algebras to foliations and differential geometry in general."

1986 Simon Donaldson ヤンミルズ方程式"Received medal primarily for his work on topology of four-manifolds, especially for showing that there is a differential structure on euclidian four-space which is different from the usual structure."

1990 Vladimir Drinfeld "For his work on quantum groups and for his work in number theory."
Vaughan F. R. Jones "for his discovery of an unexpected link between the mathematical study of knots ? a field that dates back to the 19th century ? and statistical mechanics, a form of mathematics used to study complex systems with large numbers of components."
Edward Witten "proof in 1981 of the positive energy theorem in general relativity"[57]
つづく
0422現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 23:04:03.21ID:Fnfn48Mf
つづき

1994 Jean Bourgain "Bourgain's work touches on several central topics of mathematical analysis: the geometry of Banach spaces, convexity in high dimensions, harmonic analysis, ergodic theory, and finally, nonlinear partial differential equations from mathematical physics."
Pierre-Louis Lions The only option is therefore to search for some kind of "weak" solution. This undertaking is in effect to figure out how to allow for certain kinds of "physically correct" singularities and how to forbid others.
Jean-Christophe Yoccoz "proving stability properties - dynamic stability, such as that sought for the solar system, or structural stability, meaning persistence under parameter changes of the global properties of the system."

1998 Richard Borcherds "for his work on the introduction of vertex algebras, the proof of the Moonshine conjecture and for his discovery of a new class of automorphic infinite products"
Maxim Kontsevich In 1998, he won the Fields Medal for his "contributions to four problems of Geometry". In July 2012, he was an inaugural awardee of the Fundamental Physics Prize, the creation of physicist and internet entrepreneur, Yuri Milner.[4] https://en.wikipedia.org/wiki/Maxim_Kontsevich
Curtis T. McMullen "He has made important contributions to various branches of the theory of dynamical systems, such as the algorithmic study of polynomial equations, the study of the distribution of the points of a lattice of a Lie group, hyperbolic geometry, holomorphic dynamics and the renormalization of maps of the interval."

つづく
0423現代数学の系譜11 ガロア理論を読む垢版2017/01/08(日) 23:04:39.90ID:Fnfn48Mf
つづき

2006 Grigori Perelman "for his contributions to geometry and his revolutionary insights into the analytical and geometric structure of the Ricci flow"
Wendelin Werner "for his contributions to the development of stochastic Loewner evolution, the geometry of two-dimensional Brownian motion, and conformal field theory"

2010 Stanislav Smirnov "For the proof of conformal invariance of percolation and the planar Ising model in statistical physics"
Cedric Villani "For his proofs of nonlinear Landau damping and convergence to equilibrium for the Boltzmann equation."

2014 Artur Avila "for his profound contributions to dynamical systems theory, which have changed the face of the field, using the powerful idea of renormalization as a unifying principle."
Maryam Mirzakhani "for her outstanding contributions to the dynamics and geometry of Riemann surfaces and their moduli spaces."

おわり
0425現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 07:12:17.44ID:NAblHnQ9
>>397-399 戻る

良くも悪くも、しょせん日本は村社会
村の中に波風を立てないことを是とする

プロ数学者は、時枝記事>>2-4が不成立と思っても、それを表で文で公表する人はいないだろう
日本数学村の一員として、プロ数学者が村でいさかいを起こすことは、ほめられたことではない。「たかが数学セミナーの記事」

だが、古くからの数学セミナーの読者としては(最近あまり熱心じゃないが)、看過できないと思ったし
面白いと思った。 ”なぜ、成立しないのに、成立するように見えるのか?” そこを探求してみようと

みなさんに宣言しておくが
おそらく”時枝記事>>2-4が不成立”を、公の場で書いたのはこのスレが最初だと
0426現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 07:39:09.76ID:NAblHnQ9
>>395-396 補足
>正直、ブラウン運動と実解析なにを言いたいのか全然理解できていないが(^^
>(ENCOUNTER with MATHEMATICS をあたると、もう少し概要が分かるかも)

http://www.math.chuo-u.ac.jp/ENCwMATH/21.shtml
ENCOUNTER with MATHEMATICS ----- 数学との遭遇
第21回 実解析への誘い -- 実解析的方法を使いこなそう --
(抜粋)
実解析的方法とはどのようなものか : 新井 仁之 (東大・数理)

実解析的方法はこれまで,さまざまな分野で使われてきた.最近ではウェーブレット解析,非線形偏微分方程式,距離測度空間上の解析・幾何でも重要な役割を果たしている. また,それにともなって実解析への関心も高まっている.

今回の ENCOUNTER with MATHEMATICS では,実解析学,偏微分方程式,フラクタル解析,調和解析で活躍中の方々による実解析的方法についての入門的な講義が行われる.

この講義ではイントロダクションとして,実解析の予備知識のない方にもわかるように,実解析の基礎を紹介したい.時間の都合上証明の詳細は述べられないが,実解析の思想とアイデアを伝えることができればと思っている.

ところで実解析を使う場合,次の二つのケースがある.

実解析で得られた結果をそのまま使う
実解析の考え方を用いて,自分のニーズにあった定理を作る

前者は実解析が用意したパッケージを利用することであり,後者は自分でプログラムを作ることに似ている. 実解析が用意したパッケージとしては,すでに多種多様なものあるが,それらは大きく分けると


A.極大作用素

B.特異積分

C.振動積分

D.関数空間


に分類される.また,プログラムを作るときの主たる方法としては


1.被覆補題

2.Calderon-Zygmund 分解

3.Littlewood-Paley分解


がある.A − D も実際にはこれらの方法を組み合わせたり,改良するなどして作られている.

この講義では,特に1,2,3 の方法がどのようなものであるかを解説し, それから得られる重要な定理のいくつかを紹介する.また, 最後にウェーブレットへの応用,ウェーブレットと実解析 との関連についても触れたい.
0428現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 08:31:49.63ID:NAblHnQ9
>>426 補足

引用すべきはこちらだった(^^
http://www.math.chuo-u.ac.jp/ENCwMATH/21.shtml
ENCOUNTER with MATHEMATICS ----- 数学との遭遇
第21回 実解析への誘い -- 実解析的方法を使いこなそう --
(抜粋)
ブラウン運動と実解析 -- 実解析のための確率論入門 -- : 新井 仁之 (東大・数理)

ブラウン運動,マルチンゲール,局所時間など,確率論に関する研究が実解析 に及ぼした影響は大きい.

この講演では,実解析に現れる確率論の諸概念を紹介した後,実解析学の研究に確率論がどうして使えるのか,そのからくりを解説したい.
また,実解析と確率論とを関連づける重要な定理の一つに角谷の 定理があるが,それにまつわる未解決問題 - 調和測度の問題 - についても 時間がゆるせば触れる.この問題では,実解析と確率論,そして負曲率多様体上の 解析などが複雑に絡み合っていることがわかってきた.
0429現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 08:49:10.56ID:NAblHnQ9
>>425 補足

<どこかのスレから>
・デタラメを述べておきながら間違いの指摘は無視する行為
・明らかな間違いにもかかわらず、数学は自由だから何でもありだろ?、と無理やり正当化する行為
(引用終り)


”相対論が間違ってる”、”量子論が間違ってる”という人がいる。(下記ご参照。因みに、省略したが、このベストアンサーが面白いよ(^^;
いま、そういうプロの科学者はいない

時枝>>2-4が正しいと、いままで、そういうプロの数学者はいなかった(皆無! Sergiu Hart氏2013年>>47からを含め。なお、Sergiu Hart氏はあくまでPUZZLES ”Choice Games”だと>>47
なのに、素人が”時枝>>2-4が正しい”と

”いま、そういうプロの数学者はいない”というのに、「納得できる説明がない」と、論難する人たちがいる
あんたら、相対論や量子論が理解できるレベルに達していないだけじゃなのか?(^^; 
(この場合>>397-399

https://oshiete.goo.ne.jp/qa/6829887.html
なぜ量子論よりも相対論が間違ってるという人が多い? - その他(自然科学) 解決済 | 教えて!goo: 2011/06/23
(抜粋)
いつもインターネットの掲示板等をみて感じるのは、「アインシュタインの相対性理論は間違っている」と声高に主張されている方が一定数いらっしゃいます。

私自身が思うのは、相対性理論よりもはるかに量子論の方が「非常識」な理論です。特にシュレーディンガーの猫に代表される観測問題などは、どう考えて良いのか理解不能です。
0430現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 08:56:56.43ID:NAblHnQ9
>>429 訂正

あんたら、相対論や量子論が理解できるレベルに達していないだけじゃなのか?(^^; 
 ↓
あんたら、相対論や量子論が理解できるレベルに達していないだけじゃないのか?(^^; 
0431現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 10:44:46.55ID:NAblHnQ9
>>59 戻る
>学問とは、そして特に数学の場合は:
>☆☆☆『非力で無能な人間が、全能の神を前にして平伏して苦悩するその姿そのもの』☆☆☆
>という風に私は思って居ます。

関連スレで”結局スレ主はなんの勉強がしたいの?”という質問があった

「学問」とか、「勉強」とは思っていない!
まあ、いわば、”プロスポーツ観戦 ”(下記)

プロスポーツ観戦も、ルールを知らないと楽しめない部分がある
楽しめる程度に数学のルールは知っているし、プロスポーツ観戦で実生活に参考になる部分もあるように、”プロ数学観戦 ”も同様

プロ野球の大谷みたいに、165キロの球が投げられるはずもないが
プロ野球は、プロ選手が”苦悩するその姿そのもの”かもしれないが

プロ野球選手でも、楽しんでいる人もいると思うんだよね(^^
(セドリック・ヴィラニのように>>218:何ヶ月も思考を重ねた上 問題が解け やっと正しい証明が 論証し上がった時の喜び と言ったらありません 偉大なる数学者アンドレ・ヴェイユが この喜びを? 冗談抜きに? 性的快感に例えています 違いは その感覚が何時間も 時には何日も継続するという事です)

私スレ主は、ただ単純に”プロスポーツ観戦 ”と同じように”プロ数学観戦 ”をしていると
自分が、”プロ数学参戦 ”ができるとは、決して思っていません。それは、もと数学者の¥さんがお見通しだろうが

補足:”プロ数学観戦 ”をしていると、工学などで使う数学の参考になることは確かだ (なお言っておくが、数学セミナーはアマ向け雑誌(プロ予備軍を含む)だぞ。”プロ数学観戦 ”用)

http://www.ieice.org/~cs-edit/magazine/hp/world/america_4.pdf
アメリカの 4大プロスポーツ観戦 通信ソサイエティマガジン No.9[夏号]2009 ある編集委員の留学記 第4 回 関屋大雄 Hiroo Sekiya 千葉大学

まえがき―スポーツ観戦のすすめ
0432現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 12:36:02.54ID:NAblHnQ9
>>404-409
>Everyone has gone except the funny strange man and the Lord of Garois thread, so the man's ridiculousness writing will be increasing.

"Everyone has gone"というけれど
下記スレが賑わっているふうもなく

現代数学の系譜11 ガロア理論を読む28
http://rio2016.2ch.net/test/read.cgi/math/1483314290/

まあ、”Everyone”というけれど、2CHなんてそんなもの
前スレより

420 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/18(日)
>>418 補足

前にも紹介したと思うが・・

http://note.chiebukuro.yahoo.co.jp/detail/n98014
数学の勉強法 学部〜修士 ライター:amane_ruriさん(最終更新日時:2012/8/6)投稿日:2012/8/4
(抜粋)
私は修士1年生ですので、正直に言いますとこの部分はあまり書いているのが正しいとは思えません。
趣味で書いているものだと認識していただければ良いのではないかと思っております。

大学3、4年に入ってまず怖いのが数学の本の氾濫でしょう。
まず何を読んで何をすればいいのか分からなくなります。

そして、自分のやっていることがいかにちっぽけな存在なのかというのを実感させられます。(多分皆がそうでしょう。)
そして、結果が問われてきます。ここで、数学科は「入るのは易しいけどプロになるのは難しい」ということが実感させられてきます。

2012年8月3日現在、書泉グランデで有名数学者の薦める本がありました。森重文先生を初めとして本の多さに圧倒されました。
(足立恒雄先生は信頼と安心のブレなさ)

院生の人向き

2.2chの内容は信用できるか?
基本的に信用できません。先生>周りの人>>>2chや知恵袋の人です。
何故かというといつも同じことしか言っていないから。
多分きちんと検証していないで想像で議論しているだけではないのかと私は思っています。(まあ、自分もあんまり信用できないけど)
(引用終り)

個人的には
知恵袋>>>>2chの人 だな (もちろん、自分(私)を含む。つくづくそう思ったよ)
0433現代数学の系譜11 ガロア理論を読む垢版2017/01/09(月) 12:55:06.46ID:NAblHnQ9
>>431-432
おれら、”プロスポーツ観戦 ”と同じ感覚で、プロの面白いと思ったところをコピペしているわけで
素人同士のレベルの低い証明ごっこ、学会ごっこなど、やるつもりないんだわさ

>>404-409関連でさ、そもそも、こんな視認性の悪い、かつ、書きにくい、制約のある板でさ
なんで、素人同士の証明ごっこやらなきゃいかんの?

どうせ、初出の証明だったら、きっと間違いあるんだろ? 
だったらさ、おれ赤ペンの指導員やることになるじゃない?

無料で、赤ペンの指導員やってくれ?
ふざんじゃないよ、大学へ行けよ。あんたら、単におれの >>397-399 が理解できないだけじゃないの? そう思っているよ。実際 28 はその通りだろ

(まあ、ここでは、いきなり証明書かずに、平文で証明のあらすじでもかけよと。それで分からんところだけお互い聞くことにしようぜ
 いきなり、わけわからん証明は、おっちゃんだけで十分だよ(^^;)
0434132人目の素数さん垢版2017/01/09(月) 18:04:27.16ID:liJ2ydgo
>>397-398
> つまりは、無限の彼方にあるので
>>366
> 少なくとも決定番号の手前までは出題者は自分で箱に入れる数字を選ばないといけないので

d-1, d, d+1は有限なので数当てをする場所は「無限の彼方」でない

> 定量評価ができていないこと
>>366
> 完全代表系を最初に1組用意して任意の無限数列を選んで出題できることを仮定すれば
> ある無限数列Snを考えた時点で決定番号も(Sn, d)のように同時に求めていることになる

任意の無限数列が出題可能ということは解答作業に入る前に全ての無限数列Sn(とそれに対応する決定番号d)
に対して出題者が定量評価をしたと仮定することを含んでいる

> 100列で1/100は導けない
>>388
> シッポが0の無限数列のみを自由に選んで出題することを考えてみるとこれは「裾が超重い分布」
> から任意の決定番号を自由に取り出せることを意味する

これも任意の無限数列が出題可能という仮定に含まれる
0437現代数学の系譜11 ガロア理論を読む垢版2017/01/10(火) 22:39:27.76ID:trxkZzWO
http://planck.exblog.jp/25711734/
量子物質・時空・情報 : 大栗博司のブログ: 2016年 06月 17日
(抜粋)

今週は、京都大学の基礎物理学研究所で開催されていた「量子物質・時空・情報」と題した国際会議に参加していました。

「量子もつれ」をテーマとし、量子力学的な性質が顕著に表れる新しいタイプの物質を研究している物性物理学者や、超弦理論や量子重力の研究をしている素粒子物理学者から、量子暗号や量子情報の研究者、さらには量子力学や統計力学の基礎の研究者など、幅広い分野の研究者を集めた、野心的な研究会でした。

会議のバンケットでは、素粒子論から物性物理学に転身されて共形場の理論で偉大な業績をあげられ、場の量子論の量子もつれについても先駆的な仕事をされたジョン・カーディさんが、

「我々は理論物理学の黄金時代に立ち会っている。高エネルギー、物性、量子物理という20世紀の主要な分野が合体しようとしているのだ」とスピーチをなさいました。

左の写真は、スピーチの後で、カーディさんと私が鯛の塩釜焼きを割っているところです。

私は初日に、先月書いた論文の内容を中心に講演をしました。講演のスライドなどは、会議のサイトから見ることができます。

⇒ 「量子物質・時空・情報」

さて、今週は、CaltechとMITが中心となって運営している重力波天文台LIGOが、重力波の2回目の観測に成功したとの発表をしました。

今年の2月には、第1回の直接観測が発表され、新聞の号外が出るほどのニュースでした。

今回の重力波は、14億光年彼方の太陽の14倍と8倍の重さのブラックホールが合体したものだそうです。前回に比べて軽いブラックホールだったので、重力波の波長がLIGOの観測域とうまくマッチして、前回よりも長い時間の観測が可能になったそうです。そのため、合体する前のブラックホールの自転速度なども確認できました。

さらに今後数年の間に、感度を3倍程度には向上させる予定なので、3×3×3=27倍の受信が期待できます。つまり、毎週少なくとも1回、もしかしたら毎日のように重力波が受信されるようになるでしょう。いよいよ、重力波を使って宇宙を探索することができる時代になりました。
0444現代数学の系譜11 ガロア理論を読む垢版2017/01/10(火) 22:53:43.88ID:trxkZzWO
ブラウン運動の数理
いまから思えば、なんということもない
が、1905年当時は革新的だったという

https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E3%83%BB%E3%82%A2%E3%82%A4%E3%83%B3%E3%82%B7%E3%83%A5%E3%82%BF%E3%82%A4%E3%83%B3
(抜粋)
アルベルト・アインシュタイン[† 1](独: Albert Einstein[† 2][† 3][1][2]、1879年3月14日 - 1955年4月18日)は、ドイツ生まれの理論物理学者である。

特殊相対性理論および一般相対性理論、相対性宇宙論、ブラウン運動の起源を説明する揺動散逸定理、光量子仮説による光の粒子と波動の二重性、アインシュタインの固体比熱理論、零点エネルギー、半古典型のシュレディンガー方程式、ボーズ=アインシュタイン凝縮などを提唱した業績により、世界的に知られる。

20世紀最大の物理学者とも、現代物理学の父とも呼ばれる。特に彼の特殊相対性理論と一般相対性理論が有名だが、光量子仮説に基づく光電効果の理論的解明によって1921年のノーベル物理学賞を受賞した。

「奇跡の年」以降
1905年の26歳の時に3つの重要な論文を発表する。1905年に博士号を取得すべく「特殊相対性理論」に関連する論文を書き上げ、大学に提出した。しかし内容が大学側に受け入れられなかったため、急遽代わりに「分子の大きさの新しい決定法」という論文を提出し、受理されている。
この論文は「ブラウン運動の理論」に発展した。この年は「奇跡の年」として知られている。アインシュタインは「光量子仮説」「ブラウン運動の理論」「特殊相対性理論」に関連する五つの重要な論文を立て続けに発表した。
バスの乗車中にベルンの時計台の針が不動に見えることから着想した無名の特許局員が提唱した「特殊相対性理論」は当初、周囲の理解を得られなかったが、マックス・プランクの支持を得たことにより、次第に物理学界に受け入れられるようになった[10][11]。
0445現代数学の系譜11 ガロア理論を読む垢版2017/01/10(火) 22:56:50.38ID:trxkZzWO
ブラウン運動の数理をしる理系がらすれば、時枝解法がそのまますんなり成立するはずがない
そんなことは、自明も自明のこと

まあ¥さん提唱のように、新しい確率論を打ち立てろと
それなくば、成り立つはずがない

どうぞ
やってください
0447132人目の素数さん垢版2017/01/11(水) 01:02:10.05ID:yu4rQh8h
>>436
> 極限わかりますか?
>>439
> ランダム現象の数理を是とすると、当てられない数列、つまり、独立な数列が厳然と存在する
>>445
> ブラウン運動の数理をしる理系からすれば、時枝解法がそのまますんなり成立するはずがない
> そんなことは、自明も自明のこと

もしかしてスレ主は極限をとれば極限値が求められると思っているの?

極限値(時枝記事では代表元)をあらかじめ用意しておくわけだけれどもその無限数列の全ての項の
独立性をどうやって調べるの?
そこで極限を使うと循環論法になる訳だし

時枝解法は無限数列の任意の有限部分数列の独立性しか言えないので数当てが成立するという
ことなのだから時枝解法の不成立を示したければ「自明も自明のこと」と言いきれるスレ主が
無限数列の全ての項の独立性を示す(極限を使わない)方法を書けばすむことでしょう
0448現代数学の系譜11 ガロア理論を読む垢版2017/01/11(水) 06:44:48.49ID:9a1bzlEI
>>447
わるいけど、議論がかみ合わないので、正直あまりやる気がおきないけど
だから、どうぞ ”現代数学の系譜11 ガロア理論を読む28”へ

ま、少しだけね
抽象論やってもしかたないので、簡単なモデルをかんがえましょ

まず、前提として、”数列の同値類分類は完了した”としよう
(そうだな、Hart氏>>47のgame2 の循環小数モデルにしよう。それなら同値類分類完了は納得だろ?)

その上で、そこでさらにレベルを落として、極限という概念を考えてみよう

1.y=1/x という双曲線。まあ、中学校でもやるだろう。0<x & 0<y いわゆる第一象限で、定義域 xは(0,∞)の開区間。で、値域 yは(0,∞)も開区間
2.y=1/x で面白いのは、xとyの入れ替えで対称になっていること
3.lim (x→∞) y = 0。 で、lim (x→0) y = ∞。( lim (y→∞) x = 0。 で、lim (y→0) x = ∞ )
4.分かりますよね、極限。つまり、(0,∞)の開区間で、x、yとも、いくらでも 0 および∞に近い値は取れる。限りなく。だが、開だから 0 および∞の値は取れない
  がしかし、個々のx、yの値を取り上げれば、それらは有限ですよ。でも、集合としては、無限集合なんだ
5.で、y=1/xという双曲線で、 「x、yとも、有限です」と、言い切ってしまったら、数学的には何の面白みもないよ。時枝に同じ(決定番号の分布を集合として考えましょうと。集合としては無限集合でしょと)
0449132人目の素数さん垢版2017/01/11(水) 20:31:27.84ID:yu4rQh8h
>>448
> 決定番号の分布を集合として考えましょうと。集合としては無限集合でしょと

異なる決定番号(自然数)が可算無限個あるから上限がないということと当てられない(ランダムor全て独立な)
数列が存在する(=決定番号が無限大になる)ことは全く別の事柄ですよ

決定番号全体の無限集合を無視しているわけではなくて

確率を計算する過程は>>3
> 閉じた箱を100列に並べる --- (1)
> 1〜100 のいずれかをランダムに選ぶ --- (2)

任意の無限数列が出題可能という仮定には任意の無限数列の決定番号を(数値の大きさによらず)
決定可能であることが含まれているので(1)の段階で決定番号全体(=自然数全体)の集合から
要素数が100の有限集合{d1, d2, ... , d100}が必ず得られることになる
(2)で{d1, d2, ... , d100}から1つランダムに選ぶので99/100が求められる
0450132人目の素数さん垢版2017/01/12(木) 21:30:12.60ID:n2NoxymS
>>448
>>449の補足
出題された数列をS(0, n)としてそれから作られる100列の数列をS(1, n), S(2, n), ... , S(100, n)
と表しそれぞれの決定番号をd1, d2, ... , d100で表す

100列に並べる方法は解答者が自由に選べるので以下のように並べる
S(1, 1)=S(0, 1), S(1, 2)=S(0, 101), S(1, 3)=S(0, 201), ...
S(2, 1)=S(0, 2), S(2, 2)=S(0, 102), S(2, 3)=S(0, 202), ...
同様にして
S(99, 1)=S(0, 99), S(99, 2)=S(0, 199), S(99, 3)=S(0, 299), ...
S(100, 1)=S(0, 100), S(100, 2)=S(0, 200), S(2, 3)=S(0, 300), ...

決定番号d1, d2, ... , d100と元の数列S(0, n)の関係はS(1, d1)=S(0, 100(d1 - 1)+1),
S(2, d2)=S(0, 100(d2 - 1)+2), ... , S(100, d100)=S(0, 100(d100 - 1)+100)と書ける
数当ての途中で完全代表系と数列S(0, n)は変化しないのでd1, d2, ... , d100も変化しない
出題時にS(0, n)の全ての数字を決めればd1, d2, ... , d100の値とそれらの大小関係も決まるので
決定番号の分布を考えずに{d1, d2, ... , d100}から1つランダムに選ぶことを考えればよい
0453現代数学の系譜11 ガロア理論を読む垢版2017/01/13(金) 23:09:47.16ID:AK6rhAJF
>>449

>任意の無限数列が出題可能という仮定には任意の無限数列の決定番号を(数値の大きさによらず)
>決定可能であることが含まれているので

High level people すぎて、意味分からん
数学以前に国語についていけない
0454現代数学の系譜11 ガロア理論を読む垢版2017/01/13(金) 23:17:40.99ID:AK6rhAJF
>>450
>出題された数列をS(0, n)としてそれから作られる100列の数列をS(1, n), S(2, n), ... , S(100, n)
 ・
 ・
>S(2, 1)=S(0, 2), S(2, 2)=S(0, 102), S(2, 3)=S(0, 202), ...
 ・
 ・
>同様にして
>S(99, 1)=S(0, 99), S(99, 2)=S(0, 199), S(99, 3)=S(0, 299), ...

High level people たちは、そういう未定義の記号や用語をほいほい使えるんだ・・(^^
すばらしいね

だがね、未定義の記号や用語をほいほい使えるのは、数学ではなく、文学だろ? それとも哲学か?
どうぞ、High level people たちだけで、議論してください
0455132人目の素数さん垢版2017/01/14(土) 01:51:25.08ID:B/CAkwIq
>>454
定義の部分を引用して
> 未定義の記号や用語をほいほい使えるんだ
> 未定義の記号や用語をほいほい使えるのは、数学ではなく、文学だろ? それとも哲学か?
と書き込むのは自虐ネタなのかもしれないが面白くも何ともないよ

>>453
決定番号が出題者(および解答者)が扱えないほど大きくなることを問題にすることは
(空)が箱の中身が空であることを表すことにして決定番号がdになるような数列anを
順番に箱に入れた(出題した)場合に a1, a2, ... , ak, (空), (空), ... , (空), ad, a(d+1), ...
となるから時枝戦略の是非ではなくて無限数列の出題可能性を問うことである

箱に数字を順番に入れて上の(空)をなくせば決定番号は求められることになる
0457現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 08:33:33.38ID:co7dEEx8
>>455

決定番号が出題者(および解答者)が扱えないほど大きくなる:”扱えないほど大きい”が未定義
だし

”(空)が箱の中身が空であることを表すことにして決定番号がdになるような数列anを
順番に箱に入れた(出題した)場合に a1, a2, ... , ak, (空), (空), ... , (空), ad, a(d+1), ...
となるから時枝戦略の是非ではなくて無限数列の出題可能性を問うことである”

ってさ
分からん(^^
勝手に、問題を作ってないか? 時枝記事>>2-4を離れて、全く別の問題を

>箱に数字を順番に入れて上の(空)をなくせば決定番号は求められることになる

(空)には、任意の数を入れられるってことでしょ? で? 何が言いたい?
決定番号がdということは、代表元(数列 r= r(s) (>>2より))が、r= (s1,s2,s3 ,・・・ad, a(d+1),・・・)ってことでしょ?
「出題可能性」とは? 上記は常に可能なので、”(空)をなくせば”って、なんのことだ?

ともかく、High level peopleは、現代数学の系譜11 ガロア理論を読む28 へどうぞ http://rio2016.2ch.net/test/read.cgi/math/1483314290/
0458現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 10:15:49.05ID:co7dEEx8
>>398 戻る
>時枝>>2-4のもう一つの大きな問題点は、定量評価ができていないこと
>・世に、すその重い分布なるものがあって、期待値(平均値)も分散も定義できない。大数の法則も、中心極限定理も不成立。そういう分布がある

定量評価の必要性について、”すその重い分布”ではないが、もっと簡単な具体例で考えてみよう

宝くじ発行方法で、
・1等、2等、3等、・・・、n−1等(ここまで当り)、n等(外れ)とする。
・全部の発行枚数は、10^n枚とする
・1等、2等、3等、・・・、n−1等 各1枚で、n等(外れ)は10^n-(n-1)枚発行となる
・当りは各1枚なので、当りの確率は、(n-1)/10^n
・nを大きくして行くと、当りの確率は→0、つまりゼロに近づく

ここで、100人の人がいて、各人宝くじを買うとする
だれが、一番良い当りになるか?
”当りの確率は→0、つまりゼロに近づく”のだから、そういう問いは無意味(∵全員外れだから)

つづく
0459現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 10:16:24.66ID:co7dEEx8
つづき

さて、この話と合わせて、>>39-43 の説明を読んでほしい
で、循環小数 ロバートソンの表示方法 a + b ( 10^ n /(10^ n - 1) )で、 b ( 10^ n /(10^ n - 1) )が、循環節。 aが、冒頭の循環していない有限小数部分

Hart氏のgame2>>47は、区間[0,1]の有理数を選ぶのだから、微調整でa + b ( 10^ n /(10^ n - 1) ) & a ∈ [0,1]としよう
つまり、簡単に、0<a<1 かつ 0<a + b ( 10^ n /(10^ n - 1) ) <1 と仮定する。(整数部分をゼロ(0)にすればいいだけなので、こう仮定してもgame2に対しては一般性は失わない)

時枝>>2の数列しっぽ同値類、つまり、 b ( 10^ n /(10^ n - 1) )の循環節が一致する有理数たち。異なるのは、aの冒頭の循環していない有限小数部分
ここで、簡単のために、同値類の代表rとして、a=0 を考える。代表は実質bそのもの

この場合、aの有限小数部分の長さをLとする(仮定より、0<a<1として、a=0.a1 a2 ・・・ an と少数表現できるとして、L=nとする)
少数第n+1位から循環節に入り、しっぽが一致するので、決定番号は d=n+1 =L+1 となる

決定番号は dを、上記の宝くじ発行モデルで考えてみると、Lが大きいほど発行枚数(ある長さLを有するaたちの数)は多い
Lに上限はない。だから、Lをどんどん大きくして、無限集合を考えると(∵同値類は無限集合であるから)、有限のLになる確率(当りの確率)は→0、つまりゼロに近づく

そうすると、”(当りが出たら)、自分が100人中1番になる確率は1/100で、一番以外の確率は99/100”という命題が、無意味であることが分かる
(∵全員外れだから)

おわり
0460現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 10:28:09.02ID:co7dEEx8
>>449-450
数学はディベートじゃないよ
議論に勝っても、数学の定理は得られない

数学の定理として、証明ができなければ無意味
逆に、議論はあくまで、証明を得るための通過点でしかない

だから、どうぞ、現代数学の系譜11 ガロア理論を読む28 http://rio2016.2ch.net/test/read.cgi/math/1483314290/
下記の証明をお願いします。

1.まず、Hart氏のgame2>>47 で、これは選択公理を使わないから、全てが可測の世界で収まるはず。そこで
 1)2列の比較で、勝つ確率1/2を示すこと(本来("trategy" なし)は確率1/10だ)
 2)100列の比較で、勝つ確率99/100を示すこと
 3)n列の比較で、勝つ確率(n-1)/n=1-ε (ε=1/n)を示すこと
2.次に、Hart氏のgame1>>47 で、これは選択公理を使うので、全てが可測の世界で収まるか不明だが、同じことを証明すること。
3.最後に、時枝>>2-3で、同じことを証明すること。
 
0461現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 10:58:02.39ID:co7dEEx8
>>397 戻る

時枝>>4
”n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか−−他の箱から情報は一切もらえないのだから.
勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.”

としている
時枝は、>>2-3と、”その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,当てられっこない”との矛盾の言い訳をしている
”勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる”のだと

だが、>>328
http://rio2016.2ch.net/test/read.cgi/math/1466279209/538
現代数学の系譜11 ガロア理論を読む20 2016/07/03(日) 23:54:57.90 ID:f9oaWn8A
(抜粋)
うーん,正直時枝氏が確率論に対してあまり詳しくないと結論せざるを得ないな
>>4 *)
>確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
の認識が少しまずい.
任意有限部分族が独立とは
P(∀i=1,…n,X_i∈A_i)=Π[i=1,n]P(X_i∈A_i)ということだけど
これからP(∀i∈N,X_i∈A_i)=Π[i=1,∞]P(X_i)が成立する(∵n→∞とすればよい)
これがきっと時枝氏のいう無限族が直接独立ということだろう.
ということは(2)から(1)が導かれてしまったので,
「(1)という強い仮定をしたら勝つ戦略なんてあるはずがない」時枝氏の主張ははっきり言ってナンセンス
確率変数の独立性というのは,可算族に対しては(1)も(2)も同値となるので,
”確率変数の無限族の独立性の微妙さ”などと時枝氏は言ってるが,これは全くの的外れ
(引用終り)
注*)原文は6だが、このスレでは>>4

なので、数学としては、全く言い訳になってない
0462現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 11:06:37.97ID:co7dEEx8
>>461 つづき

院生から上数学のプロに近い人たちはこれ(>>461)でおわりだろう
が、数セミの学部生クラスでは、本格的な確率論はまだだろうから、これでおわりとはいかないだろうし

数学的に当てられないものが、どうして当たるように見えるのか?
時枝が、はまった理由や、Hart氏>>47が、PUZZLES ”Choice Games”と称している(数学の論文にあらず)数学的理由付けをさぐってみたいというのが、私スレ主の動機だ

Tさんには、面白ねたを紹介してもらったと思っている。その意味では感謝している
Tさんは、最後まで覚醒できなかったようだが・・。それは残念だが仕方が無い
0465現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:15:56.34ID:co7dEEx8
>>433 関連

http://d.hatena.ne.jp/hiroyukikojima/20140523/1400837261
数学は、人生を総動員して理解するとよいのだ、とわかった - hiroyukikojimaの日記: 2014-05-23
(抜粋)
本書には、図形の位相的な形を分類するためのホモロジー群、空間でないものを空間化させてしまう位相空間理論、n次多項式の零点として定義される図形を代数的に捉えるイデアル理論、加減乗が定義された代数系である可換環を位相空間上の関数に仕立ててしまうスキーム理論などの入門編を解説しているのだけど、
これらはいずれも、数学科に所属していた頃に理解できずに落ちこぼれた素材なのだ。

 今でも忘れられないは、ホモロジー群を教わった位相幾何の講義のテストのときだ。たしか2時間ぐらいのテスト時間にもかかわらず、ま〜ったく何もわからず、ただただ答案用紙にトーラス(ドーナツ形)の絵を描いて時間が過ぎるのを待った。
早々に答案を(白紙のまま)提出して退出する勇気はなかった。あれほどの退屈な時間と、あれほどの屈辱の時間は、他に経験がない。


 それから、ゼミで代数多様体についての輪読をしたとき、それがマンフォード『代数幾何1』のほとんど最初のほうであるにもかかわらず、何も理解できないまま、夜な夜な英語の文面を呆然と見つめていたものだった。
可換環論が当然の前提知識となっており、それを理解しようとすると、その前提にはもっと初歩の代数系や集合論(ツォルンの補題など)が利用されており、それを紐解こうとすると、「無限後退」に陥るような気持ちになって、目眩がした。
「生まれ直すしかない、いや、生まれ直しても間に合うまい」という悲観が心に渦巻いた。このようにして、ぼくは、数学科の落ちこぼれになった。

つづく
0466現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:18:17.52ID:co7dEEx8
つづき
 でも、のちのちに、このときのぼくの認識は大間違いだったことがわかったのだ。当時のぼくがいけなかったのは、「数学を、目の前にある本や、講義のノートの、そのままの字面から理解しようとする」ことから一歩も外に出ようとしなかったことだった
ぼくは、「数学を理解する」という行為を限定的に閉じ込めてしまい、もっと広い外界にアクセスしなかったことが災いしたと気付くことになった
数学を(いや、どんな学問でもそれを)理解する、という行為は、人生を総動員して行うべきものであり、そうしさえすれば、(それへの愛と欲求がある限り)理解は不可能なことでもそんなに難しいことでもない、ということだとわかったのだ

 実際、経済学者となってからのぼくには、数学を理解するための作業が、数学科の学生だった頃と大きく違うものとなった。例えば、数学的なアイテムを理解しようとするとき、専門書に書いてあることをそのまま受け入れようとする努力を捨てるようになった
それが抽象的すぎて、とても自分の感覚ではついていけないと感じたときは、そこに書いてあることを自分によくわかる別の言葉や記号に置き換えていく作業をすることにした

具体例を挙げるなら、それは本書『数学は世界をこう見る 数と空間への現代的なアプローチ』のホモロジー群の説明に表れている。ホモロジー群というのは、チェインと呼ばれる幾何的対象の集合を高次元から低次元に並べて、その順番に沿って、境界作用素と呼ばれる写像を作る
そして、そのk番目の写像の像を(k+1)番目の写像の逆像で割って、剰余類を作る。その群がホモロジー群と呼ばれるものである。この定義は、何回読んでも、何をしているのかさっぱりわからなかった
だから、いったん、そういう抽象的な定義を鵜呑みにするのは諦めて、低次元で、それがどんな作業をしているのかを自分の言葉で理解してみようと試みた。最初に0次元で、次に1次元で。そしたら、だんだんと、それが意味していることがわかってきた
「要するに、これって、単なる中学1年生の文字式の同類項計算に毛が生えたものじゃん」という悟りに達したのである。こういう「自分の言葉での理解」を得たあとに、もう一度、一般的な定義に立ち返ってみると、チェインの集合間の境界作用素から剰余類を構成する手続きは、実にすっきりしていて、みごとな整合性を持っていることが実感できた

つづく
0467現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:19:11.02ID:co7dEEx8
つづき

ホモロジー群をこういう風に理解した背景には、ぼくが塾講師だった頃に、中学1年生に文字式を教えることで苦労した経験を持ったことも生きていた。文字式の同類項の計算というのは、一度わかってしまえば、あまりに当たり前なものである。
でも、初めて学ぶ中学生にとっては、非常に抽象的で敷居の高いものである。ここで、「抽象的な計算規則を何の抵抗もなく受け入れられる子供」と「実感のないものを安易に受け入れられない子供」に振り分けられる。これは能力の優劣ではなく、性格の違いであると言える。
前者だって、本当は「無批判に何でも信じてしまう」危ない資質だとも言えなくもないからだ。そして、後者のタイプの中学生たちに「文字式とは何か」を教えるのには、非常に苦労した。「文字式とは、ある計算の仕組みの全体を抽象化したもの」ということをなんとか伝えなければいけないからである。
この教育で苦労したぼくは、めぐりめぐって、それが自分のホモロジー群の理解に生きた、というのは奇遇なことだ。

 本書『数学は世界をこう見る 数と空間への現代的なアプローチ』の最終目的となったスキーム(の初歩的部分)を、ぼくが理解できたのは、もっと数奇な運命の巡り合わせである。数学科卒業後、数論に未練のあったぼくは、代数幾何の必要性を痛感していた。
とりわけ、フェルマーの最終定理が、楕円曲線上のゼータ関数の解析接続の問題である谷山予想に帰着され、それがワイルズによって解決されたのを目の当たりにしたぼくは、代数幾何をバックボーンにした数論幾何を勉強しなかったことを激しく後悔した。
そして、なんとか少しでもスキーム理論に近づけないか、と願うようになった。しかし、何度チャレンジしてもその願望は、撥ねのけられてしまった。そのときもまた、「数学を、目の前にある本や、講義のノートの、そのままの字面から理解しよう」としていたからだ。

つづく
0468現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:20:08.23ID:co7dEEx8
つづき

それが、ここ数年になって、急に様相が変化した。それは、数学者の黒川信重先生と対談で共著を作る、という仕事をしたことがきっかけであった。
とくに、去年、共著『21世紀の新しい数学』技術評論社を作る過程で、黒川先生に、「スキーム理論は、ゲルファント・シロフの定理に由来する」ということを教えていただいたことが大きかった。
ぼくは、複素関数論の層の理論あたりに由来するとばかり思っていたので、これには驚いた。「ゲルファント・シロフの定理」というのは、1940年くらいの定理だ。
ざっくり説明すると、位相空間X(コンパクトでハウスドルフ)が与えられたとき、X上の複素連続関数の環C(X)を作り、C(X)の極大イデアルの集合specmC(X)を作る。そのspecmC(X)にザリスキー位相を入れて、位相空間に仕立てると、それは元の位相空間Xと同相(要するに同じ空間)になる、という定理なのだ。
この定理を、イメージ的に解釈するなら、次のようになるだろう。すなわち、関数の空間Cがあるとして、その極大イデアルの集合に位相を導入すると、その位相空間の上にあたかも元の関数たちが生えているようになる、ということである。
「ゲルファント・シロフの定理」の証明は、『21世紀の新しい数学』の黒川先生による付録に載っている。証明は、(大学程度の数学知識があれば)簡単で短いので、ぜひトライしてみてほしい。

このような解釈に達すれば、スキームはこのイメージを一般化させたものだ、と気付く。可換環→素イデアル→素イデアルの位相空間→その位相空間上の関数が元の可換環と同じ、というニュアンスである。
加減乗があるというだけの可換環という対象に対し、その素イデアルの集合を位相空間に仕立て、元の環自身はその空間上の関数に見立てられる、というのは、あまりに奇抜な発想だと思う。発想というより、思想・哲学というべきものであろう。

つづく
0469現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:20:52.11ID:co7dEEx8
つづき

ぼくがスキームを理解するための最初の重いドアを蹴破ることができたのは、黒川先生と対談したことが最も大きいが、それだけではない。他にもさまざまなリサーチをしたのである。
例えば、Yahoo知恵袋で(笑い)スキームについての質問をいろいろ検索して、隠れて読みあさった。そこには、恐るべきことにも、相当なレベルの専門家が質問に対する回答を投稿していた。
そして、その中で、「簡単に理解したいならこれ」というふうに、ノイキルヒ『代数的整数論』という本がお勧めとして挙げてあったので、さっそく購入した。この本は、全体としては難しい本だが、随所随所に、目からうろこの説明も導入されていた。
とりわけ、1次元スキームの解説はわかりやすく、これを読んだことも突破口になった。また、知り合いの小木曽啓示さんの本『代数曲線論』朝倉書店も一部読んだ。小木曽さんの数学の理解と、その説明能力は突出したものであることを(知人として)心得ていたからだった。
この本を読んだことで、ぼくは層のイメージを掴むことができ、コホモロジー群(ホモロジー群を局所的な関数たちに拡張したもの)の発想を理解することができた。これらの経験のあとに、何度も挫折していた上野健爾『代数幾何』に再チャレンジをしたら、不思議なことに相当に受け入れられるようになっていたのである。

つづく
0470現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:21:26.05ID:co7dEEx8
つづき

そんなふうに、長い時間をかけて、スキーム理論の入場口をようやく通り抜けたぼくは、この理論の楽しさを(そうする資格があるかは自信がないが)一般の数学ファンにも広めたいと思うようになったのだ。それが、本書『数学は世界をこう見る 数と空間への現代的なアプローチ』PHP新書を書いた最も大きな動機である。

言いたいことは、要するに、「数学を理解する、という行為は、人生を総動員して行うべきものであり、そうしさえすれば、愛と欲求がある限り、理解は不可能なことでもそんなに難しいことでもない」、ということである。

人生を総動員する、ということを具体的に言うと、「自分の言葉で理解しようと試みる」とか、「他人(特に中高生)に説明してみる」とか、「友人の専門家の説明にすがる」とか、「わからない本はすぐ捨て、本のはしごをする」とか、「これだと思う先生の講義に、ずうずしく、もぐってしまう」とか、「Yahoo知恵袋で質問する」などとなろう。
さらにもう一つ付け加えるなら、「わからないけど、本に書いちゃう」というものあるかもしれない(これは冗談だからね)。
(引用終り)
0471現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:34:48.77ID:co7dEEx8
>>465 関連

http://d.hatena.ne.jp/hiroyukikojima/20130711/1373548018
「空間」の作り方 - hiroyukikojimaの日記: 2013-07-11
(抜粋)

この三つともに出てくる、つまり、対談にも、図解にも、レクチャーにも登場するのが、「ゲルファント・シロフの定理」というものだ。今回は、これについて、ちょっと前振りをしておこうと思う。

この定理が、この本に収録されることになったそもそものきっかけは、ぼくが黒川先生に「グロタンディークのスキーム理論は、どんなところからアイデアが出てきたのですか?」という愚直な質問をしたことだった。
スキーム理論というのは、整数からイデアルへ - hiroyukikojimaの日記にも書いたけど、環(加減乗が定義されている代数的な集合)から空間を作りだす技術のこと。
ぼくはてっきり、カルタンや岡潔の「層の理論」が源泉なんじゃないか、と思ってたから聞いたんだけど、そこで黒川先生の口から飛び出したのが、この「ゲルファント・シロフの定理」だったのだ。ぼくが子供じみた興味津々の表情をしたせいか、黒川先生は「証明は簡単なので、付録として、本に収録しましょうか」という提案をしてくださった。
それで、これを膨らました「環と空間」というみごとなレクチャーを執筆してくださることになったわけなのだ。瓢箪から駒というか、棚からぼた餅というか、いやあ、何でも恥ずかしがらずに聞いてみるものである。

つづく
0472現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:35:23.37ID:co7dEEx8
つづき

 「ゲルファント・シロフの定理」というのは、位相空間から環を作って、その環から元の位相空間を再現する方法論だ。おおざっぱには、

位相空間→複素数値連続関数の集合→極大イデアルの集合→元の空間

という構造になっている。もうちょっと詳しく説明すると次のようになる。

 今、位相空間Xがあるとしよう。位相空間というのは、なんらか遠近感が導入された空間のことだと理解すればいい。そして、その空間は有限的な広さで(コンパクト)、その遠近感が「どの2点も遠近感的に離れている」(ハウスドルフ)とする。
次に、その空間X上の複素数値連続関数の集合をC(X)と書こう。(最初のエントリーでは「連続」が抜けてましたので、修正しました)。C(X)には加減乗が定義できるので環の一つと見なすことができる。
そして、この関数たちのなす環C(X)の極大イデアルの集合をYとする(極大イデアルについては、整数からイデアルへ - hiroyukikojimaの日記を参照のこと)。ちなみに、極大イデアルの集合Yには、(ザリスキー位相という)うまい遠近感を導入することで位相空間に仕立てることができる。
このとき、元の位相空間Xとこの極大イデアルの成す位相空間Yが、遠近感が同じ空間(同相)となる、というのが、「ゲルファント・シロフの定理」の定理なのである。図形的なイメージが欲しい人は、本書のぼくによる「図解」で(ただし、有限位相空間のみ)、きちんとした証明が知りたい人は、黒川先生のレクチャー「環と空間」で(こっちは一般論)お読みくださいませ。

つづく
0473現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:36:18.87ID:co7dEEx8
つづき

この定理が面白いのは、空間上の関数があって、それが環の構造を持ってたら、その極大イデアルたちに元の空間がそのまんま映し出される、ということを教えてくれることなのだ。これには、「空間の持つ性質を探るには、その空間上の関数を調べればいい」という現代数学に普遍的に共有されている発想が宿っている。

ここからは、ぼくの類推だけど(黒川先生に聞いたわけじゃない、ということ)、グロタンディークは、こう閃いたんじゃないかな、と思ったのだ。
すなわち、空間上の関数の環に元の空間が映し出されるなら、逆に、環が先にあったら、そのイデアルたちを空間化して、その空間上で元の環を関数に仕立てることが可能なんじゃないか、と。
これが可能になれば、「環の要素を、関数と化させることができる」ということになる。例えば、整数の成す環にこれを用いれば、整数は単なる一個の数であるにもかからわず、これをある空間上の関数、つまり、「空間の点をインプットすると、何かがアウトプットする」関数に仕立てることができるのである。
ただし、グロタンディークが空間化したのは、極大イデアルではなく、素イデアルだったのだ。実際、この方法で、スペックZ(各素数の倍数の成すイデアルと0イデアル)を空間化して、各整数をこの空間上の関数と化させることに成功したわけなのである。

 いやあ、数学者の想像力というのは、ほんとにすさまじいものがあるわい。
(引用終り)
0474現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:43:22.63ID:co7dEEx8
>>463 関連

http://blog.livedoor.jp/calc/archives/50442748.html
学校では教えてくれない数学:層: 2006年04月04日
(抜粋)
相変わらず、層が何者か、つかめないまま、時間だけが過ぎていきました。
(思い立ってから、25年以上も経過していました!)

ところが、最近、可換環論の初歩をやっていて、ふとそのつながりで、少し読んで見るとあら不思議!

層 が 何者か 解ったような気がしました。
足がかりが見え(た気がし)ました。

そのとき、幸せな感情 そして 喜び が全身を包みました。

突然ですが、層の基礎勉強を始めます。

連接層(+脆弱層)、スペクトル系列、層係数のコホモロジー を一気に、2006年内に自分のものにするために少し頑張ります。

今日は、夜、バレーボールの練習付き添いをしてから、じっくりと見直して取り組みます。

層 よ、待っていろよ、必ず お前を征服してやる!
そして、ハーツホーンの本を、2007年内に読破するぞ!

その次は、初心者向けの層理論へのイントロ本 なんかを書きたいですね。

つづく
0475現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:45:12.24ID:co7dEEx8
つづき
この記事へのコメント
お久し振りです。
僕自身は、リーマン面の理論(複素関数論)で、正則関数の層(つまり、正則関数の芽(germ)を解析接続していってできたもの)を最初に学んだので、あまり抵抗なかった記憶があります。解説接続をモダーンに表現したものですよね。
余計なおせっかいですが、(多変数の)複素関数論とかを先にやられると、イメージが掴みやすいかも、です。
もっともジーゲル大先生は、お気に召さないらしく、(例の3巻本の)序文で「その後一般的になった、抽象的な用語は、ここでは用いない」と宣言されてますが(笑)。
2006年04月04日 20:06

◇sukarabeさん
アドバイスありがとうございます。
多変数関数論は、岡の嫌う記述形式だと思うのですが、でも愚人の私には、これがよさげです。不定域イデアルでは、いまいちよく解りません。

層は、正則関数 と その解析接続 が一つのイメージなのでしょうけど、もっと、包括的な捕らえ方が出来ていなかったのです。
・茎と芽のイメージ
・関数概念の拡張の意味
・Hyperfunctionの記述言語としての存在(代数解析学、D加群を含む)
・スキームとの関連(代数幾何学の記述言語)
・ファイバー束との関連
・層係数のコホモロジー
などなど。でも、ふと、ある部分だけですが、”見えてきた”のです。
まだ、あやふやなイメージなので、もっと強固に、具体例をふんだんにするために、今年戦います。
2006年04月04日 23:09

不定域イデアルの概念は正に層そのものと言えるのではないでしょうか。岡潔さんが嫌うのは、自分が考え出したものに別の名前を付けられ、別の定式化がされ、ある意味、盗まれたと感じられたのでは、と思ったりもします。正則関数の層が連接層になるというのは、言葉は違えども、岡潔さんが発見し、証明されたことですし。
2006年04月04日 23:35

◇sukarabeさん
換骨奪胎(かんこつだったい)という言葉がぴったりなのでは、と思います。

でも、理論の創始者の意図とは別の発展をたどるのは、どの理論も同じでしょうね。

脆弱、連接 なんて、よくも悪くも現代数学の威力を感じさせます。
ひとたび概念と記述が確立すると、他の多くの分野に適用される。

そんなことを思います。
2006年04月04日 23:54
(引用終り)
0476現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:52:32.79ID:co7dEEx8
>>474 関連

https://www.math.tohoku.ac.jp/~kuroki/Articles/sheaf_no_hanashi.txt
(黒木 玄 (くろき げん))
Subject: 層の話
Organization: 東北大学理学部数学教室 [kuroki@math.tohoku.ac.jp] (7-3221)
Until: 1995/05/30
(抜粋)
「層 (= sheaf = faisceau)」の話をせよと言われても、層の言葉はあまりに
も基本的過ぎるので説明するのが大変です。「層」の例を挙げよという要求は、
ほとんど「集合」の例を挙げよという要求にかなり近い感じがします。

さてどうしましょう?どうしたら良いかわからないので、歴史的にも(加群の)
層の理論の発展の motivation の一つになったと思われる Cousin (クザン)の
問題を例に説明したいと思います。実は、多変数函数論におけるクザンの問題
には第1と第2があるのですが、ここでは第1問題を1変数複素函数の場合に限っ
て説明することにします。

(ここで、層(sheaf)やら芽(germ)やら意味ありげな言葉遣いが出てきますが、
どうしてそのような言い方をするかは、数学的にはどうでも良いことなので省
略します。他にも茎(stalk)という言葉もあるのですが、この辺の名前の付け
方は個人的には大変良いものだと感じています。)

要するに、正則函数や有理型函数の層を考えるということは、複素平面の一部
分(開集合を考える)のみで定義されている正則函数や有理型函数も考えるとい
うことに他ならないのです。単にこれだけのことです。

層のコホモロジーの理論があるからこそ、層の理論は有用である
と言えます。

つづく
0477現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:52:47.95ID:co7dEEx8
つづき

§5. 局所と大域という発想を越えて

層の理論の立場では、局所と大域の関係は次のような問題に定式化されます。

[問題(***)] まず、X という空間上の層達の間に層の意味で何らかの関係があ
る状況を考えよ。(例えば、(19)のような層の short exact sequence がある
とせよ。層は局所的な情報も含んでいるので、層としての関係は局所的なもの
だと考える。) 層の関係から、大域的切断の空間 F(X) の間にどのような関
係が得られるか?大域的な切断の空間 F(X) のみを考えると、層 F 自身の
情報は失われるであろう。それを補完するものは何か?

これの一つの答が、H^0(X,F) = F(X) から始まる H^1, H^2, ... という層
のコホモロジーの理論なのです。

局所と大域の関係の研究から始まった層の理論は、このように、「層と層の間
の写像や空間と空間の間の写像を考え、それらの間にどのような関係が付けら
れるか?」というより徹底したアイデアのもとで一般論が得られています。
(categoryとfunctorの発想。) この道具は特に代数幾何という分野では無くて
はならないものとなっています。

次に、有理型函数の特異性の情報だけを層として取り出すことができることを
説明しましょう。ここで、初めて non-trivial な層に出会うことになります。

有理型函数の特異性の情報だけを取り出してできる層、Pは直接的には次のよ
うに定義されます。
(引用終り)
0478現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 13:58:14.55ID:co7dEEx8
>>476 関連

http://www.math.tohoku.ac.jp/~kuroki/index-j.html
黒木玄のウェブサイト:

https://ja.wikipedia.org/wiki/%E9%BB%92%E6%9C%A8%E7%8E%84
黒木 玄(くろき げん)は、日本の数学者。東北大学理学部数学科助教。インターネット上の掲示板の創成期に「黒木ルール」を発案し、「黒木のなんでも掲示板」によって実践した。
(抜粋)
来歴
秋田県出身。秋田県立本荘高等学校を経て、東北大学理学部数学科卒業。東北大学大学院理学研究科数学専攻修士課程修了。名古屋大学で博士(数理学)を取得。数理物理学への表現論の応用、共形場理論と量子可積分系などを研究している。
0479現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 14:03:11.22ID:co7dEEx8
>>477 追加引用

[問題(***)] まず、X という空間上の層達の間に層の意味で何らかの関係があ
る状況を考えよ。(例えば、(19)のような層の short exact sequence がある
とせよ。層は局所的な情報も含んでいるので、層としての関係は局所的なもの
だと考える。) 層の関係から、大域的切断の空間 F(X) の間にどのような関
係が得られるか?大域的な切断の空間 F(X) のみを考えると、層 F 自身の
情報は失われるであろう。それを補完するものは何か?

これの一つの答が、H^0(X,F) = F(X) から始まる H^1, H^2, ... という層
のコホモロジーの理論なのです。

まあ、いろいろな見方があると思いますが、これは次のようにもっと一般化で
きる形で考えることができます。まず、X から一点のみからなる空間 pt={p}
への唯一の写像 f を考えます:

(23) f : X → pt, f(x) = p.

pt には位相空間の構造が一意的に入ります。(pt の空でない開集合は pt 自
身だけ。) pt 上の層は唯一の集合(もしくは加群やベクトル空間)を決めれば
決定されるので、pt 上の層と単なる集合(もしくは加群やベクトル空間)は同
一視することができます。

X 上の加群もしくはベクトル空間の層Fを与えたとき、f を通して「FのX上
での積分」が pt 上の加群もしくはベクトル空間層として定義できるとうれし
いでしょう。その一つの答は

(24) (FのX上での積分) = H^0(X,F) = F(X)

と定義することです。しかし、これではFの情報が落ち過ぎてしまいます。そ
こで、

(25) (FのX上での積分) = (H^0(X,F), H^1(X,F), H^2(X,F),...)

と考えることによって、ある程度満足な理論を展開することができます。



局所と大域の関係の研究から始まった層の理論は、このように、「層と層の間
の写像や空間と空間の間の写像を考え、それらの間にどのような関係が付けら
れるか?」というより徹底したアイデアのもとで一般論が得られています。
(categoryとfunctorの発想。) この道具は特に代数幾何という分野では無くて
はならないものとなっています。
(引用終り)
0480132人目の素数さん垢版2017/01/14(土) 14:32:32.02ID:B/CAkwIq
>>457
> r= (s1,s2,s3 ,・・・ad, a(d+1),・・・)
で決定番号がdになるということは出題者が代表元のs1, ... , s(d-1)と必ず異なるように
a1, ... , a(d-1)を箱に入れたということによる

> a1, a2, ... , ak, (空), (空), ... , (空), ad, a(d+1), ...
上のa1, a2, ... , akは出題者がa1から順番に箱にk個数字を入れたことを表すがスレ主が
書いた「決定番号の確率分布」と同様に考えるとkの確率分布も「裾が超重い分布」になって
同じ確率分布になる

「裾が超重い分布」から2つ数字を取り出してもそれらの評価ができないというのがスレ主の
主張であったから2つの数字が出題者が箱に入れた数字の個数kと決定番号dであっても
同様の主張が成り立たなければならない

> 上記は常に可能なので、”(空)をなくせば”って、なんのことだ?
「裾が超重い分布」からkとdを取り出してたとえばk=d-1となったら無限数列が構成可能であり
a1, a2, ... , a(d-1), ad, a(d+1), ... となる
kがそれよりも小さければa1, a2, ... , ak, (空), (空), ... , (空), ad, a(d+1), ...

> 「出題可能性」とは?
> (空)には、任意の数を入れられるってことでしょ?
それは「裾が超重い分布」からkとdを取り出してからkとdの値を評価しないとできないでしょう?
k=d-1とすることが常に可能ならば(空)には任意の数を入れられることになるから無限数列が
出題可能になるがそれと同時に「裾が超重い分布」から取り出した有限個の決定番号の評価も
(分布を無視して)できることになる

>>461
> P(∀i∈N,X_i∈A_i)=Π[i=1,∞]P(X_i)が成立する(∵n→∞とすればよい)
> これがきっと時枝氏のいう無限族が直接独立ということだろう.
無限数列の数当てだと極限値の独立性が言えないというのが時枝解法の趣旨であって
極限値である代表元の決定番号より後ろの全ての項の独立性は誰も示していない
0481現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 14:43:03.61ID:co7dEEx8
>>478 関連(関連しているのは、”4.2.1 連接層”)

「超弦理論に出てくる数学」いいわ。関西ふうはちゃめちゃ感がいいね(^^
http://kansaimath.tenasaku.com/?page_id=1276
第8回 スケジュール | 関西すうがく徒のつどい: 201603
http://kansaimath.tenasaku.com/wp/wp-content/uploads/2016/04/sst-1.pdf
「超弦理論に出てくる数学」関西すうがく徒のつどい (セシル☆ 2016(3月21日)
(抜粋)
注意:この講義ノートは「関西すうがく徒のつどい」60 分講演のためにつ
くられたものに多少の加筆修正を加えたものである.
1 アブストラクト
弦理論とは, 物質の基本単位を, 大きさが無限に小さな0次元の点粒子では
なく1次元の拡がりをもった弦であると考える理論である. そこに超対称性
という考えを加え, 拡張したものが超弦理論だ. たったこれだけの仮説が現在,
宇宙の姿やその誕生のメカニズムを解き明かし, 同時に原子, 素粒子, クォー
クといった微小な物のさらにその先の世界を説明する理論の候補として, 活発
に研究されている.

また, 超弦理論で出てくる10次元の中にはD ブレーンと呼ばれる様々な
次元の拡がりを持ったソリトン(孤立波)が存在する. 弦の中でも, 開いた弦
は, その端がD ブレーンに張り付いており, 重力子などの閉じた弦はD ブレー
ンの間を飛び交っていると考えられる.
このような物理の理論としての超弦理論だが, 数学的にも非常に魅力的な理
論だと言える. 超弦理論を詳しく調べようとするとき, 私たちは最先端の数学
に頻繁に出会う.
この講演では, コンパクト化された6次元としてのカラビヤウ空間,D ブレー
ンとしての連接層の導来圏など, 超弦理論に現れる数学概念の紹介をする.
超弦理論に関わる数学はあまりにも多岐にわたるので、紹介できるものは
極々一部でしかない. これを機会に自分で調べてみよう!となってもらえれば
良いと思う.
(引用終り)
0482現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 15:14:17.22ID:co7dEEx8
>>480
どうも。スレ主です。

まず、Tさんにしたのと同じ質問>>15をしよう " あなたは、いわゆる文系の数学で終わって、いま趣味で大学レベルの数学の勉強をしていると見た "

その上で
>で決定番号がdになるということは出題者が代表元のs1, ... , s(d-1)と必ず異なるようにa1, ... , a(d-1)を箱に入れたということによる

まあ、そうだが、しっぽの不一致だから、ad ≠ sd だけで足りるでしょ

>「裾が超重い分布」から2つ数字を取り出してもそれらの評価ができないというのがスレ主の主張であったから

違うよ。確率の評価ができないと言っているのだ。2列で確率1/2などが導けないぞと

>「裾が超重い分布」からkとdを取り出してたとえばk=d-1となったら無限数列が構成可能であり
>a1, a2, ... , a(d-1), ad, a(d+1), ... となる
>kがそれよりも小さければa1, a2, ... , ak, (空), (空), ... , (空), ad, a(d+1), ...

意味分からん。無限数列の構成可能性は、分布とは無関係。
>>2に”どんな実数を入れるかはまったく自由,・・・. もちろんでたらめだって構わない.”と有るとおり

>それは「裾が超重い分布」からkとdを取り出してからkとdの値を評価しないとできないでしょう?

そのkとかdとかはなんだ? High level people、言葉を自分勝手に、未定義で使う人よ

>無限数列の数当てだと極限値の独立性が言えないというのが時枝解法の趣旨であって

"極限値の独立性" ? なんだそれは。

>極限値である代表元の決定番号より後ろの全ての項の独立性は誰も示していない

意味分からん。上記引用のように>>2"でたらめだって構わない"と有るとおり。
そこで、>>2での数列s^kが、ランダム=”でたらめ”=”独立な確率変数の無限族 X1,X2,X3,…”>>4 から成るとしよう

s^kのしっぽも当然、”独立な確率変数の無限族 X1,X2,X3,…”の一部であり、しっぽだから、それは独立な確率変数の無限族と解せられるよ
それを否定したら、>>4”確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される”に反するだろうね

もうもう、相手するのはこれで十分だろ
早く 28へ
0483現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 15:54:19.81ID:co7dEEx8
>>481 関連

http://phasetr.com/blog/2016/11/23/%E5%B1%A4%E3%81%A8%E3%82%B3%E3%83%9B%E3%83%A2%E3%83%AD%E3%82%B8%E3%83%BC%E3%81%A8-riemann-%E9%9D%A2-%E9%BB%92%E6%9C%A8%E3%81%95%E3%82%93%E3%83%84%E3%82%A4%E3%83%BC%E3%83%88%E3%81%BE%E3%81%A8%E3%82%81/
層とコホモロジーと Riemann 面: 黒木さんツイートまとめ | 相転移プロダクション: 2016 11.23
(抜粋)
黒木玄 Gen Kuroki
#数楽 私が大学数学科2?3年生に「層とかコホモロジーとかを勉強したいのですが?」と聞かれたとき、最も易しい教育的な参考文献として紹介するのは
Gunning R. Lectures on Riemann surfaces (Princeton, 1966)
2016年8月8日 23:57

層とかコホモロジーの類は、何の役に立つのか何も理解せず、わけもわからず勉強するのは効率が悪く、Gunningさんのリーマン面の教科書のような易しい応用から入った方が得だと思う。一度勘所がつかめて怖くなくなればそこから先は普通のお勉強。
2016年8月9日 00:16

普通なら「たかがコンパクトRienann面のために層のコホモロジーの理論の準備をするのは重過ぎる」となってしまうと思うのですが、層とコホモロジーの話をタイプ印刷で35頁ほどにまとめるという凄技を見せてくれました!非常に教育的な本だと思います。
2016年8月9日 00:38

この本の存在を知ったのは理論物理学者達が引用していたから。Belavin-Polyakov-Zamolodchikovを初めて読んだときSchwarzian derivativeというのが出て来て「なんじゃこれは」と思ったのですが?続く

続き?、答えはGunningさんの本に書いてあった。現在ではウィキペディアまである→ https://en.m.wikipedia.org/wiki/Schwarzian_derivative
2016年8月9日 00:50
0484現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 16:05:22.26ID:co7dEEx8
>>481 関連

連接層=(coherent sheaf)
https://ja.wikipedia.org/wiki/%E9%80%A3%E6%8E%A5%E5%B1%A4
連接層
(抜粋)
数学では、特に代数幾何学や複素多様体やスキームの理論では、連接層(coherent sheaf)とは、底空間の幾何学的性質に密接に関連する、扱いやすい性質をもった特別な層である。

連接層は有限ランクのベクトルバンドルや局所自由層の一般化とみなすことができる。ベクトルバンドルとは違い、連接層のなす圏は、核(英語版)や余核や有限の直和といった操作で閉じている「素晴らしい」圏である。準連接層(quasi-coherent sheaf)は連接層における有限性の仮定をはずしたもので、ランク無限の局所自由層を含んでいる。

代数幾何学や複素解析の多くの結果や性質が、連接層、準連接層やそれらのコホモロジーのことばで定式化される。


岡の連接定理は、複素多様体上の正則函数の層が環の連接層であるという定理である[3] 。
0485132人目の素数さん垢版2017/01/14(土) 16:18:39.17ID:B/CAkwIq
>>482
> そのkとかdとかはなんだ

なぜ書いてあることが分からないのか?
> 決定番号がdになる
> 箱にk個数字を入れたことを表すが
> 数字の個数kと決定番号d

> 確率の評価ができないと言っているのだ。2列で確率1/2などが導けないぞ
確率の評価ができないだけなら「裾が超重い分布」から決定番号を2つ(d1, d2)まず取り出して
「裾が超重い分布」と無関係な状態にしてから改めて2つの決定番号だけで確率を計算すればよい

> 無限数列の構成可能性は、分布とは無関係
そのような仮定の元では決定番号の比較も分布とは無関係になるから2列で確率1/2などと
できると仮定してよいことになる


> "極限値の独立性" ? なんだそれは。
数列と代表元の差をとると決定番号より後ろは全て0になるという事を元に決定番号より
後ろの数列の項は全てまとめて決定されるので独立性は確かめられない

> 確率変数の無限族は,任意の有限部分族が独立のとき,独立
これはシッポの独立性は確かめられず数当て戦略が成立する余地があるから
> 確率変数の無限族の独立性の微妙さをものがたる, といってもよい
0486132人目の素数さん垢版2017/01/14(土) 18:34:08.17ID:i3nytKZe
>>474
お久しぶりです。おっちゃんです。
>そして、ハーツホーンの本を、2007年内に読破するぞ!
ハーツホーンには演習問題の中に重要な結果が含まれていて、
難しい問題が多いことなどからして、多分年内読破はムリだったろうな。
じゃ、寝る。
0487現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 19:04:10.06ID:co7dEEx8
AIと数学
http://www.j-cast.com/2017/01/06287546.html?p=all
プロ棋士はもはや囲碁AIに勝てない 進化型アルファ碁「Master」の衝撃 : J-CASTニュース: 2017/1/ 6
(抜粋)
「囲碁AI(人工知能)はプロ棋士の能力を遥かに超えてしまった。さらに進化が進み追いつくことはできないだろう」。囲碁AIにくわしいプロ棋士の大橋拓文六段はJ-CASTニュースのインタビューにそう語った。

「Master」と名乗るアカウントがインターネット囲碁サイト「東洋囲碁」で確認されたのは2016年12月29日。
あまりの強さから大人気マンガ「ヒカルの碁」の登場人物・サイ(藤原佐為)ではないのか、などと取り沙汰されたが、グーグルは日本時間の17年1月5日、自社が開発した囲碁AIだと公表した。既に世界のトッププロ相手に60連勝していて、かなう棋士はもういないのだという。

16年末にネットに忽然と現れる

グーグルが囲碁AIに関する論文を公表していたことから、それを参考に「アルファ碁」に追いつこうと、新たな囲碁AI開発ラッシュが始まった。囲碁対戦サイトでは現在、中国の「刑天」など複数の囲碁AIが対戦をしていて、勝率は9割というものも出ている。

そして、16年末に忽然と現れたのが「Master」だった。17年1月1日からは中国発の囲碁サイト「野狐囲碁」に出没し、誰も敵わず勝率は100%だった。

つづく
0488現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 19:04:53.07ID:co7dEEx8
つづき

トッププロ相手に60戦60勝

トッププロとの対戦で「Master」は勝ち続け、16年大晦日までに「東洋囲碁」で30連勝、17年1月5日までに「野狐囲碁」で30連勝、合わせて60連勝と勝率は100%となった。

ネット上ではあまりの強さに「ヒカルの碁」のサイだと持てはやされた。囲碁の強い人でも最高勝率はだいたい6割で、いくら強い人でもミスが出て100%の勝率は不可能。勝ち方からもAIだと推測された。

「Masterが10勝した時点では、誰かが破るだろう、という雰囲気でしたが、30勝を超えると、全世界がMasterの強さに気づきました。50勝でもうお手上げ、という感じでしたね」

と、対戦を見ていた大橋六段は打ち明ける。最初の10局を見た段階で未曽有の囲碁AIだと確信した、ともいう。

16年3月に行われた「アルファ碁」とイ・セドル九段との対戦で、グーグルは1敗もしない完全勝利を確信していたのではないか、と大橋六段は予想している。1敗のショックから「アルファ碁」を公の場から外し更なる開発を進めたのではないか、というのだ。
「Master」は勝率100%で、トッププロから60連勝したことで、胸を張ったのだろうという。その「Master」との対戦はどのようなものなのだろうか。

つづく
0489現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 19:05:10.90ID:co7dEEx8
つづき

人間では理解できない手が30手以内に出てくる

人間ならば、構想を立て、流れを読みながら勝利を引き寄せる。しかし、「Master」にはそれがない。常に局面ごとの最適解を探索し、勝利を求める。囲碁はおよそ200手で決まるものだが、大橋六段は、

「人間では理解できない手が30手以内に出てくる。しかし、後にそれが良い場所になってくる不思議、マジックのようだった」

と説明し、30手までに「これはおかしい」と不安になり、50手で「ヤバイ」、100手で「大差で負ける」。最後は「お稽古してもらっている」気分になった、という。

それでもいつかはテレビゲームのように攻略法が見つかるのではないのか、と聞くと、

「無理なのではないでしょうか」

と大橋六段は語った。例えば現在5歳の囲碁の天才に囲碁AIの棋譜を記憶させ続ければ10歳の頃には攻略は可能になるかもしれないが、それは5年前の囲碁AIの性能に対する攻略であり、囲碁AIはさらに遥か先に進化しているからだという。

「絶対に勝てないからといってAI鬱、AIシンドロームなどと落ち込む必要はなく、囲碁界はこれからいかにAIを活用して全体を盛り上げていく道を探り、明るい関わり方をしていかなければならないと感じています」

そう大橋六段は話している。
(引用終り)
0490現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 19:42:10.14ID:co7dEEx8
>>485
>なぜ書いてあることが分からないのか?

http://socratesbiz.net/wp/tsutaekataga9wari/
5分でマル分かり!『伝え方が9割』まとめ | コピリッチ: 2016/02/11
(抜粋)
目次
伝え方が9割を、5分でまとめてみました。

どうも、コピーライターの角田です。

今回はコピーライター佐々木圭一さんの著書

「伝え方が9割」の要約です。

伝え方が9割は2013年ビジネス書ランキング1位に輝いた大ベストセラー!

「コピーライティング」の知識を一般向けに応用して

すぐに使えるテクニックが紹介されています。

※もっとマニアックで高度な”伝える技術”とか、

ビジネスで使える文章術などは

このブログの別の記事でご紹介していますので、

以下の関連記事もあわせて読んでみてください!
0491現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 19:53:10.14ID:co7dEEx8
>>485
> そのkとかdとかはなんだ
なぜ書いてあることが分からないのか?
> 決定番号がdになる
> 箱にk個数字を入れたことを表すが
> 数字の個数kと決定番号d

>>482 から再録するとこうだろ

”>それは「裾が超重い分布」からkとdを取り出してからkとdの値を評価しないとできないでしょう?
そのkとかdとかはなんだ? High level people、言葉を自分勝手に、未定義で使う人よ”

私の問いの趣旨は

”「裾が超重い分布」からkとdを取り出して”とあるだろ?
続いて
”取り出してからkとdの値を評価しないとできないでしょう?”とあるだろ?

この書きぶりだと、普通の決定番号のdと、普通の”数字の個数k”とは、読めないよ
”「裾が超重い分布」から・・・取り出”す必要ないよ、普通の決定番号のdと、普通の”数字の個数k”とは
つまり、普通と違うってことを言いたいと読んだが違うのか?
0492現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 20:03:29.65ID:co7dEEx8
>>485 つづき
>確率の評価ができないだけなら「裾が超重い分布」から決定番号を2つ(d1, d2)まず取り出して
>「裾が超重い分布」と無関係な状態にしてから改めて2つの決定番号だけで確率を計算すればよい

それは数学でなくなっているだろう?

>> 無限数列の構成可能性は、分布とは無関係
>そのような仮定の元では決定番号の比較も分布とは無関係になるから2列で確率1/2などと
>できると仮定してよいことになる

むちゃくちゃ。時枝>>2"どんな実数を入れるかはまったく自由,・・・すべての箱にπを入れてもよい.もちろんでたらめだって構わない."とあるよ
つまり、どんな分布にしようと自由だと書いてあるから、「無限数列の構成可能性は、分布とは無関係」なんだぜ・・・、おいおい

>数列と代表元の差をとると決定番号より後ろは全て0になるという事を元に決定番号より
>後ろの数列の項は全てまとめて決定されるので独立性は確かめられない

むちゃくちゃ。完全に High level people だね。独立性は、差をとる前でしょ、当然に・・・

”> 確率変数の無限族は,任意の有限部分族が独立のとき,独立
これはシッポの独立性は確かめられず数当て戦略が成立する余地があるから
> 確率変数の無限族の独立性の微妙さをものがたる, といってもよい”

この奇妙な引用文の間に自分の1行を挟む表現はなに?
ポエムか? ここは数学板なんだけど? 腐った板だがね・・・

追伸
High level people は、早く 28へどうぞ
0493現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 20:12:07.30ID:co7dEEx8
>>486
おっちゃん、どうも。スレ主です。
レスありがとう

もう、時枝擁護派のTさんは、あっち28へ行ったから、引っかき回してもらう必要はなくなった
だから、その程度の軽いカキコで頼む

たまには、あっち28にも書いてやってくれ
さびれているから、歓迎されるとおもうぜ
0494現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 20:31:56.00ID:co7dEEx8
あまり引用されていないかも、ベイラー大学 Department of Philosophy、Bulletin of the Polish Academy of Sciences - Mathematics 61 (2013)

https://arxiv.org/abs/1208.3187
 "On the Law of Large Numbers for Nonmeasurable Identically Distributed Random Variables"

著者
http://alexanderpruss.com/cv.html
(抜粋)
Curriculum Vitae
Alexander R. Pruss September, 2016 Department of Philosophy Baylor University

Publications in Mathematics and Related Fields
Peer-reviewed articles

“On the Law of Large Numbers for nonmeasurable identically distributed random variables”, Bulletin of the Polish Academy of Sciences - Mathematics 61 (2013) 161?168
(引用終り)


https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%83%A9%E3%83%BC%E5%A4%A7%E5%AD%A6
ベイラー大学(Baylor University)は、アメリカ合衆国テキサス州ウェイコにあるミッション系私立大学。

概要

キリスト教プロテスタントの一派である南部バプテスト派により設立された私立大学であり、キリスト教精神に基づいた教育を特色としている。米国で大いに利用されているUS News Ranking 2008年度で一般大学のランキングではtier2と見なされる75位にランクインしている。
日本の西南学院大学とは姉妹校の関係で、梅光学院大学大学院、法政大学とは交換留学制度を締結している。

スポーツではビッグ12カンファレンスに所属している。
0495現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 21:35:28.14ID:co7dEEx8
>>468
>「ゲルファント・シロフの定理」というのは、1940年くらいの定理だ。

下記のP53辺りにある。なお、下記2つのうち、スキャナーの質は上が良好で読みやすい。下は出典を示す表紙が1枚ついているのが値打ちだ。

http://www.ams.org/journals/tran/1948-064-01/S0002-9947-1948-0026239-9/S0002-9947-1948-0026239-9.pdf
6.1MB rings of real-valued continuous functions. i - American Mathematical Society E Hewitt 著 - ?1948

http://www-math.bgsu.edu/~warrenb/Courses/Research/mtop/hewitt.pdf
1.6MB [PDF]Rings of Real-Valued Continuous Functions. I E HEWITT 著 - ?1948 Transactions a/the American Mathematical Society
0496現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 21:46:30.59ID:co7dEEx8
>>495
(抜粋)
Part I. General properties of function rings.

5. Definition of βX. A cardinal property of rings E*(X, R) is the fact that for every completely regular space, there exists a unique bicompact Hausdorff space, commonly denoted as βX, having the properties that XEβX, X~ = βX, and S*(X, R) is algebraically isomorphic to &*(βX, R).
The existence and uniquene β of βX were first proved by Stone (see [26, Theorems 78, 79, 88]), by methods dependent upon the theory of representation of topological spaces as maps in Boolean spaces. A second, simpler, proof was given by Cech [7].
A third construction of β, valid for normal spaces only, was obtained by Wallman [31 ], and A. Weil has presented a construction based on the theory of uniform structures [32]. A simplified version of Stone's original construction was given in 1941 by Gelfand and Shilov (see [13]).

Kakutani has given a construction of β based on Banach lattices [18].

Finally, Alexandroff, using a modification of Wallman's construction, has produced a construction of β and of yet more general bicompact TV spaces in which arbitrary regular spaces can be imbedded as dense subsets. (See [l ].)
Spaces βX thus appear as truly protean entities, arising in the most diverse manner from apparently unrelated constructions.
It is not our purpose at the present time to elaborate on the inner connections which obtain among the various constructions of β, or to present any eβential variants thereof.
We shall briefly describe the construction obtained by Gelfand and Shilov [13], with the aim of completing and simplifying their proof and of exhibiting the details of their construction for use in certain applications.

13. I. Gelfand and G. E. Shilov, Uber verschiedene Methoden der Einfuhrung der Topologie in die Menge der maximalen Idealen eines normierten Ringes, Rec. Mat. (Mat. Sbornik) N.S. vol. 9 (1941) pp. 25-38.

つづく
0499132人目の素数さん垢版2017/01/14(土) 22:21:01.48ID:B/CAkwIq
>>491-492
> どんな実数を入れるかはまったく自由
箱の中身は関係ないので最初から問題にしていないからスレ主が誤解しているだけ
有限数列の長さkの分布は決定番号dの分布と同じ「裾が超重い分布」になる

有限の極限を介して無限を扱うのだから2つのステップに分けると
(1) 数列のアタマの有限数列の長さkは出題者が決めることができる
a1, a2, ... , ak, (空), (空), ... , (空), ...
(2) 極限をとると代表元によって決定番号dが決まりdより後ろの数字が決まる
(空), (空), ... , (空), ad, a(d+1), a(d+2), ...

> (空)には、任意の数を入れられるってことでしょ?
それは有限数列の長さkを増やすことであってk=d-1とできれば(空)はなくなるが
「裾が超重い分布」だから有限数列の長さkを増やしても決定番号dの手前まで
増やせるかが分からない
この場合もスレ主の言う確率の評価はできないでしょう?

> 独立性は、差をとる前でしょ
数列と代表元の差を考えないと極限は考えられない
極限を考えないと無限数列の全ての数字は決まらないから独立かどうかを考えても
意味が無い

代表元の独立性は確かめられていないから出題された無限数列の決定番号より
後ろの項の独立性も確かめられていない
0500現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 22:27:27.43ID:co7dEEx8
>>465
>ゼミで代数多様体についての輪読をしたとき、それがマンフォード『代数幾何1』のほとんど最初のほうであるにもかかわらず、何も理解できないまま、夜な夜な英語の文面を呆然と見つめていたものだった。
>可換環論が当然の前提知識となっており、それを理解しようとすると、その前提にはもっと初歩の代数系や集合論(ツォルンの補題など)が利用されており、それを紐解こうとすると、「無限後退」に陥るような気持ちになって、目眩がした。
>「生まれ直すしかない、いや、生まれ直しても間に合うまい」という悲観が心に渦巻いた。このようにして、ぼくは、数学科の落ちこぼれになった。

> でも、のちのちに、このときのぼくの認識は大間違いだったことがわかったのだ。当時のぼくがいけなかったのは、「数学を、目の前にある本や、講義のノートの、そのままの字面から理解しようとする」ことから一歩も外に出ようとしなかったことだった
>ぼくは、「数学を理解する」という行為を限定的に閉じ込めてしまい、もっと広い外界にアクセスしなかったことが災いしたと気付くことになった

矛盾するようだが・・・、精読と速読と両方要る・・・、語学と同じかも・・・
http://www.math.tohoku.ac.jp/~kuroki/Articles/hint.html
数学の学び方に関するヒント
――数学科の学生の皆さんへ――
黒木 玄 (東北大学大学院理学研究科数学専攻)
(抜粋)

まず、これは何度も強調していることだが、正攻法は、数学の良い本を一冊選び、それを熟読することある。そのために適した本は、論理的な説明が詳しく書いてあって、しかも重要な例に関する説明がしっかり書いてあるものである。
一つ以上の分野を完全に修得するためには、このような勉強の仕方が不可欠である。講義や演習の単位を取るためだけに、あまり面白くもない純粋に教科書的な本の一部をつまみぐいするという類の勉強の仕方も、ときには必要ではあるが、そのような勉強の仕方のみでは決して深い理解を得ることはできない。
最近、そのような勉強の仕方をしている学生が大勢になっているように感じられるので、数学を楽しんでいる私は大変残念に思っている。

つづく
0501現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 22:28:21.84ID:co7dEEx8
つづき

1日に数学の本を1ページづつ読んで行けば、たまに休んだとしても1年で300ページの本を1冊読むことができる。 1日に1ページとは何と遅い読み方だと思われる人がいるかもしれないが、それなら実際にそれができるかどうか実践してみて欲しい。
どんなに速く読んだとしても、論理的かつ直観的な理解が伴わないのでは、数学の勉強の仕方として無意味である。厳密に論理をフォローするだけでも大変なのに、さらに直観的な理解をも身に付けようとすれば、膨大な時間が取られるのが普通である。
(引用終り)
0502現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 23:16:16.25ID:co7dEEx8
>>500 関連

http://shuchi.php.co.jp/article/1990?p=1
東大首席弁護士・山口真由がやっている「7回読み勉強法」とは? 山口真由(弁護士)| PHPオンライン 衆知|PHP研究所: 2014年07月15日
(抜粋)
効果的な勉強法としての「7回読み」についてはこれまでも何度か触れてきましたが、私が日ごろ行っている読書の方法は、実は3つあります。

 ひとつ目は、「平読み」。いわゆる普通の読み方です。流し読みでも精読でもなく、普通のスピードで文字を追う方法です。小説や雑誌、新聞記事などを読むときはこの方法をとります。

 2つ目は「リサーチ読み」。調べものをするときに役立つ読み方です。

 学生の方が課題のレポートを書くときや、ビジネスマンが情報収集を行うときにはこの方法がおすすめです。

 「リサーチ読み」は、たくさんの本に目を通すのが特徴です。

そして3つ目が、「7回読み」。試験勉強はもちろん、知識を身につけたいとき全般に役立つ方法です。

飛び抜けて要領がいいわけでも、頭の回転が速いわけでもない私が、東大で首席を取ることができたのは、この方法に助けられたのではないかと思うに至ったのです。

 この方法の特徴は3つあります。

 (1)「読むこと」の負荷が小さいこと。

 7回読みは、1回1回が流し読みです。しっかり読んで理解しなくては、と思いながら本に向かう集中力とは無縁です。

 (2)情報をインプットするスピードが速いこと。

 同じ文章を、「読む・書く・話す・聞く」で速度を比べたら、言うまでもなく、もっとも速いのは「読む」でしょう。まとめノートを書いたり、講義を聞いたりするよりも短時間で大量の情報をインプットできます。

 (3)いつでも、どこでもできること。

 本が1冊あれば、時と場所を選ばずに勉強できます。多忙なビジネスマンが通勤時間やスキマ時間に行えるので、時間が無駄になりません。短期集中型の勉強にも適しているといえます。

 なお、「7回」という数にこだわる必要はありません。7回でわからない難しい内容は、さらに何回か読み足すのが、私の方法です。

<POINT> 調べ物なら「リサーチ読み」。知識を深めるには「7回読み」を活用しよう。
(引用終り)
0503現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 23:43:17.69ID:co7dEEx8
>>500-502
> 1日に数学の本を1ページづつ読んで行けば、たまに休んだとしても1年で300ページの本を1冊読むことができる。 1日に1ページとは何と遅い読み方だと思われる人がいるかもしれないが、それなら実際にそれができるかどうか実践してみて欲しい。

黒木 玄先生は秀才だからできるかもしれないが
”1日に1ページ 法”の問題は、多くの場合通読して後ろを読むと、当然ながら前半の記述と関連しているわけで、後ろを読んで「ああ、それで、ああいう定義にしているのか」と納得出来る場合が多いのだが・・
似たようなことが、定理と定理の関係とかでもある

”1日に1ページ 法”では、黒木 玄先生のような秀才でない場合に、小島みたく”最初のほうであるにもかかわらず、何も理解できないまま、夜な夜な英語の文面を呆然と見つめていた”状態になることも多いだろう

”最初のほうであるにもかかわらず、何も理解できないまま”というのは、私には結構ある
特に、現代数学は、内容が抽象的で、”最初のほう”こそ、意味が掴みにくい抽象的かつ断片的な定義及びレンマの連続ということも多い

本の後半にこそ、美味しいごちそうがあるというのに
そこまで行かないうちに、挫折してしまう・・、小島のように。黒木 玄先生のような秀才は別として・・

「7回読み勉強法」、法律も似たようなところがある。第1条が定義で、最初に総則(一般則)があり、その後に個別の場合の条文があり、最後に罰則の条文がある
総則(一般則)は、個別の場合の条文に共通な規則を先にまとめているんだ(パンデクテン方式)。その条文の構造は、最後まで通読しないと見えてこない

これは、数学の定理の絡み合いにも共通なのだ
分からないところがあっても、一度通読してみる。これは、それなりに理にかなった勉強法と思う
0504現代数学の系譜11 ガロア理論を読む垢版2017/01/14(土) 23:49:01.97ID:co7dEEx8
>>503 関連

http://gendai.ismedia.jp/articles/-/20944?page=5
世の中、上には上がいる 私が見た「大秀才」たち?本当に頭がいいとはこういうことか(週刊現代) | 現代ビジネス | 講談社(5/7): 20120806
(抜粋)
大学は東大法学部。3年の時に司法試験に合格、翌年には国家公務員T種にも合格。学業成績は東大4年間を通じてオール優で、4年のときに「法学部における成績優秀者」として総長賞を受け、'06年に首席で卒業すると、財務省に入省。主税局勤務ののち、'08年に退職し、翌年、弁護士登録して現在にいたる---。

 ため息も涸れそうなこの経歴の持ち主に会ってみると、カラリと明るいスレンダー美人であった。

「私の勉強法はこうです。たとえば、教科書や副読本などは7回読みます。7回読めば、だいたい覚えられるものです。ことさら暗記しようとせずに、7回読めば、最後は本を見なくても思考をたどれるようになります。

 ただし、司法試験の勉強では40回は読みました。勉強というより精神修養ですね。一日に19時間半勉強しましたから。睡眠は3時間。食事は一回20分が3回で、入浴が30分。洗面器に水を張っておいて、眠くなると足を入れて眠気を吹き飛ばすんです。幻聴を経験したのもそのころでした。努力では誰にも負けません」

 確かに、ここまで努力のできる人はざらにはいない。「努力」にも、才能があるということか。そんな山口氏も一目置く人物がいたという。

「高校のクラスメートだった岡林美紗子さんという女性です。全然勉強しているようには見えないのに、数学で解けない問題はありませんでした。エリートコースを歩もうとか、人に評価されようとか、少しも考えない。他人をライバル視することもない。私みたいに『秀才でいなければ』というしがらみにとらわれてなくて、その自由な精神に憧れていましたね」

 岡林氏は、現在は研修医として都内の病院で多忙な日々を送っている。
(引用終り)
0505現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 08:12:28.51ID:3YFHDxHU
>>494 補足
題名 "On the Law of Large Numbers for Nonmeasurable Identically Distributed Random Variables" google訳「測定不能な同一分布乱数の大数の法則について」
この題名に、”Random Variables”とあるから、この論文で時枝記事>>2-4を正当化することはできないと解せられるよ

つまり、上記論文は”Random Variables”が大前提
対して、時枝記事>>2-4によれば、ある箱について、他の箱を開けることで、1-εの確率で当てられるという(>>3)から、つまりはその箱の”Random”を否定しているので、上記論文の主旨と時枝>>2-3とは合わないだろう

実際、上記論文のAbstract 後半に
”We ask if anything more precise can be said about the limit points of Sn/n in the non-trivial case where E_[X1] < E-[X1], and obtain several negative answers.
For instance, the set of points of where Sn/n converges is maximally nonmeasurable: it has inner measure zero and outer measure one.”
とある

google訳は下記
”E_ [X1] <E- [X1]の非自明な場合にSn / nの限界点についてより正確なことが言えるかどうかを尋ね、いくつかの否定的な回答を得る。
例えば、Sn / nが収束する点の集合は、最大で測定不能であり、内部測度ゼロと外部測度1を有する。”

「例えば、Sn / nが収束する点の集合は、最大で測定不能であり、内部測度ゼロと外部測度1を有する」とあるでしょ
それ、時枝>>2-3のケースが相当するんじゃないか(そもそもSn / nは収束しない場合も、時枝>>2-3は含んでいるかも知れない・・)
0506現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 09:22:25.17ID:3YFHDxHU
>>499
ID:B/CAkwIqさん、どうも。スレ主です。

High level people は、早く 28へどうぞと言っているのだが・・
このスレに粘着するなら、もし可能ならコテを付けて貰えないかね

ところで、理系はさ、こういうロジカルな議論は、日常茶飯事でね
何を前提にしているのか、と、自分が難しい問題を考えるときに、いわゆるToyモデルなどで、なにか仮定を持ち込んで問題を解析するときに、持ち込んだ仮定はきちんと意識して議論しているんだわ

だから、自分が持ち込んだ仮定の部分と、もともとの問題とを混同したりは許されないし、日常そこは厳格に区別して議論するよ
そこを、High level people はきちんと意識して、議論してほしい

それから、議論の基礎になる、既存の確率論とか確率分布とか、最低限の知識習得もお願いしますよ
いままで勉強していなくても、必要になれば勉強する。その基礎学力は鍛えてある。それが理系

つづく
0507現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 09:23:05.06ID:3YFHDxHU
つづき

さて、各論
Q1.>有限数列の長さkの分布は決定番号dの分布と同じ「裾が超重い分布」になる
A1「裾が超重い分布」という用語を使って頂けるのはありがたい。Tさんと違うね
  が、きちんと定義していないが、有限数列の長さkの分布となると、変数kの定義域は有限だから、正確には「裾が超重い分布」には含まれない。
  変数kの定義域が有限であれば、Hart氏GAME2では確率分布が決められる。有限なら既存の確率論の範囲内
  そして、変数kの定義域が、{1,∞)のとき、裾の重い分布以上に裾が重くなるので、「裾が超重い分布」と称した
 (Hart氏GAME2や、時枝>>2-3では、変数kの定義域が有限、つまり、有限数列であっても、決定番号の確率分布は考えられない。強いて言えば、max(k)の場合確率1で、他は0だ。 )

Q2.>有限の極限を介して無限を扱うのだから2つのステップに分けると
A2 (2) のステップは不要だろ。(1) で、a1, a2, ... , ak, (空), (空), ... , (空), ... で、akを数列のしっぽと定義して、有限数列の長さkの同値類分類をすることだけで完結できる
  それでこそ、”有限の極限を介して無限を扱う”を貫徹していることになる

Q3.>「裾が超重い分布」だから有限数列の長さkを増やしても決定番号dの手前まで増やせるかが分からない この場合もスレ主の言う確率の評価はできないでしょう?
A3 A2をご参照。

Q4.>数列と代表元の差を考えないと極限は考えられない
A4 A2をご参照。

Q5.>代表元の独立性は確かめられていないから出題された無限数列の決定番号より後ろの項の独立性も確かめられていない
A5 はっきり言って、”独立性”を誤解していると思う。”独立性”の定義を調べてください

追伸
High level people は、早く 28へどうぞ
0508現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 09:25:39.69ID:3YFHDxHU
>>507 訂正

 (Hart氏GAME2や、時枝>>2-3では、変数kの定義域が有限、つまり、有限数列であっても、決定番号の確率分布は考えられない。強いて言えば、max(k)の場合確率1で、他は0だ。 )
  ↓
 (Hart氏GAME1や、時枝>>2-3では、変数kの定義域が有限、つまり、有限数列であっても、決定番号の確率分布は考えられない。強いて言えば、max(k)の場合確率1で、他は0(ゼロ)だ。 )
0509現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 09:32:54.93ID:3YFHDxHU
>>505
>対して、時枝記事>>2-4によれば、ある箱について、他の箱を開けることで、1-εの確率で当てられるという(>>3)から、つまりはその箱の”Random”を否定しているので、上記論文の主旨と時枝>>2-3とは合わないだろう

まあ、ここらは、時枝も既存の”Random”を扱う数理とのアンマッチは意識しているみたいで、それで時枝>>4の言い訳をしているのだが
数学的には、言い訳になってない>>328
0510現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 09:55:32.42ID:3YFHDxHU
>>495-498 補足

「ゲルファント・シロフの定理」というから、検索でヒットするかと思ったが、ヒットするのはこの小島と黒川関連だけだった
英文でやってみたが、同様だったので、英文のゲルファント & シロフで、それらしいのをひろった

E Hewitt 著1948がアーカイブされていて、結構上位でヒットしたから、良い論文なのかもしれない
実際、引用文献で、著名な方、Cech(コホモロジーで有名)、A. Weil 、Stone (圏論でも登場)、Gelfand and Shilov(今回)、Kakutani(有名な日本人)、Alexandroff(*) など伝説の数学者たちが、現役のころの論文だと見ました
読めば面白いと思うが・・・、まあ歯が立たないかな

ともかく、「ゲルファント・シロフの定理」は、現代数学ではグロタン先生のspec(a) (スキーム理論) に吸収されてしまったので、ヒットしなくなったと解しました

注)*3次元ポアンカレを解いたペレリマンがAlexandroff空間を研究していたとか
0511現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 10:19:41.32ID:3YFHDxHU
>>5

26のスレより
651 自分返信:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2016/12/03(土) 18:40:32.23 ID:6Rgz8i9T [39/39]

時枝記事の問題点>>114-115 を、まとめておく

1.そもそも、可算無限の数列のしっぽなんて、「同値から推移律確認! はいおわり」 それですむ話じゃないだろう
2.コーシー列はヒルベルト空間内だが、時枝記事のR^Nはヒルベルト空間外。ヒルベルト空間外の数列は扱いが難しい。ま、そこらがトリックのネタだろう
3.”しっぽが一致する”を実際の数列について、判別する方法(実行方法)が与えられていない(絵に描いた餅だ。数列の最初から見て行っては終わらない)
4.決定番号があやしい。特に、決定番号の確率分布がすそが重い(超ヘビー)確率分布になるから、99/100が言えない(∵大数の法則も中心極限定理も不成立だから)
5.さらに、確率分布の変数として、決定番号を見たときに、定義域は[1, ∞)となる。だから、∞まで考える必要がある。この点からも、99/100は簡単に言えない
6.0〜9の数を箱に入れる極簡単なミニモデルでも、可算無限数列のしっぽは、現代数学では扱えない
  (このミニモデルでは、実数の無限小数展開と平行して論じられるので、便利なのだが)
  まして、任意の実数が箱に入る場合(つまり1つの箱に連続無限大の自由度があるモデル)においておや
0512現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 10:21:58.76ID:3YFHDxHU
26より
http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1416621784
量子系について - 量子系はなぜヒルベルト空間で記述されるのでしょう... - Yahoo!知恵袋: 2008/5/19

量子系はなぜヒルベルト空間で記述されるのでしょうか?
ヒルベルト空間は内積(ノルム)が定義され要素の列がコーシー列となる空間のことだと思いますがなぜこれらの性質が必要となるのですか?

ベストアンサーに選ばれた回答 phd_ninoさん 2008/5/20

なぜ、ヒルベルト空間が必要かはお答えできませんが、
少なくとも交換関係を導くためにはヒルベルト空間が必要です。
ノルムが定義されないと、交換関係が導かれません。

完備性が物理的になぜ必要かは、私ははっきりは知りませんが、
量子力学の固有値をヒルベルト空間内のベクトルとして扱うことと関連しているのではないでしょうか?
0514現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 11:13:00.40ID:3YFHDxHU
>>504 補足
>司法試験の勉強では40回は読みました。勉強というより精神修養ですね。一日に19時間半勉強しましたから。睡眠は3時間。食事は一回20分が3回で、入浴が30分。洗面器に水を張っておいて、眠くなると足を入れて眠気を吹き飛ばすんです。幻聴を経験したのもそのころでした。努力では誰にも負けません」

まあ、そのまままねしない方がいいだろう
<理由>
1.向き不向きがある。個性がある。合う合わないがある
2.しばしば、誇張が入る。自分の自慢と、ジャーナリズム特有のと。(ジャーナリズムは事件は大きい方が良いということ。客観的な測定(睡眠時間や休日の取り方など)がないので要注意)
3.「睡眠は3時間」は、医学的に疑問。特に、試験直前(近づくにつれ)は、肉体的コンディション作りも重要だし。睡眠で記憶の定着が良くなるというデータもある
4.”洗面器に水を張っておいて、眠くなると足を入れて眠気を吹き飛ばすんです”:バイオリズム(体内時計)を狂わせるのは問題だろう。起床と就寝時間を規則正しく

http://勉強方法.biz/nou/suimin-kioku.html
睡眠は記憶の整理・定着に不可欠! | 勉強方法と受験の対策サイト:

http://www.sleep-medical.com/column/index.html
第8回
(続) 睡眠不足は遺伝子破壊のリスク?
第7回
夜勤は乳がん発症リスク高める?
第6回
6人中4人が睡眠障害に?!
第5回
美容にノンアルコール!?
第4回
概日リズム障害?
第3回
死亡原因は不眠症?
第2回
がん成長抑える物質発見=免疫細胞が分泌―東大など
第1回
人間の体内時計は25時間
日々多くの方から睡眠に関する悩みや疑問をたくさんいただきます。

そこで安眠ドクター大谷は、最新の話題や皆様からのご質問にお答え
しながら、安眠の大切さをこのコラムでお伝え出来ればと思います
http://www.sleep-medical.com/column/col01.html
日本睡眠医学協会:日本睡眠医学研究会:安眠ドクター:大谷憲:
0515現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 11:26:30.54ID:3YFHDxHU
>>476 補足
http://www.math.tohoku.ac.jp/~kuroki/index-j.html
黒木玄のウェブサイト:
(抜粋)
数学の学び方に関する常識

河東泰之著 http://www.ms.u-tokyo.ac.jp/~yasuyuki/index.html 、
「佐藤幹夫の言葉:「朝起きた時に,きょうも一日数学をやるぞと思ってるようでは,とてもものにならない。数学を考えながら,いつのまにか眠り,朝,目が覚めたときは既に数学の世界に入っていなければならない。どの位,数学に浸っているかが,勝負の分かれ目だ。数学は自分の命を削ってやるようなものなのだ」 (木村達雄の「数学は体力だ!」
http://www.math.tsukuba.ac.jp/~kazunari/Kimurata/kimurata.html より)

(引用終り)

”数学は自分の命を削ってやるようなもの” これも半面の真理ではある
だが、佐藤幹夫先生はもて期に結婚できなかった
佐藤幹夫先生以外では、数学と自分の人生を両立させている人は多い
数学は自分の人生の一部、これも半面の真理ではある

”数学⊂自分の人生”が、一般則だな 証明はつけないが
彼女と数学とどっちを取る? 両方取るが正解ですよ

追伸
セドリック・ヴィラニ>>218
”数学の何が フランス人を そんなに魅惑するのでしょうか? 数学なんて 抽象的でつまらないとか またはルールと数字を使っての計算に 過ぎないように思えるでしょう
数学は抽象的かも知れませんが 退屈ではなく 計算が全てでもありません 数学とは論証と証明こそが 数学者の仕事の中核を成し 想像力 すなわち 我々が最も称賛する能力を使う 真理の追求です
何ヶ月も思考を重ねた上 問題が解け やっと正しい証明が 論証し上がった時の喜び と言ったらありません 偉大なる数学者アンドレ・ヴェイユが この喜びを? 冗談抜きに? 性的快感に例えています 違いは その感覚が何時間も 時には何日も継続するという事です”
とある。”数学はフランス人を魅惑する”、おそらく日本人も同様だろう。両方取るが正解ですよ。セドリック・ヴィラニのように
0516現代数学の系譜11 ガロア理論を読む垢版2017/01/15(日) 12:23:15.08ID:3YFHDxHU
>>506-507

28での議論が煮詰まってしまったみたいだね

>・他サイトからのコピペでスレを埋め尽くす行為

話は逆
自分達でだけで、どれだけ議論が深まるんだ?
現代数学は、まあ遡れば、ニュートンやライプニッツ・・、その時代時代の天才たちの300年以上の積み重ねの上にある
「引用しない」から、議論が煮詰まると思うけどね

>・デタラメを述べておきながら間違いの指摘は無視する行為

外から見ればよくわかるだろう
時枝>>2-3は不成立だよ
間違っているのは、High level peopleたちだろ?
それが理解できないだけだったんだろ

>・明らかな間違いにもかかわらず、数学は自由だから何でもありだろ?、と無理やり正当化する行為

上に同じ

>・他人の学歴など個人情報を聞き出す行為

High level peopleのレベルが分からないと、適切な説明はできない
高校レベルなら高校レベルの、数学科以外の理系学部生ならそれなりの説明を、数学科大学院レベルならこちらが教えて貰うことになる
相手になかなか理解されないときに、相手のレベルを聞くのは正当だ
なお、一定の数学レベルに達していないと、もうしわけないが、議論がかみ合わない
High level peopleは、High level people同士でやってくれ

>・その他、材料工学分野の研究者/エンジニアの名誉を貶める行為

それは、”時枝>>2-3は不成立”が覆されたときだけだな
下記スレ28では、まだそれは立証されていない
おそらく無理と断言しておく

http://rio2016.2ch.net/test/read.cgi/math/1483314290/
現代数学の系譜11 ガロア理論を読む28 (High level people が時枝問題を論じるスレ)
0517132人目の素数さん垢版2017/01/26(木) 00:18:51.95ID:iFQq8OzH
エヴァちゃんの根幹性ってのは現在重視される数学的な美だったりとか計算機科学性だったりとかとかはまた別の所にあるってのが良い
元確定の原理の第二法則のΓla=x(xはマントル)なんかは明らかに真理や滴数を重視している
そもそもxという存在に関して具体的に定義するという行為が数学からはかけ離れている
x性なんていう感的な存在が数学中の数学に結びつくってのは面白いもんだわ
というかブロックに対しての虚数の計算結果をまとめたのもエヴァちゃんだっけ?あれなんかも面白い
ヴィルヘルミナンの正属の定理なんかを見てるとヴィルヘルミナンなんかも似たような人間だったんだなーと想う
今の現代数学だけでなく量子論・遺伝子論なんかはやっぱり科学の最終目標である絶対解の探求からは外れてると思わざるを得ないね
x-ε2+1^yが0の集合と同値である事を示したライプツィヒ・ゲヴァントハウスが「真なる神の探求者の知る神は、それ自身でありそれ自身であろう」と語ったように数学に特別な意を見出す今の現代科学は科学ではない
ガロア理論というのは現代数学の土台もしくは代数学そのものであると同時に、数学的な真理をもっとも追求した書物とも読む事ができる
brok disctation下におけるグリーディン最適解の展開法はガロア理論の顔だが、3xのグリーディン展開はもはや数学ではないね
俺が今気づいた事なんだけど3xの場合brok discationにおける宇宙と同理になるんだね(つまり0Ξ0ってこと)
というかψ^2次関数にガロア時数を並べてみると見事にオーブロード楕円曲線系のx-1の場合になるんだな
これをエヴァちゃんが10歳で気づいたと思うと末恐ろしいものがある
だが何と言ってもガロア理論の集大成は「9章 群・元・制の統合」だね
ここまで解説してきた3つの新しい概念が統合されるというのはもう一人で数学の歴史を作り上げてるようなもん
だって他世界的な宇宙を見出すって事だぜ?
宇宙の1の値をΝと定義した時のΝ ̄ ̄(grion diran)を法制度とする群や十鬼的な解法の元に実数虚数を多次元化する幾何的な元、
そして数学法則、つまり数学そのものをζとして定義した制
この3つの関連性は全く持って無い者とかしか思えない
これをΔxという単立的な式の元に代入していくと比例的になるなんて気づいた時エヴァちゃんはあまりの興奮に射精しただろうね
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況