【数セミ】エレガントな解答をもとむ3【2018.10】

1132人目の素数さん2018/09/17(月) 01:40:43.02ID:iDwWzM3i
締切りの過ぎた問題をみんなで議論しましょう。

過去スレ:
1. http://rio2016.5ch.net/test/read.cgi/math/1295154182/
2. http://rio2016.5ch.net/test/read.cgi/math/1476702312/

2132人目の素数さん2018/09/17(月) 01:45:59.97ID:iDwWzM3i
          |:;:;:;:;:;:;:;:;:;:;:;:;:;:i;:;:;:;:;:;:;:;:;:;:;:;|      解 今     |
            |;:;:_:;:_:;:_:;:_;:;_:;:l:;_;:_:;:_:;:_:;:_;:|      か  日   |
         |______|_____|      な        l
         |::::| ```````´´´´ : : : :|      か       !
         |::::|  く三)   (三シ : : :|'.      っ      /
          r=Y:f            :.ヘ',     た     /
          |fト|:| tーt:テミヽ .ィチt:ァ‐r : |∧    ら    /
          {{ ー:l  ` ̄ '´   |::.ヾ ̄´ . : :|_,ハ、      /
          ヾ ー!         |::、   : : j_/ >ー‐一'´
          `¨',       -、_;:-    : :/
              l'.    ,r===== 、   :/h
.  ,. -―‐- <. /!:.ヽ  ヾ====='′./: j l\
/          \|: : . \.`""""´/ : / .|:.:.:.:',、
            \   ` ー一'´:   :/  |:.:.:.:.:',`:.ー- 、
                 ヽ     }: : ./  .|:.:.:.:.:.:',:.:.:.:.:.:.:.:.:`:.ー- 、
               '.ー-   j: :/     |:.:.:.:.:.:.:',:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.`
  必    も    明.   '.     入    |:.:.:.:.:.:.:.:',:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:
  要   っ    日     ',   / / \   !\:.:.:/.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:
  に   と   は     i  j./   \|:.:.:.`:ー‐┐:.:.:.:.:.:.:.:.:.:.:.:.:.:
  な    大            |   j′     .!:.:.:
  る   き
  ぞ   な
        努
        力
        が

3132人目の素数さん2018/09/17(月) 01:47:31.23ID:T7a194so
削除依頼を出しました

4132人目の素数さん2018/09/22(土) 20:45:35.98ID:ztZsZpyH
みんなで答え出し合おうよ?

5いえやす2018/09/23(日) 08:20:49.48ID:n07erhZD
締切まで待とう時鳥(ほととぎす)

6とあるエレ解常連2018/09/23(日) 21:38:44.11ID:5AC0P/Sg
斥候部隊の難易度情報は欲しいところです

7132人目の素数さん2018/09/24(月) 10:14:10.44ID:PKrwWiIA
エレガントな解答なんて
無かったんや(迷言)

8132人目の素数さん2018/09/24(月) 11:48:55.01ID:C29H7b6e
出題1
 k=1 のときは見覚えのある関数だが、k≧2 は?

出題2
 ・λ∈R の中で面倒な計算をゴリゴリ敢行するか、
 ・Cまで広げてギリシャの幾何学をする

9とあるエレ解常連2018/09/29(土) 08:24:23.84ID:VpmYSTVe
>>8
ギリシャの幾何学。。
何もぼかせていない気が
だめですよーヒント過多はw

10132人目の素数さん2018/10/02(火) 11:30:20.71ID:UtBJrYlY
https://www.web-nippyo.jp/elegant/
びっくりした。問題が公開された上に、webでの解答も可になった。

11132人目の素数さん2018/10/02(火) 11:55:37.97ID:a4X/BSXV
PDF ファイルを送信かよ

で、送信した解答は公開されるのか???

12とあるエレ解常連2018/10/08(月) 19:21:43.49ID:DEaqau3L
消印締め切りまであと5時間弱です。
時間はまだたっぷりあります。ネバーギブアップで頑張っていただきたい。
要所で粘れるか、それとも簡単に諦めてしまうか、生き様が試されます。
でも今月2問を5時間で解くのははっきり言ってつらい。
私は時弘先生の大ファンですが、彼の問題は秋の行楽シーズンにはそぐわない。
他に誘惑のないじとじとする梅雨の時期、またはコタツがぬくい極寒の時期にじっくり楽しみたいものです。

>>10-11
初回はなんとなく手違いが起こりそうでpdf送信は回避しました。
答案チェックが大変になりそうですが、大丈夫なんでしょうか。

13132人目の素数さん2018/10/09(火) 16:31:35.34ID:jtiWu+AA
10月号

■出題2

{z, w} を固定したとき lim(λ→±∞) |λ-z|/|λ-w| = 1
∴ F(z, w) ≧ 1,
λは {z,w} の垂直2等分線上またはw側にある。

(1) x=u のとき
垂直2等分線は実軸Rに平行
題意より |v| >> |y| としてよい。
|λ-z|/|λ-w| < 1  (λ=x=u で最小)
F(z, w) = 1,
lim(|v|→∞) F(z, w) = 1

(2) x≠u のとき
垂直2等分線は実軸Rと交わる。
交点は λo = (x+u)/2 + (vv-yy)/(2(u-x)), 
もし最大点λがあれば(*)、λoよりもw寄り(遠方)にある。
|λ| > |λo| = O(|v|^2)
w = u + iv,
z は定数  だから
F(z, w) = |λ-z|/|λ-w| = 1+O(1/|v|)
lim(|v|→∞) F(z, w) = 1,

ところで、最大点λは存在するんだろうか?

14132人目の素数さん2018/10/09(火) 17:01:52.52ID:jtiWu+AA
>>13

> 最大点λは存在するんだろうか?

複素数ν = λ + iμ ∈C に対して
|ν-z|/|ν-w| = f の軌跡を考える。(f≧1)

f=∞ では1点w であるが、fが有限のときは wを内包する閉曲線となる。
fを減らせば閉曲線は膨らみ、f=1 では {z, w} の垂直2等分線となる。

(2) の場合、実軸Rと垂直2等分線は交わる。
fを∞から減らして行き、初めてRに接した点がλである。

ところで、λは1つしかないか?

15132人目の素数さん2018/10/09(火) 17:10:07.13ID:jtiWu+AA
>>14

> λは1つしかないか?

ν∈C と f≧1 に対して
 g(ν, f) = f^2|ν-w|^2 - |ν-z|^2 とおく。{z, w} は定点。

 g(ν, f) < 0 ⇔ νは閉曲線の内部
 g(ν, f) > 0 ⇔ νは閉曲線の外部
 g(ν, f) = 0 ⇔ νは閉曲線の周上

 g((ν1+ν2)/2, f) = {g(ν1, f) + g(ν2, f)}/2 -(ff-1)|(ν1-ν2)/2|^2 ≦ {g(ν1, f) + g(ν2, f)}/2,
より
 g(ν1, f) = g(ν2, f) =0 ⇒ g((ν1+ν2)/2, f) ≦ 0,

周上の2点 ν1, ν2 の中点は閉曲線の内部にあるので、閉曲線は凸である。
∴ 実軸Rに初めて接する点λはたた一つ。

こうしてギリシャの幾何学は回避された。ペキン原人やクロマニオン人も解けたかも(?)

16132人目の素数さん2018/10/10(水) 01:20:47.39ID:MSgGrJGx
nを一度だけ使ってってどういうことだ
a_nでもいいのか

17132人目の素数さん2018/10/10(水) 07:33:10.07ID:5PNYRsCB
はい、次の問題もう出てますよー。
https://www.web-nippyo.jp/elegant/

18132人目の素数さん2018/10/10(水) 18:17:30.30ID:yAzQ854o
ハヤイノー
電子時代ジャノー
楕円暗号理論の関連した問題はナイノカノー
格子理論はアッタガノー有限体の楕円曲線理論は美しいのーー
仕事なんかなってられんのーー
こんな美しい世界はナイノー
虚数除法も素晴らしいのーー
楕円曲線と格子理論がクロスするとこの世のものとは思えんのーー

19132人目の素数さん2018/10/10(水) 18:45:51.23ID:yAzQ854o
そうじゃ!!
ディオファントス近似絡みの問題も楽しみにしちょります。
楕円曲線、ディオファン、ガロア、格子絡み、仕事なんかおっぽりだしたくなるべ。

20132人目の素数さん2018/10/10(水) 18:47:13.77ID:yAzQ854o
そうじゃ、わたしが、サボリーマンかず太郎じゃあ。
仕事さぼって、スタバでエレカと格闘じゃ。
文句あっか!!!

21132人目の素数さん2018/10/11(木) 06:12:42.93ID:dLv4Cwo1
出題2は「式より明らか」じゃいかんのかw

22132人目の素数さん2018/10/11(木) 22:12:48.85ID:OWsrvrcm
エレカ、電子公開、goodです。
高校、大学時代愛読してたが、20年前に一度再会、またまた再会。
一生縁が切れそうにないわ。
今は、数論、楕円曲線、暗号にハマってる。
ICMレポも楽しみにしてまっせ。

23132人目の素数さん2018/10/12(金) 00:40:57.27ID:KGakS2GY
大学への数学の宿題もやりたいが、私の頭ではそこまでやると本業に支障がでそう。
自制しよう。
エレカ、数論、楕円曲線、暗号でこっそり楽しもう。
森北の暗号理論と楕円曲線も理解するのは大変だわさ。

24132人目の素数さん2018/10/12(金) 00:43:44.21ID:KGakS2GY
先程、保管してある、1980年代〜1990年代の数セミ、Bacic数学、大学への数学
ひもといてみた。なつかしいのーー。
数セミとも再再会できたし。

25132人目の素数さん2018/10/12(金) 06:19:57.61ID:YLCrdRFe
大学への数学の宿題とエレ解って、どちらの方が難しいの?

26132人目の素数さん2018/10/12(金) 09:55:34.52ID:0244Q6MN
>>21
つーか問題1は一発ネタのような気がするが。
小谷善行先生は不調なのかな?
それとも「存在しない」を証明するのが難しいのか?

「遠山 啓先生に敬意を表して、それっぽく説く」
というのもアリな気がするが。

27132人目の素数さん2018/10/12(金) 13:10:52.79ID:0244Q6MN
>>25
「荒らしに構うのも荒らし」とは云われるが、
いちおう言っとこう。
受験数学より真剣勝負の数学の研究のほうが大変なので、
傾向としては
『エレガントな解答を求む』>『大学への数学』の宿題
だが、エレ解も「いちおう解答は用意されている」し、
たまに「小手試し」的な出題もあるので、
予備校生にとってはエレ解のほうが手ごわいと思う。
まぁ、「お子ちゃま には、エレ解の味はわかんないよな(笑)」
みたいな優越感はあると思われ。

28132人目の素数さん2018/10/12(金) 13:16:43.95ID:0244Q6MN
ようやく題意がわかったように思う。
「示せ」っつーところに重点があるような気がするので
(「それは、数学的に厳密な証明なのか!?」とか
言われると、数学の博士号を取得していないと
解答できなくなる)、「一般的に納得されやすい証明」と
いうことになろうかと思う。

29Mr.Moto2018/10/12(金) 17:22:58.62ID:0244Q6MN
二〇一八年十一月号の問題1について。

四辺形以上の多角形(=多辺形)については、
凸でない場合があって、「凸多辺形」「凸多角形」という
言葉がある。それはいい。線形計画法なんかでは、
「多凸性」というのは、重要な概念だからな。
同時に、四辺形以上の多辺形については、
「辺が交差する」場合がありうる。このとき、
そういった多辺形を、なんと呼ぶべきか?
たとえばの話、五芒星や六芒星を「多辺形」と
認めるのかどうか?
また、その場合、「面積」について、二つの定義があるうる。
どちらを採用するかについて、「数学的な呼び名」、
あるいは定義というのはあるのだろうか。また、それぞれについて、
「数学的な一般的名称」というものがあるんだろうか。
あるとすれば、それは何に準拠しているのか。

そのあたりの意見を聞きたい。

30132人目の素数さん2018/10/12(金) 17:49:29.41ID:PsrGl5PI
エレカ、柏原先生、森重文先生、辻雄先生、神保先生etcも昔解答されておられます。

31132人目の素数さん2018/10/12(金) 23:48:09.81ID:0244Q6MN
>>30
> 森重文先生、
まじか。出典キボンヌ。

32132人目の素数さん2018/10/13(土) 11:31:09.88ID:m2VlRIRs
森重文先生は、京大時代に解答されておられる。エレガントな解答を求む問題集1集or2集
探してみてください。柏原先生、神保先生、辻先生は3集に、名前残してる。皆数学少年じゃったのじゃよ。

33132人目の素数さん2018/10/13(土) 11:32:13.28ID:m2VlRIRs
やっぱ、NOTE掲載を目指そう。
有限体上の楕円曲線研究で。

34132人目の素数さん2018/10/13(土) 11:33:15.57ID:G0GgdGfh
2018年10月号の講評です:

■出題1:レベル6〜7(常連正解率60〜80%)
※スツルムの定理不使用の場合レベル10(正解者0〜2名)

時弘男塾長の出題。例年通り題材は力学系。
正整数kに対し、P_0=1, P_1=x−1, P_n=x^k * P_{n−1}−P_{n−2}でP_n(x)を定め、
小問(1)x>0、(2)kを奇数としてx<0、(3)kを偶数としてx<−1における零点の個数を求める問題。

彼の問題はいつも難しく2015年は正解者たったの2名(昨年はめずらしく易しかったが)。
今回も『どうやって解くんじゃい…』とまず途方に暮れるところから始まる。

が、本問はスツルムの定理を使えば比較的簡単に解ける。
使わずに解くことを要求しているとすれば難易度はレベル10に跳ね上がる。


■出題2:レベル5(常連正解率95%)

加古先生の出題。
複素数z, w, 実数λに対してF=sup|λ−z|/|λ−w|(λ∈R)と定めたとき、
Im(w)の絶対値を∞に飛ばすとFはどうなるか?という問題。

・各複素数の実部虚部を適切に限定して、問題をほぐす。
・素直にFの挙動を調べて極限を考える
という正攻法で解けるので難易度は高くない。

エレガントに解くことを至上命題と考えている猛者は腕の見せ所。
いろんな考え方がありそうです(既に本スレでも示されていますが)。

35132人目の素数さん2018/10/13(土) 15:09:38.13ID:O/TKH3xV
高木寛通先生は、大学への数学の宿題解答者だったみたいだ。
数学少年?

36132人目の素数さん2018/10/13(土) 15:12:12.90ID:IDEhZSRY
>>32
> 皆数学少年じゃったのじゃよ。
そういえば広中先生も京大なんだよなぁ ……
SSS(新数学者集団)とかの話とか、なんか載ってる本とかない?

自分は東日本なんだけど、遠山さんが東大中退だったりするので、
いまいち「東京」って、狭苦しい感じがある。京都って、数学に
向いてる土地柄なのかもしれない、と思って興味があるんだよ。

37132人目の素数さん2018/10/13(土) 15:14:48.59ID:IDEhZSRY
>>35
そういえば阿部寛も数学少年だったらしいぞ(笑)

38132人目の素数さん2018/10/13(土) 16:58:20.46ID:83u0ux+X
ロシアの謎の高校生向け数学物理雑誌、Kvant、レベル高いで。
将来の数学者発掘が目的。ドリンフェルトも愛読???

39132人目の素数さん2018/10/13(土) 18:03:14.86ID:IDEhZSRY
>>38
いや、面白いのは分かるし、たぶん問題の意味もわかるだろうと
思う(数学は世界の共通言語だ)んだけど、
ロシア語とかハンガリー語とかで解答を書けって言われたら、
ちょっと退く部分はある。
まぁ、「やれ」と言われりゃ やらんでもないけど、
なんかしらコンピュータ言語とかに落としこんで
貰えれば、そのほうが楽なような気がする(笑)。

40とあるエレ解常連2018/10/14(日) 10:21:10.93ID:o5QJ7I6t
コテを付け忘れてた。コテなんて要らない気もするが
昔コテ付け忘れるなハゲとか罵倒されたので泣く泣く付けた

11月号はいったいどうしたことだ
出題1は文字通り30秒、頭の中だけで解ける難易度
出題2は一昔前の高校教科書の例題レベル
はっきり言おう、糞であると。

今月はp.40の数オリを解いて楽しめということか・・
というわけで数オリを解いているのですが、どれもこれもエレガントな良問ばかりですばらしい
解答もエレガントさ(センスの良さ)を要求しているところがまたすばらしい
易しくてもエレ解難易度6以上といったところ

数オリ開催日にオーバーエイジ枠を同時開催してくれたらいいのに
エレ解常連がチームを組んで戦うのです。萌えますね

41132人目の素数さん2018/10/14(日) 11:59:11.33ID:ajXbw4zm
エレカも総問題数、1300問になる。
たまには、一休みも必要です。
末永く継続してもらわんといかんからな。
数学者の皆様。

42132人目の素数さん2018/10/14(日) 12:04:03.84ID:ajXbw4zm
フィールズメダリスト、ショルツ先生、IMO金メダリストらしいな。
その他のフィールズ受賞者、ネバリンナ受賞者はどうよ。
佐藤ーテイト予想のテイラーもイギリス代表らしい
量子素因数分解のショアもアメリカ代表らしい

43132人目の素数さん2018/10/14(日) 12:56:31.65ID:ZGDKsTF8
IMOはレベル高いのおーーー
谷山ー志村予想のテイラー先生も出場者だったのか。
ピーター ショアもそうらしい。

44学術2018/10/14(日) 13:12:43.13ID:yXYU+8iI
数学は実戦的だから、スポーツボケを、排除できる司令官に向くだろう。

45学術2018/10/14(日) 13:13:20.37ID:yXYU+8iI
賞をとれることは、戦果として賞金をもらえることだから。結果がよろしい。

46学術2018/10/14(日) 13:13:58.01ID:yXYU+8iI
賞やメダルが、主体的じゃない生き方がおすすめです。若い人は特に。

47Mr.Moto2018/10/14(日) 21:20:04.78ID:wzFFiQRe
>>40
> はっきり言おう、糞であると。
いや、問題2はともかくも、
問題1は けっこう深いぞ?
あれ、じつは構文解析のアルゴリズムの
計算量とかと関連してくる。
単純に解だけ示すんなら、確かに
「文字通り30秒、頭の中だけで解ける難易度」では
あるのだが、「だったら、なんで自然数限定なのか?」
(べつに実数まで拡張しても問題はあるまい?)とか
「点で接している複数の N 角形を認めるかどうか?
その場合の『面積』を、どう定義するか?」とか、
考えどころは ありそうな気はする。それを考えた上で
「エレガントな解答」を出そうと思うと、
それほど簡単な話ではなかろうと思うのだが、どうか。

48132人目の素数さん2018/10/14(日) 21:37:27.35ID:Omb1GwAa
>>47
こんばんは。返信どうも
自分はあんまり研究とか発展とか考えずに喋っております
研究肌の方のコメントは深みがありますな

> (べつに実数まで拡張しても問題はあるまい?)とか

Motoさんだったらどのように実数へ拡張しますか?

> 点で接している複数の N 角形を認めるかどうか?
> その場合の『面積』を、どう定義するか?」とか、

面白いですね。それは考えなかったです
この問題を特にあたっては心配無用なので・・

> それを考えた上で
> 「エレガントな解答」を出そうと思うと、
> それほど簡単な話ではなかろうと思うのだが、どうか。

なんか30秒でそれなりにエレガントな解答ができちゃったので、もう今月は羽を伸ばして紅葉にでも行こうかとw
でもそれじゃ知的満足が得られないってんで数オリに手をだしたら問題が美しすぎてうっとり
エレ解もこうならんかなと

49132人目の素数さん2018/10/15(月) 08:33:06.32ID:L9PKARy1
>>48
> どのように実数へ拡張しますか?
いや、これは単なる例えとして言ってみただけで、
やっても面白くないと思う。
むしろ、出題者の小谷 善行さんは情報工学がご専門なので
有限組合せ問題として考えるのが本筋かな、と。
たとえば、任意の長方形 m × n があったとして、
それに内接する N 角形があったときの最大の N は
いくつかとか、その場合の面積はいくつかとか、
そのあたりの考え方の問題は面白いんじゃないかな、と。
ただ、それをやるとコンピュータによる力業になって
しまいそうなので、エレ解の趣旨から外れる。
問題自体は、もともとプログラミングのほうで
チェッカーボードを使ったパズルがあり、
それがパリティを利用しているので、
「あぁ、それだな」と思った。
それで、ちょっと発展させて、フラクタル図形
とかに向かう方向で、面白い性質が出てくるんじゃ
ないかな、と。あるいは、「1 × 1 の正方形を
辺で接続したときに、頂点の個数と面積と図形の
関係を考える」とか。

50Mr.Moto2018/10/15(月) 09:22:05.84ID:L9PKARy1
すまん。大事な条件を見落としていた。
問題1は「辺の長さが順に 1, 2, 3, … N」なんだな。
見た感じ、「魔円陣」(完全ゴロム環)の
バリエーションみたいな感じだ。
例示された図は
4+6=8+2=10
5+3=7+1=8
だ。Nが4以上の偶数だというのは確定だが、
N=4では解がないのので6以上。
で、8のときに解があるのも例で示されている。
エレガントに解こうとすると、けっこう手ごわいぞ、
これ。プログラム書いて数値実験で追っかけまわして
法則性を割り出す、とかやんないとダメかな?

51Mr.Moto2018/10/15(月) 15:23:24.03ID:L9PKARy1
>>40
> 出題1は文字通り30秒、頭の中だけで解ける難易度
お互い恥をかいたので許そう(-_-!)。
早とちりはイカン、っちゅーこっちゃね。

52Mr.Moto2018/10/15(月) 15:41:36.89ID:L9PKARy1
>>33
「岡、NOTE をねらえ!」

判定の場(court。法廷。「テニスコート」の「コート」も
同義)では 誰でも 独り 独りきり
私の(数学への)愛も 私の苦しみも
数セミ読者しか わかってくれない

続きは誰か書いてくれ。

53Mb2018/10/15(月) 15:56:09.92ID:L9PKARy1
言っとくけど、うちの馬鹿(Mr.Moto)は三味線弾いてるっつーか、
「ヒントとか出しているようで、じつは引っ掛け」とかだから、
信用しないように。
「もっと困れ」(by 横井 庄一)じゃないけど、
「もっと苦しめ」という助言も上のほうから あったので、
せいぜい苦しんでくれ。

54学術2018/10/15(月) 16:03:14.62ID:8DQ7ySxz
エレク 彼岸

55132人目の素数さん2018/10/16(火) 01:15:32.58ID:5DYkLdwz
出題1
 解があるNはすぐ絞れますが、そのあとが問題ですねぇ…

>>53
「横井庄一のサバイバル極意書 〜 もっと困れ!」小学館 Be-pal books (1984/Jan)
 181p.絶版

56132人目の素数さん2018/10/16(火) 06:12:26.81ID:1kFGegUv
偶数ということくらいしかわからん(;´д`)

57132人目の素数さん2018/10/16(火) 08:36:55.58ID:94QUq9QN
>>56
いや、奇数でないことを示すのが
意外に手ごわいっちゅーかキモっちゅーか。
合計が N (N + 1) / 2 なんで、「N または N + 1 の
どっちかが8の倍数」が必要条件なのは分かるが、
たとえば N = 7 のときの解がないことを
エレガントに示すのに手こずっている。
もう一点は、N が8の倍数のときに、必ず
N 角形が存在することの証明がどう示せるかだ。
16角形とかいうと、「後戻り」の可能性もあれば
辺が途中で交差してしまうケースも排除せんと
いかんだろうし。

58132人目の素数さん2018/10/16(火) 09:43:33.12ID:5DYkLdwz
>>57
「N角形になる」のであれば N個の頂点で曲がっているはず。(本問では垂直に)

59132人目の素数さん2018/10/16(火) 10:36:10.31ID:5oX8F2v0
うむ。始点と終点のつながりを考えると、奇数だと明らかに不可。

60Mr.Moto2018/10/16(火) 18:02:53.66ID:94QUq9QN
>>59
うむ。確かに「明らか」なんだが、
それを「中学生にもわかる」ように
「示す」のがエレガンスだと思う。
数学マニアにとっての「明らか」さは、
必ずしも数学初心者にとっての
「明らか」さではないところが
悩みどころ。
整数論(というか、自然数論)の範囲内だと、
「古代バビロニア人にも説明できる」くらいまで
ガッチリ組まないと いかんと思う。

61132人目の素数さん2018/10/16(火) 18:07:52.19ID:5DYkLdwz
・水平な辺
Σ→ + Σ← = 1 + 3 + … + (N-1) = NN/4,
Σ→ = Σ←     (…閉じる)
∴ 8 | NN
∴ 4 | N
∴ N+2 ≡ 2 (mod 4)


・鉛直な辺
Σ↑ + Σ↓ = 2 + 4 + … + N = N(N+2)/4,
Σ↑ = Σ↓ = (偶数)    (…閉じる)
∴ 16 | N(N+2)
∴ 8 | N

で、この後どうするか。 >>58

62132人目の素数さん2018/10/16(火) 18:31:14.99ID:5jr9jBpY
いいのかな?これくらいなら。
とりあえずN=8,12,16,…くらいで実際できるかできないかやってみるこってすな。
ヒントあるし。
しかし水平は偶数、垂直は奇数???

63132人目の素数さん2018/10/16(火) 20:34:53.15ID:DWPvJqId
>>60
えっ、各頂点の角度が90度または270度の多角形が偶数角形なの、そんなに証明が難しいか?

64132人目の素数さん2018/10/16(火) 22:36:54.71ID:p/yzOhrf
>>61
警告!あなた書き過ぎです

65Mr.Moto2018/10/16(火) 22:41:23.29ID:94QUq9QN
>>63
> そんなに証明が難しいか?
「エレガントな解答をもとむ」なんだから、
エレガンスを追求しろと言っている!
『数学セミナー』の創刊者は
遠山 啓先生なんだから、「テープ算」みたいな
「中学・高校生にも直観的に理解できるような
シェーマを提示する」っつーのが、
重要なんだよ。エレ解は、「正解すりゃあ入選」みたいな
甘いモンじゃねぇんだぞ?

66Mb2018/10/16(火) 23:08:53.44ID:94QUq9QN
>>64
激しく同意
むしろ引っ掛けとか
誤誘導のほうが
マシ

67132人目の素数さん2018/10/17(水) 00:18:18.38ID:CNsWZSmr
おはようフェルプス君。
さて、今回の任務は競泳の世界大会で金メダルを取ること…ぢゃなくて、数セミのエレ解問題の正解を応募することだが…
例によって、君あるいは君の仲間達がここのレスを信じて正解を逃したとしても当局は一切関知しないので、そのつもりで。
なお、このレスは自動的には消滅しない。
健闘を祈る。

(かなり古い…)

http://www.youtube.com/watch?v=erUcduVIt2A
http://www.youtube.com/watch?v=8WnNG2XtU8s
http://www.youtube.com/watch?v=TDQ1vwoINo0
http://www.youtube.com/watch?v=4dJ5MVmpjmw

68132人目の素数さん2018/10/17(水) 09:20:07.50ID:hNlWCQz1
>>65
ちょっと何言ってるか分からないです

69132人目の素数さん2018/10/17(水) 09:34:19.98ID:rmbMwrXm
富澤キタ

70Mr.Moto2018/10/17(水) 17:35:36.08ID:4+/efYTS
>>67
安心しろ。『スパイ大作戦』を知らない奴は
多いだろうが、『ミッション・インポッシブル』は
映画でシリーズ続行中だ。
つーか、朝方なにげなく TV をつけてると、
クインシー・ジョーンズの『アイアンサイド』とか
『ミッション・インポッシブル』が、BGM として
流れていたりするので「変わんねぇなぁ ……」と
思う。
まぁ、エレ解スレでするネタじゃねぇとは思うが。

71132人目の素数さん2018/10/18(木) 11:04:10.73ID:ajxP7QxG
1月号のICMレポが楽しみじゃあ。
各種賞受賞者の数オリ出場歴もたのみまっせ!!

72132人目の素数さん2018/10/19(金) 13:14:52.53ID:yqDpqUXJ
以前「幻の0番法」という記事があったのですが
数列の和についての生地だったと思うのですが
どのような内容だったかご存知のかたいるすか?

73132人目の素数さん2018/10/20(土) 08:02:16.50ID:OqismSZc
>>72
それ、「エレ数」だったかなぁ ……
共立出版の『bit』で出てきた
「生贄」の話のような気がする。
n = 1 から始まる数列に、
n = 0 の項を つけ加えて一般化するとか。
たとえば「1 から n までの和」だったら、
「0 から n までの和」としてもイコールだから、
「n ×(n + 1)」でいいとか。
「(n + 1)× 1」よりエレガントな
感じがしないか?

74132人目の素数さん2018/10/20(土) 08:03:35.49ID:OqismSZc
×「(n + 1)× 1」
〇「(n + 1)× n」
orz

75132人目の素数さん2018/10/20(土) 14:42:36.05ID:/MrLnf1N
>>70
5拍子の曲いいね。

「メリーゴーラウンド」 {大木彩乃:「幻の魚」(1999)}, #2
 http://www.youtube.com/watch?v=0BF4YPjDkZw

「スプリット」{大木彩乃:「屋上遊園地」(2000)}, #10
 
"Wind" {明星: "Stoned Town" (2002)}, #1
"Wind" {Akeboshi: "Akeboshi" (2005)}, #1
 http://www.youtube.com/watch?v=SaaRwKlcNaA

「ウタカタ」 {ジムノペディ:「今宵も、うたかた探し」(2004)}, #2
 http://www.youtube.com/watch?v=W3GnrgBAwg0

「神様の舌打ち」{Akeboshi: "Akeboshi" (2005)}, #13
 http://www.youtube.com/watch?v=U_3jGtk4l6A

雅楽の夜多羅拍子も。楽典とは何ぞや?

スレ違いだが。

76132人目の素数さん2018/10/20(土) 22:45:38.33ID:OqismSZc
>>75
まったくのスレ違いだが、
デイヴ・ブルーベックの
“Take Five” を忘れてはいけない。

77132人目の素数さん2018/10/20(土) 23:56:14.17ID:/MrLnf1N
>>76
スレ違いの極みでござるな。

テイク・ファイヴ {デイヴ・ブルーベック・カルテット:「タイム・アウト」 (1959)}, #3
 http://www.youtube.com/watch?v=966iPSlYj2A

右方舞楽 抜頭(夜多羅拍子) (1943)
 http://www.youtube.com/watch?v=EZc_De09gQo

78Mb2018/10/23(火) 17:09:09.90ID:t71LiLEA
ごめん。今月号(二〇〇八年十一月号)の問題1に関してはパス。
うちの所長が、「パズル懇話会」の会合で小谷先生と二次会で
一緒だったので、結果的にヒントを貰っちゃったので
フェアではない、という話になった。

N ≡ 0 (mod 8) であろうことは、わりと証明が簡単だと
思うけれど(ぶっちゃけ、力業で なんとかなると思う)、
「N ≡ 0 (mod 8) のときに、常に解が存在するか?」を
“エレガント” に証明できるかどうかが問われているような
気がする。

ただし、あくまで「気がする」だけなんで、そこいらは
投稿した結果次第で判断してくれ (-_-)

79132人目の素数さん2018/10/23(火) 19:43:18.34ID:HKtMWUIJ
一応解は作れたけど、ちゃんと(交わらない)多角形になってるのを証明するのが面倒だなぁ。

80132人目の素数さん2018/10/23(火) 22:22:27.01ID:xS8rsyai
必要条件の導出のとこもそうだけど、
十分性のとこも腕の見せ所だねぇ。

81132人目の素数さん2018/10/25(木) 15:29:13.77ID:c0Urnqy9
>>79
「少なくとも、一個以上存在する」のを示せばいいんじゃね?
「魔円陣」みたいに、「あると思ったら解がなかった」
みたいな話を排除すりゃいいんだと思われ。

82132人目の素数さん2018/10/25(木) 17:57:11.07ID:0sa6guuR
解があるNはすぐ絞れますが、そのあとが問題ですねぇ… >>55

83132人目の素数さん2018/10/26(金) 20:16:00.43ID:zxLKzcfw
>>82
そうじゃない。
「解がない」ケースは排除できるんだが、
「解がありそうな」ケースにおいて、
具体的な解が あることを
証明できるか どうかが問題なんだ。

84132人目の素数さん2018/10/28(日) 19:00:03.20ID:VHGHHXX0
この中に大学への数学の宿題もやってる人いる?
また、どちらの方が難しい?

85132人目の素数さん2018/10/31(水) 07:53:43.12ID:o2qBtZC4
宿題コーナー:問題をネット公開してないから、田舎住んでるおいらには情報入手がねっく。
仕事忙しくて、休日も都会に出れない。
しかも、今、免停中。

86132人目の素数さん2018/10/31(水) 11:55:46.85ID:HbGeox4u
ICMレポでは受賞者のIMO履歴レポも楽しみにしとります。

87132人目の素数さん2018/10/31(水) 13:05:45.93ID:r0MWiigz
【え! 総人口250万人減少?】 早く移民で水増しないと、■■■が原因だと、無関心層に気づかれる
http://rosie.5ch.net/test/read.cgi/liveplus/1540952533/l50

88132人目の素数さん2018/10/31(水) 23:33:34.82ID:MZfORzCN
>>84
もちろん 数オリです。

[前スレ.543, 554, 566, 577]

89132人目の素数さん2018/11/01(木) 01:10:42.80ID:ierp+l9s
>>85
> しかも、今、免停中。

なにしたのw

90132人目の素数さん2018/11/01(木) 07:06:15.14ID:5LSLCiuV
人引いたっちゃの

91132人目の素数さん2018/11/03(土) 00:47:10.99ID:/E6xXixt
>>84
 そんなこと訊かれちゃ K&ouml;MaL なぁ。

[前スレ.581, 592, 960-963]

92132人目の素数さん2018/11/04(日) 19:22:34.74ID:dybDQ925
宿題よりもエレ解の方が遥かに難しい

93132人目の素数さん2018/11/08(木) 09:23:16.64ID:7+cigYji
エレガント問題のネット公開→good idea。投稿の有無に関係なく問題挑戦→正解が知りたくなる→数セミ購入→販売促進→末永く継続。
数理科学の最新動向を気軽に入手するには必須の雑誌ですからね。
これからも期待してます。

94132人目の素数さん2018/11/08(木) 10:11:35.27ID:85Uw/O+I
ICM各種賞の受賞者のIMO出場歴には関心あり。
Hilbert 第10問題の解決者もIMO金メダリストらしい。
量子素因数分解のショアもメダリストらしい。
計算機科学とIMO(数論、組み合わせmainテーマ)は相性いいみたい。
今回のショルツの数論幾何、p進理論みたいだし。

95132人目の素数さん2018/11/09(金) 12:04:27.56ID:pvdoV3Z4
11月号

■出題1

N=8n に限ることは容易に分かると思う。

例の図を見て最初に思いつくのは
 1〜2n では ↓,←
 2n+1〜6n では ↑,→
 6n+1〜8n では ↓,←
というものだろう。

曲線 x = y - √|y| 上に
 P_k (-k(k+1),-kk)   k=0〜4n
曲線 x = y + √|y| 上に
 Q_k(-k(k+1),-(k+1)^2)  k=0〜4n-1
を取り、
P_0 - Q_0 - P_1 - Q_1 - … - P_4n を結ぶ。

* これらの曲線は、1本の放物線(軸: y=x-1/4)の2本の枝である。

このままでは閉じないから、P_nで180゚ 折り曲げ、さらに P_3n でも180゚折り曲げよう。
このとき P_n および P_3n の接線を横切るから、N角形は自身と交叉しない。
また P_4n は P_0 と重なる、つまり閉じる。

このN角形の面積は 4(11n+2)n^2
3曲線に囲まれた部分の面積は (4/3)n^3
P_k たちが作る4n角形の面積は (4/3)n^3 + (2/3)n,
らしい。

96132人目の素数さん2018/11/09(金) 12:45:24.20ID:VQ778wZ3
>>95
>
> N=8n に限ることは容易に分かると思う。
>
限らんやろ?

水平 : 1 6 12 と 3 5 11
垂直 : 2 8 10 と 4 7 9

にわけて

→12↑2→6↑8→1↑10←11↓4←5↓7←3↓9

でいけるやん。

97132人目の素数さん2018/11/09(金) 13:02:03.68ID:/YvwhmDF
>>96
辺の長さが順に1〜Nになるって問題文の最初に書いてある。

98132人目の素数さん2018/11/09(金) 13:06:36.41ID:/YvwhmDF
今回はみんな問1に興味があるようだね。俺は解けなかったよ。問2だけ応募した。

99132人目の素数さん2018/11/09(金) 15:44:36.63ID:u44VxTes
>>97
え?辺の長さ1〜12になってるけど?

100132人目の素数さん2018/11/09(金) 15:49:07.93ID:/YvwhmDF
>>99
順に、だよ。
→12↑2→6↑8→1↑10←11↓4←5↓7←3↓9
は順になってない。

101132人目の素数さん2018/11/09(金) 15:53:28.75ID:u44VxTes
>>100
あ、ほんと。失礼しました。

102132人目の素数さん2018/11/09(金) 19:49:16.20ID:GKcYZvRK
実をいうと自分もこの順にというのを見落としていて、だいぶたってから気づいた。
問題文に不備はないけど、これを考慮せずに応募した解答者が何人かは居るような気がする。

103132人目の素数さん2018/11/09(金) 20:12:02.08ID:GZzg+9lA
問題としてはそっちの方が難しくね?

104132人目の素数さん2018/11/09(金) 22:34:17.43ID:8HhBr9kV
12月のエレガントな解答はどうかね。
年末楽しめるぞ。
IMOは格式高いみたいだな。
マチアゼビッチもメダリストなんか。

105132人目の素数さん2018/11/09(金) 22:34:36.85ID:VQ778wZ3
でもまぁ8n+4の場合が増えるだけで自由に並べていいなら十分性のチェックがやや楽になるからなぁ。
どっこいかも。

106132人目の素数さん2018/11/10(土) 01:46:12.25ID:0LaPCkg7
11月号

■出題2
 x = a cosθ + b sinθ,
 y = c cosθ + d sinθ,
 ad-bc ≠ 0,
はxy-平面上の楕円である、を証明する問題

パラメータθを消去するのですが、
 dx-by = (ad-bc)cosθ,
 ay-cx = (ad-bc)sinθ,
からすぐに
 (dx-by)/√(dd+bb) = u,
 (ay-cx)/√(aa+cc) = v,
と置くのは良くない…

θをずらしてから消すのがミソ?

107132人目の素数さん2018/11/10(土) 12:11:14.57ID:EuCYu9xA
>>106
2次曲線は楕円、放物線、双曲線に限るという事を認めてしまえば一瞬だけどそれを証明しなさいというやつなんだよね。
容易”、”自明”で済まされることも高校の教科書レベルで許されるまで下げないといけない。
その前提で楕円、双曲線の定義も “うまく座標をとればAx^2 + By^2 = 1の形になる。”として

x^2+y^2 = 1の像をAx^2+By^2+Cxy=1として
2(Ax^2+By^2+Cxy) = r^2((A-B)cos2θ+ Csin2θ+(A+B))=r^2(Dcos(2θ+α)+E)=2と変形される。
回転させればr^2(cos(2θ)+F)=Gとなる。
変形してr^(2cos^2θ+F-1)=Gだから2x^2 +(F-1)(x^2+y^2)=lであり楕円、直線、又は双曲線となる。
コンパクトなので楕円。

とかでどう?たしか大数はこんな感じの解説だった。

108132人目の素数さん2018/11/10(土) 12:48:56.13ID:TylIaUHL
18年11月号の講評:

■出題1:レベル4(常連正解率98%)

小谷先生の出題。辺の長さが順に1,2,...,NとなるN角形の存在を問う問題。

必要条件N=8nを示すのは容易。
問題は十分条件だが、問題文に描かれている8角形の構成をそのまま一般のnに拡張すればよい。
辺が交差しないことを確認する方法は数通りある。
2点の座標を用いて交差条件を不等式で表すという愚直な方法を採れば、
高校数学でさんざんやったXY平面の領域問題に帰着する。

常連にとっては必要性も十分性も解答方針がすぐにピンと来る易問。
十分条件をエレガントに示す楽しみはあるかもしれない。


■出題2:レベル3(大学1年生の正解率95%以上)

岩I先生の出題。
本問は教科書から書き写してきたような一次変換の問題。
どうして本誌名物コーナーにこの問題を出そうと思ったか、理解に苦しむ。

109132人目の素数さん2018/11/10(土) 13:27:12.74ID:3qbO+/fB
確かにIMOは格式高いの。
マチアゼピッチ、ドリンフェルト、ラフォルク、ペレルマン、リチャードテイラー
ショア、皆、メダリストじゃあ。
最も格式高い、理論計算機、数論はメダリスト多し。
今回のフィールズ、ネバリンナはどうかの?

110132人目の素数さん2018/11/10(土) 14:07:27.76ID:3qbO+/fB
12月のエレガントは週明け公表かの?

111132人目の素数さん2018/11/10(土) 14:07:37.01ID:3qbO+/fB
12月のエレガントは週明け公表かの?

112132人目の素数さん2018/11/10(土) 16:38:01.74ID:O3Li6cBe
束の間の静けさ。
今日は、お伊勢参りしちょります。
週明けから、12月号と格闘。
英気を養うべし。

113学術2018/11/10(土) 17:45:42.08ID:RS+jJjFq
数学と 文学と 天文学あわせて、人文科系に新しい天文数学という分野を立ててみたい。

114学術2018/11/10(土) 17:46:10.00ID:RS+jJjFq
星占いのような迷信も取り込んでね。科学的に。

115132人目の素数さん2018/11/10(土) 18:59:47.30ID:XUkVeMLH
占いや心理学は学問ではない

116132人目の素数さん2018/11/10(土) 20:58:49.48ID:TylIaUHL
来月は京大ガロア祭の問題解説もあるようですね
楽しみです

117132人目の素数さん2018/11/10(土) 23:20:37.94ID:0LaPCkg7
>>106
原点O(0,0) から P(x,y) までの距離の2乗は
 x^2 + y^2 = (a cosθ + b sinθ)^2 + (c cosθ + d sinθ)^2
= (aa+bb+cc+dd)/2 + (aa+cc-bb-dd)/2 cos(2θ) + (ab+cd) sin(2θ)
= D'・cos(2θ+α) + E',

原点Oから最も近い点P_min と最も遠い点P_max は θ が 90°ずれている。
と同時に OPmin ⊥ OPmax も成り立つ。

番外問題 焦点はOPmax の方向にある。

118132人目の素数さん2018/11/10(土) 23:57:09.76ID:TylIaUHL
>>93
>エレガント問題のネット公開→good idea。投稿の有無に関係なく問題挑戦→正解が知りたくなる→数セミ購入→販売促進→末永く継続

正解者として名前が載った回の数セミは買って手元に置いておきたい、という読者心理を巧く掴んでいる気がしますね

119132人目の素数さん2018/11/11(日) 00:01:34.55ID:1Ei/zP4f
12月号はピーターフランクルと岩沢先生の解答号でもあります。楽しみですね

http://rio2016.5ch.net/test/read.cgi/math/1476702312/971

120132人目の素数さん2018/11/11(日) 10:20:35.92ID:JwUfUe23
>>107
それがこの問題の模範解答でしょうね。

個人的には座標変換を記述するのに行列を使うか三角関数を使うかは非常にどうでもよく、従って>>108のような素っ気無いコメントになってしまいました。

たまに大学範囲の簡単な問題に対して「中高生でも分かるような解答」を要求する出題者が居ますが、ああいうのは苦手です。

三角関数を捏ねくり回すよりも、一次変換の基礎を書き下して本質を抉った方がよっぽど中高生のためになるんじゃないかと思ってしまいます。

121132人目の素数さん2018/11/11(日) 10:44:02.52ID:JwUfUe23
とはいえ10月は忙しかったので問題が簡単で助かりました。

12月号が届くまでの間、束の間の雑談。

10月号の時弘先生の問題>>34が中高生の範囲で解けるのかどうかは気になります。スツルムの定理を前提知識として要求しているとは思えませんから。

「中高生の範囲」というのも考え始めると良く分からなくなってきますがね。スツルムの定理を理解するのに必要な知識は高校範囲の微分だけですからね。
一次変換だって少し前は高校でやっていたわけで。行列の知識を使わないで解くのが出題者の狙いだったとして、そのココロは私にはよく分からんですね。

122132人目の素数さん2018/11/11(日) 11:10:08.25ID:82kqsbVR
皆さん、束の間の紅葉見物でしょうか?
福岡はまだですね。
北海道、東北は終了?

123132人目の素数さん2018/11/11(日) 11:37:17.52ID:JwUfUe23
>>122
関東の平地は来月頭にかけてピークですかね。
標高高めのところは今がピークか、終わりかけているところでしょう。
今年は時弘先生が10月号にずれてくれたので旅行の計画に余裕が生まれましたw

124132人目の素数さん2018/11/11(日) 11:46:55.95ID:JwUfUe23
雷山千如寺大悲王院の紅葉
いいですなあ

125132人目の素数さん2018/11/11(日) 12:42:22.93ID:82kqsbVR
時弘先生の重量級は旅行シーズンは外してほしいですね。
私は応募しませんでした。
数の幾何学絡みの哲学的問いかけも含んだ深遠な問題待ってます。

126132人目の素数さん2018/11/11(日) 22:10:27.22ID:rkLPSQph
>>125
まったくです。
岩沢先生も行楽シーズンは駄目です
問題が魅力的かつ難しいので。

時枝先生は問題出さないのかなー

とここを見ているかも知れない編集部の方に向けて呟いてみる

127132人目の素数さん2018/11/12(月) 12:55:00.29ID:XWeln17t
電子版、エレガント。まだ更新されとらんどす。
今月はupが遅れとります。

128132人目の素数さん2018/11/12(月) 14:49:52.79ID:EHCP4EhY
エレ解は難しすぎるから、大学への数学の宿題にチャレンジするわ

129132人目の素数さん2018/11/12(月) 17:49:10.23ID:w4Fdouwh
今月の1は、pを既知として良いか否かで違うが、前者だと3秒で解けるから後者なんだろうな。それでも
解を見つけるだけなら簡単。ただ、最適解を、ということならどうだろう。
2は、ちょっと面白そう。

130132人目の素数さん2018/11/12(月) 18:44:25.77ID:2tyOcDc0
問題見つからない。リンクおながいします。

131132人目の素数さん2018/11/12(月) 18:48:34.20ID:TR6DezZk
>>130
いや、雑誌買ったw

132132人目の素数さん2018/11/12(月) 18:56:44.84ID:2tyOcDc0
残念。もうオンラインではやらないのかな?

133132人目の素数さん2018/11/13(火) 00:11:50.62ID:umZIwRjH
>>128
宿題ですか。なつかしいですね。
問題教えてくれれば解いてみたいですけど。

134132人目の素数さん2018/11/13(火) 13:33:05.68ID:Iloig4zl

135132人目の素数さん2018/11/13(火) 15:20:09.06ID:9YhCG0Hp
コインはさておき、ジャンケンで決めるなんてのはどうだろう

136132人目の素数さん2018/11/13(火) 15:45:44.26ID:FBLhmoMV
なんか期待値の最小値で評価するのすごい違和感あるな。
p がなんであっても大体この回数では決着がつく=期待値の最大値で評価したくなるけどな。

137132人目の素数さん2018/11/13(火) 16:53:58.95ID:/uXd0fJd
>問題 2 の答えは,いろいろと考えられるが,上記の期待値の最小値が小さいほど良いものとしよう.

この書き方はもしかして出題者側は持ってる答えの最小性の証明が出来てないのかな?
懸賞問題だから “最小性の証明はなくていい。投稿された答えの中で最小なのが勝ち” なのかな?
Aさんのルールより期待値の最小値が小さいやつはすぐ作れるけど、それが最小である自信は全くないや。

138132人目の素数さん2018/11/13(火) 17:58:02.59ID:gd93v0n7
出題2ってwww
あかん、ネタバレになるから言えんwww

139132人目の素数さん2018/11/13(火) 18:00:45.67ID:Iloig4zl
>>136
p=0またはその極限だと永久に決まらないから、なかなか難しいかと。

140132人目の素数さん2018/11/13(火) 19:07:29.49ID:/uXd0fJd
あ、ホントだ。最小値にせざるを得ないのか。
平均値ってするとpの分布与えないとダメだし。
やむを得ないのか。
まぁ十分ムズイし。

141132人目の素数さん2018/11/13(火) 21:29:36.39ID:eok3e5c2
問題文中にさらっと書いてあるけど、できるだけ公平になるようにするっていうのは暗黙の了解なのかな。
もっとも不公平でいいなら1回で終わるけど。

142132人目の素数さん2018/11/13(火) 22:10:18.01ID:/uXd0fJd
だろうね。
pがいかなる値であっても両者の勝つ確率は常に1/2
は暗黙の了解なんだろね。
受験で問題文にこの事明示してなかったら大問題だけど。
幾分エスパーしないといけない要素あるね。
最小性の証明が全くできる気がしない。orz

143132人目の素数さん2018/11/15(木) 18:00:48.42ID:l3Lnz9+G
出題1、意外に難しい。すぐ思い付いた方法、全然公平じゃなかったわ。

144132人目の素数さん2018/11/15(木) 18:19:50.06ID:+bxD8ezx
出題1→あっさり解けてしまった。もしかしたら、出題意図に反した解答かもしれないが。

出題2→問2、3に悪戦苦闘中。

145132人目の素数さん2018/11/16(金) 01:15:11.21ID:3fj2avs/
え?そんなにあっさりとける?
そのルールで期待値が最小値を取ることもあっさりしめせたの?

146132人目の素数さん2018/11/16(金) 04:33:31.42ID:VGuNCxDQ
そうそう。これ正面から解釈して本当に解ある?って疑い始めてるけど。
裏ワザ的解釈なら、とんでもない解があるが。

147132人目の素数さん2018/11/16(金) 07:04:55.79ID:xmVvCZPI
>>119

9月号出題の解答を貼っとく。

■出題1 

2020 = 2×2×5×101
M = 5×10^226 -20 -3×10^223 -5×10^224
 = 49469・・・(221コ)・・・980, (227ケタ)

 * [前スレ.964] (228ケタ) は間違い。

2019 (素数)
M = 6×10^224 -1 -10^19 -10^223
 = 589・・・(203コ)・・・989・・・(19コ)・・・9, (225ケタ)

2018 = 2×1009
M = 6×10^224 -2 -10^35 -10^204
 = 59・・・(19コ)・・・989・・・(168コ)・・・989・・・(34コ)・・・98, (225ケタ)

■出題2
 ラッキーナンバーが 0,3,5,7 のとき確実作戦が存在する。
 その他 (1,2,4,6,8-14) のときは存在しない。

148132人目の素数さん2018/11/16(金) 09:25:48.69ID:sF85eyia
>>146
そう。裏技を用いると、意外な解が得られる。
果たして、それが許されるのか

149132人目の素数さん2018/11/16(金) 10:03:28.97ID:3fj2avs/
なんかそらあかんやろってやつじゃないの?

150132人目の素数さん2018/11/16(金) 12:32:24.77ID:3fj2avs/
自分なりのエスパー解釈。

表、裏の有限列SでSの通りに出る確率をP(S)、l(S)をその長さとしてそのようなSからなる集合A.Bで条件

S、T∈A∪B、S≠TならP(S∩T)=0、
Σ[S∈A]P(S)= Σ[S∈B]P(S)=1/2

を満たすものの中で

Σ[S∈A∪B]P(S)l(S)

の最小値を求めよ。

最小値があるのか知らんけど。

151132人目の素数さん2018/11/16(金) 17:54:51.21ID:1MCcWI6o
出題1分かったー。いや、これは面白い!
でも、平均回数が解析的に計算できる気がぜんぜんいしないぞ。

152132人目の素数さん2018/11/17(土) 02:52:53.66ID:4vFfZM9R
>>147
2019は素数ではない。
2019=3×673

153132人目の素数さん2018/11/17(土) 22:32:57.24ID:j3PWNWS8
>>150
例えば表裏表で勝負が付いた場合は、それより長い表裏表裏なんかは必ず同じグループに入れるなりカウントしないなどの措置が必要になる。
この辺りが面倒なんだよこの問題。

154132人目の素数さん2018/11/18(日) 00:22:05.25ID:ZJOO9Eig
>>153
一個目の条件でオウオとオウオウのような背反でない事象はとらないようにしてる。
まぁ難しい。
これかな?と思い当たるのはあるんだけど最小性の証明ができてないからなぁ。
まぁできても応募する気なんぞサラサラないからいいんだけど。
しかしおそらく出題者は最小性の証明持ってるだろうし出来ないのなんかムカつくので熟考中。
問題文の文面ではとりあえず答えだけ合ってればいいみたいな事は書いてたけど、おそらく何人かは最小性の証明付きで応募してくるだろうね。

新着レスの表示
レスを投稿する