X



トップページ数学
705コメント691KB

現代数学の系譜11 ガロア理論を読む26 [無断転載禁止]©2ch.net

■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/03(土) 18:47:40.27ID:6Rgz8i9T
小学生とバカプロ固定お断り!(^^;
旧スレが500KBオーバー間近で、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。)
過去スレ
現代数学の系譜11 ガロア理論を読む25 http://rio2016.2ch.net/test/read.cgi/math/1477804000/
同24 http://rio2016.2ch.net/test/read.cgi/math/1475822875/
同23 http://rio2016.2ch.net/test/read.cgi/math/1474158471/
同22 http://rio2016.2ch.net/test/read.cgi/math/1471085771/
同21 http://rio2016.2ch.net/test/read.cgi/math/1468584649/
同20 http://wc2014.2ch.net/test/read.cgi/math/1466279209/
同19 http://wc2014.2ch.net/test/read.cgi/math/1462577773/
同18 http://wc2014.2ch.net/test/read.cgi/math/1452860378/
同17 http://wc2014.2ch.net/test/read.cgi/math/1448673805/
同16 http://wc2014.2ch.net/test/read.cgi/math/1444562562/
同15 http://wc2014.2ch.net/test/read.cgi/math/1439642249/
同14 http://wc2014.2ch.net/test/read.cgi/math/1434753250/
同13 http://wc2014.2ch.net/test/read.cgi/math/1428205549/
同12 http://wc2014.2ch.net/test/read.cgi/math/1423957563/
同11 http://wc2014.2ch.net/test/read.cgi/math/1420001500/
同10 http://wc2014.2ch.net/test/read.cgi/math/1411454303/
同9 http://wc2014.2ch.net/test/read.cgi/math/1408235017/
同8 http://wc2014.2ch.net/test/read.cgi/math/1364681707/
同7 http://uni.2ch.net/test/read.cgi/math/1349469460/
同6 http://uni.2ch.net/test/read.cgi/math/1342356874/
同5 http://uni.2ch.net/test/read.cgi/math/1338016432/
同(4) http://uni.2ch.net/test/read.cgi/math/1335598642/
同3 http://uni.2ch.net/test/read.cgi/math/1334319436/
同2 http://uni.2ch.net/test/read.cgi/math/1331903075/
同初代 http://uni.2ch.net/test/read.cgi/math/1328016756/
古いものは、そのままクリックで過去ログが読める。また、ネットで検索すると、無料の過去ログ倉庫やキャッシュがヒットして過去ログ結構読めます。
0389132人目の素数さん
垢版 |
2016/12/17(土) 22:47:52.29ID:RaAp9Ge2
時枝氏は大数の法則を用いていないので、期待値が存在しないという指摘は的外れ
0390現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/17(土) 22:49:25.87ID:sIK9xcpB
>>386-387

つー、>>324
宝くじで例えてやったろ?>>311
(再録)
簡単に、n枚発行して、当たりの1等1枚、当選番号決定は、12月31日 当選番号決定前では、1枚の当選確率は1/n
1枚しか買わなければ、確率は1/n 。しかし、必ず1等当たりはあるので、全体での確率(総和)は1だ
(引用終り)

繰り返すが
1.仲間10人で宝くじやれば、確率は1/10、全体での確率(総和)は1
2.100人の村で宝くじやれば、確率は1/(10^2)、全体での確率(総和)は1
3.100万都市で宝くじやれば、確率は1/(10^6)、全体での確率(総和)は1
4.日本全国100億枚で宝くじやれば、確率は1/(10^10)、全体での確率(総和)は1
5.全世界1兆枚(10^12)で宝くじやれば、確率は1/(10^12)、全体での確率(総和)は1
6.人間が宇宙に進出するか宇宙人がいるとして、全宇宙で(10^n)枚で宝くじやれば、確率は1/(10^n)、全体での確率(総和)は1 (n→∞の極限が可能)
7.無限の財力があれば、宝くじを全部買い占めることができて、必ず当たる。確率(総和)は1
0394132人目の素数さん
垢版 |
2016/12/17(土) 22:54:51.51ID:RaAp9Ge2
>>393
6での極限移行が無理
実際n→∞としたとき、ある特定の一枚が当たる確率はどうなるんだい?
0396現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/17(土) 22:57:56.67ID:sIK9xcpB
>>394
>実際n→∞としたとき、ある特定の一枚が当たる確率はどうなるんだい?

>>390 "1枚しか買わなければ、確率は1/n 。"とあるだろ? n→∞で、1/n →0に収束する

収束が分かってないのか?
0397132人目の素数さん
垢版 |
2016/12/17(土) 22:59:10.39ID:RaAp9Ge2
>>396
その通り確率0になってしまうわな
そうすると、今度和をとると全体の確率も0となって矛盾するわけ
0401132人目の素数さん
垢版 |
2016/12/17(土) 23:04:07.44ID:RaAp9Ge2
>>399
これがしてしまう。
スレ主は極限の順番に無頓着なので、確率を0にする極限と、和をとる極限を同時にとって良いと思ってるがそれが誤り。
実際は確率の極限をとってから、和を取らなくちゃいけない。
0402132人目の素数さん
垢版 |
2016/12/17(土) 23:16:09.31ID:RaAp9Ge2
スレ主は大学レベルの数学が好きらしいので、その土俵にのって話そうか
集合Ωとそのσ加法族Fの組(Ω,F)を可測空間という。
関数P:F→[0,1]が次の2つの性質を満たすとき、Pを確率測度という
(1) P(Ω)=1
(2) 可算族A_iが共通部分を持たないとき、ΣP(A_i)=1

そして一様分布なのでP({n})=c (一定)という条件も必要となる
Ωの濃度がMという有限の場合はP({n})=1/Mとすればよい。
ところが無限の場合はできないということを示した。
どうしてもできると思うなら構成してみることだな
0403132人目の素数さん
垢版 |
2016/12/17(土) 23:21:00.87ID:RaAp9Ge2
>>400
デルタ関数も超関数であって通常の意味の関数ではない
全く同一であると思っているなら勉強し直した方が良い
0404現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/17(土) 23:24:31.02ID:sIK9xcpB
>>390
類似の事象は、量子力学の”波束の収縮”と対比すれば分かり易いだろう

多量に発行された宝くじ
それを買う庶民

買った人は、冷静に「どうせ当たるはずはない」(確率はほとんどゼロ)と考えながらも、期待する
当然、完全にゼロではない。極限として、極めて低い状態、つまり、限りなくゼロの状態は考えられる。それが極限でεともかくときもある(発行枚数をいくらでも大きくできる)

12月31日 当選番号決定時に、当選番号だけが確率1に収束し、他のくじは外れでゼロになる

https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%9A%E3%83%B3%E3%83%8F%E3%83%BC%E3%82%B2%E3%83%B3%E8%A7%A3%E9%87%88
(抜粋)
量子力学の状態は、いくつかの異なる状態の重ね合わせで表現される。このことを、どちらの状態であるとも言及できないと解釈し、観測すると観測値に対応する状態に変化する(波束の収縮(英語版)が起こる)と解釈する。

量子力学の各種実験結果は、粒子が空間的に一点に存在することを示している
(厳密には位置だけでなく運動量についても言及しないといけないが、理解し易いように敢えて位置に絞って説明する)。
同時に、空間的に広がりを持つ(あるいは、かつて広がりを持っていた)ことも示している。

観測前に波動関数に従った空間的広がりがあったことと、観測時点では一点に収束していること、収束の確率が確率解釈に依存することの三つの実験事実を合意事項として採用する解釈として、コペンハーゲン解釈が生まれた。
0406現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/17(土) 23:31:33.06ID:sIK9xcpB
>>403
発想が貧弱だな

https://ja.wikipedia.org/wiki/%E3%83%87%E3%82%A3%E3%83%A9%E3%83%83%E3%82%AF%E3%81%AE%E3%83%87%E3%83%AB%E3%82%BF%E9%96%A2%E6%95%B0
ディラックのデルタ関数
(抜粋)

正規分布の密度関数による近似

デルタ関数はある意味で正規分布の密度関数の極限と見なすことができ、・・(式省略)

デルタ関数の表現に正規分布を用いたが、このことから、デルタ関数は正規分布の一種であると考えることが可能である。デルタ関数は、特殊な確率分布の表現に有用である。
0409132人目の素数さん
垢版 |
2016/12/17(土) 23:35:49.50ID:RaAp9Ge2
>>406
超関数は急減少関数空間の連続双対空間の元として定義される
そもそも住んでる世界自体が違う
デルタ関数も正規分布の密度関数の極限として得られるわけではなく、密度関数を超関数として捉え直したときの極限として得られる
0410現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/17(土) 23:38:54.39ID:sIK9xcpB
>>401
>スレ主は極限の順番に無頓着なので、確率を0にする極限と、和をとる極限を同時にとって良いと思ってるがそれが誤り。
>実際は確率の極限をとってから、和を取らなくちゃいけない。

それ間違いだな
極限と和の順番はいろいろ考えられるよ
積分と極限の順番に同じだ
これでなければならないという場合もあるが、それは要証明事項だ
0413現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/17(土) 23:52:07.60ID:sIK9xcpB
y=1/xという関数で

x→∞ なら lim (x→∞ ) 1/x=0だわな

ここで、x=nとする
lim (n→∞ ) 1/n=0だわな

だが、どの時点でも、n・(1/n)=1 だから、lim (n→∞ ) n・(1/n)=1 だわな

話はこれだけだ。ただの極限ですよ。

それを、一様分布のときだけは違うだと・・? 正気か?
0414132人目の素数さん
垢版 |
2016/12/17(土) 23:53:04.08ID:RaAp9Ge2
>>410
確率空間の定義にてらすと確率の極限をとってから和の極限をとる
偶然一致する場合もあるかもしれんが、それこそ要証明だわ
それこそ>>402の例を実際構成することだ
0416132人目の素数さん
垢版 |
2016/12/18(日) 00:27:14.86ID:l2HBR203
Why does he want to be proud of idiot of himself?
0417132人目の素数さん
垢版 |
2016/12/18(日) 00:50:44.48ID:8NxamFzp
確率にイチャモンつけてばかりのスレ主が確率論の基礎のキソも分かってないなんてシャレにもならない
0418現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 11:17:59.39ID:TSR5U7zr
>>414-147
言いたいことはそれだけ?

時枝>>4より引用
「現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.

だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」(引用終り)

”確率空間の定義にてらすと・・”? なんだって??
もともと、時枝が否定していることだろ? 

「確率は数学を越えて広がる生き物なのである」と、時枝はいう
そして、現実に、多量発行の宝くじモデルがあるよ、>>390&>>404

発行枚数nで、n→無限大の極限が考えられる
この極限確率分布を「拡張一様分布」と名付けよう。かつ、定義しよう (>>413ご参照)

それで終わりだ。「拡張一様分布」は一様分布の外だ。かつ、測度論的解釈に縛られない
もちろん、数学の概念を拡張したとき、ZFCなどのもっと基礎の概念と矛盾しないかは、確認要だ

しかし、>>413の極限を使うだけだから、極限は既存数学で確立されているから
ゆえに、ZFCの範囲内

まあ、関数概念を拡張して、デルタ関数を考えるがごとしだ
それくらいの思考の柔軟性は持てよ(^^

追伸
余談だが、現代数学の特徴の一つは、思考の柔軟性だと思うんだよね

いろんな概念を公理を基礎にして、抽象化して、現実の人間社会や自然現象に当てはまるように、拡張し変形する
ゲームの理論や、ゲーム論的確率などは、この典型例で、現代数学の柔軟性を示していると思うよ(^^

さらに余談だが、ニュートンあたりからの数学を俯瞰すると、微積、級数展開、変分法、複素関数、ガロア理論、・・・とまあ、現実社会や自然現象を数理的に解析しようという歴史とも考えられる
都度、数学は拡張されてきた。既存の数学を拡張するのだから、それは新しい概念を入れるってことなんだよ(^^
0420現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 11:21:54.92ID:TSR5U7zr
>>418 補足

前にも紹介したと思うが・・

http://note.chiebukuro.yahoo.co.jp/detail/n98014
数学の勉強法 学部〜修士 ライター:amane_ruriさん(最終更新日時:2012/8/6)投稿日:2012/8/4
(抜粋)
私は修士1年生ですので、正直に言いますとこの部分はあまり書いているのが正しいとは思えません。
趣味で書いているものだと認識していただければ良いのではないかと思っております。

大学3、4年に入ってまず怖いのが数学の本の氾濫でしょう。
まず何を読んで何をすればいいのか分からなくなります。

そして、自分のやっていることがいかにちっぽけな存在なのかというのを実感させられます。(多分皆がそうでしょう。)
そして、結果が問われてきます。ここで、数学科は「入るのは易しいけどプロになるのは難しい」ということが実感させられてきます。

2012年8月3日現在、書泉グランデで有名数学者の薦める本がありました。森重文先生を初めとして本の多さに圧倒されました。
(足立恒雄先生は信頼と安心のブレなさ)

院生の人向き

2.2chの内容は信用できるか?
基本的に信用できません。先生>周りの人>>>2chや知恵袋の人です。
何故かというといつも同じことしか言っていないから。
多分きちんと検証していないで想像で議論しているだけではないのかと私は思っています。(まあ、自分もあんまり信用できないけど)
(引用終り)

個人的には
知恵袋>>>>2chの人 だな (もちろん、自分(私)を含む。つくづくそう思ったよ)
0421132人目の素数さん
垢版 |
2016/12/18(日) 11:31:21.32ID:8NxamFzp
間違いを丁寧に指摘してやった人間をコケにする最低男
数学の拡張だのなんだの言い逃れする前に言うことがあるだろクソ野郎
0422現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 11:37:36.84ID:TSR5U7zr
>>418 補足

>時枝>>4より引用
>「現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
>だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
>確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).」(引用終り)

この”現代数学の形式内では確率は測度論によって解釈される”を超えて行けという指摘は、過去¥さんからも出ているし、引用した小島にもある
が、時枝の記事の解法やSergiu Hart氏をほじくったところで、あまり有益じゃないと思うよ(個人的には不成立だと思うし)

むしろ、もっと自分の興味の持てる、ゲーム論的確率や最近話題の量子エンタグルメントエンタルピーをやった方が良いだろう
量子エンタグルメントエンタルピーなどは、個人的には有望株だと思う。結構楽しめそうだ
0424現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 11:38:44.29ID:TSR5U7zr
>>422

>時枝の記事の解法やSergiu Hart氏をほじくったところで、あまり有益じゃないと思うよ(個人的には不成立だと思うし)

ここを補足しておく

>>334 に書いたが、可算無限個の箱から成る数列は、循環小数のロバートソンの方法のアナロジーが使えて
同値類の集合の元は、代表元との差を取ることで

Δr= r'-r = (s'1-s1,s'2-s2,s'3-s3 ,・・・,s'n-sn ,・・・,s'm-sm ) として
Δrは、個別には、有限の長さの数列になり、ロバートソンの方法類似の表現で

r'= Δr +r
とできる

Δrは、個別には有限の数列の長さだが、確率を考えるときは、集合としては、数列の有限の数列の長さに上限はなく、無限大の極限を考える必要がある
それは>>188と同じだ

かつ、大きな違いは、
循環小数では、箱の数字は0〜9の10通りだが、時枝やSergiu Hart氏では、箱の中は任意の実数だから、card(R)つまり(非加算)無限大通りになる
0425132人目の素数さん
垢版 |
2016/12/18(日) 11:39:59.45ID:8NxamFzp
きっちり謝罪しろや
0429現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 12:02:20.10ID:TSR5U7zr
>>379 補足

>プレプリント:http://arxiv.org/abs/1412.1879 (arXiv.orgのウェブページ)

(抜粋) google翻訳(英文がNGワードではじかれるため)
B.まとめと概要

このノートでの私たちの目標は、バルクの局所物理を解明するために、CFTにおけるエンタングルメント、特に相対エントロピーを使用することです。関連する最近の研究では、相対エントロピーの陽性を用いて運動の非線形重力方程式を制約しようとする試みがある[10]、[11]、
非線形バルクアインシュタイン方程式[3,6,12]からCFTの絡み合いを制約する微分方程式を導出するという逆のシナリオがある。

(15)は、CFTのエンタングルメント情報を用いて、AdSに近い領域のバルク応力テンソルをポイントごとに表現するために、逆にすることができることを示す。

論文の概要は以下の通りです。
セクションIIでは、(7)の各量をホログラフィに変換する方法を検討し、一般化されたストークス定理論論[7、14、15]を用いて、絡み合い第1法則から線形化された運動方程式を導出する方法を示す。
セクションIIIでは、CFTにおける小球の相対エントロピーの陽性、単調性および凸性が陽性条件の二重であることを示す
セクションIVでは、AdSに近い領域で局所的にバルク応力テンソルを得るために逆変換する方法(15)を示す。セクションVでは、ホログラフィック的に導出された相対エントロピー(15)の凸性を、一般的な量子論的分析からどれだけ回復できるかについて議論する。私たちは第VI章の意味とオープンな問題についてコメントします。
(引用終り)
0430132人目の素数さん
垢版 |
2016/12/18(日) 12:16:39.76ID:8NxamFzp
スレ主以外のみなさんへ:
数学の議論雑談をする別の場を設けてはと思うがどうだろう?
馬鹿を相手して楽しいというのもわかるが、同じ馬鹿でも
打てば響くマトモな(俺のような)馬鹿を相手にしたほうがいい。
>>418のような呆れた反論に耳を貸すのが趣味ならそれでも良いが。
0431現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 12:42:56.52ID:TSR5U7zr
>>429

Google翻訳がAI化されたという
確かに、レベルが上がった

http://ailab.hatenablog.com/entry/google-translate/
Google翻訳が人工知能を活用した翻訳をスタート!その精度は? - A.I.lab(エー・アイ・ラボ)- 人間の、人間による、人間のための人工知能メディア 2016-11-13

https://webcache.googleusercontent.com/search?q=cache:exksFCroEY0J:https://bita.jp/dml/gtransrate_upgrade+&cd=4&hl=ja&ct=clnk&gl=jp
待ってた!ついにGoogle翻訳がニューラルネット機械翻訳を日本語版にも適用。異常に上がった翻訳性能は感動モノ - BITA デジマラボ: 2016-11-12
0434現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 12:47:52.42ID:TSR5U7zr
>>430
良いよ、このスレを踏み台というか宣伝に使って貰って
もっと、良いスレ立てましたと、PRレス貼りつけりゃ良いでしょ、どうぞ

邪魔はしません
そもそも、ここはsage進行。おまえ見たいにageるやつじゃまだよ
0435132人目の素数さん
垢版 |
2016/12/18(日) 12:53:42.83ID:8NxamFzp
ここは

 間違いを丁寧に指摘してやった人間をコケにする最低男
 数学の拡張だのなんだの言い逃れする前に言うことがあるだろクソ野郎

が運営するスレだということを知らしめておいたほうがいいに決まってるだろうがw
0436現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 13:05:40.93ID:TSR5U7zr
>>435
どうぞ

>>418は、間違ってはいないよ
おまえが理解できないだけだ

過去、一様分布の話は、こちら(私スレ主)からなんども出しているよ
過去レスに残っている。その流れで説明しただけだよ
0437現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 13:26:47.25ID:TSR5U7zr
>>429
面白いが
細かいところが分からない(^^;

AdS/CFT対応を使って、Ryu and Takayanagi公式のエントロピー計算から、アインシュタイン計量テンソルを出そうという論文と見たが・・
量子エンタグルメントエンタルピーが、重力になる?

量子エンタグルメントは、フェルミ粒子専用と思っていたが、そうでもないのか・・?
フェルミ粒子専用量子エンタグルメントをもっと拡張して、抽象化しているのか・・?

そのうち何か解説が出るか・・、関連文献が見つかるかも・・?
量子エンタグルメントから、湯川先生が目指していた非局所場の量子論が出来るかも知れんという気がするね・・

まあ、プロが目指しているのは、量子論と重力理論の統一の方だろうが
0438現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 13:37:13.32ID:TSR5U7zr
>>435 補足

余談だが、このスレは、9割以上は、私スレ主の投稿(主にコピペ)と自己レスで進んでいく
他の人のレスで、数学的に意味あるレスは少ない

古くは、メンターさんが共役変換の間違いを指摘してくれた
あと、¥さんの数学界裏話や確率論のフォンミーゼスのコレクチーフとか

あと、おっちゃんの周期論
おっと、Tさんの時枝記事があったね

最低限、ここはおいらのメモ帳になれば、それでOKだ
だから、sage 進行にした (運営だとか、プロ固定だとか、うるさいやつが来たしね)
0439現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 13:41:15.64ID:TSR5U7zr
>>435

重箱の隅だが

>運営するスレだということを知らしめておいたほうがいいに決まってるだろうがw

正規の意味での”運営”は、していない
スレ主を勝手に名乗っているがね(^^;
0441現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 13:56:04.77ID:TSR5U7zr
>>437 関連

ふーん、なるほど・・
http://planck.exblog.jp/24194484/
量子もつれ : 大栗博司のブログ: 2015年 06月 01日
(抜粋)
先週はカブリIPMUで、「物性物理学とAdS/CFT」と題した国際会議を開きました。左が会議の集合写真です。

私はオーガナイザーの一人でしたが、他のオーガナイザーの推薦で講演もさせていただきました。講演のタイトルは「量子もつれ不等式」。最近書いた2つの論文の話をしました。

ひとつの論文は、ちょうど今日電子プレプリント・アーカイブの発表されたもので、
http://arxiv.org/abs/1505.07839
これは「ホログラフィックな量子もつれ錐」と題しました。Caltechとスタンフォード大学の大学院生やポストドクトラル・フェローと書いたものです。

これは、「ホログラフィー原理によって、重力理論と等価になる、共形場の理論の持つべき性質」を明らかにしたものです。

う一つの論文は、数日中にPhysical Review Lettersに掲載される予定で、「共形場の量子もつれから重力系の局所性へ」というタイトルです。もともとは、「量子もつれのトモグラフィー」というタイトルだったのですが、Physical Review Lettersの編集部の希望で変更になりました。

こちらの論文では、上の論文とは逆に、「ホログラフィー原理によって、共形場の理論と等価になる、重力理論の持つべき性質」を明らかにしました。また、重力理論のエネルギー密度のような時空の中の局所データが、共形場の理論の量子もつれを用いて計算できることを示しました

こちらの論文は、Physical Review Lettersの注目論文(Editors' Suggestion)に選ばれたので、東京大学の広報部がプレスリリースを出してくださいました。
(引用終り)
0442132人目の素数さん
垢版 |
2016/12/18(日) 14:22:14.71ID:SfDe2Xje
>>418
「拡張一様分布」が通常の確率分布でないことを認めたな
じゃあ通常の確率分布で成り立つような性質をこれからは断りなしに用いるなよ
0443現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 14:22:39.03ID:TSR5U7zr
>>351
http://www.saiensu.co.jp/?page=book_details&;ISBN=ISBN4910054700442&YEAR=2014
臨時別冊・数理科学2014年4月
「ホログラフィー原理と量子エンタングルメント」 高柳 匡(京都大学教授) 著 より

まえがき
 本書は量子エンタングルメントという視点で,量子多体系の理論(場の理論)と重力理論(一設相対性理論や超弦理論)という一見全く異なった物理の理論体系を統一的に理解する新しい考え方を説明することを主目的としている.
 この考え方は,ホログラフイー原理と呼ばれ,特別な場合はAdSjCFT対応ないしゲージ・重力対応とも呼ばれる.ホログラフイー原理の内容を誤解を恐れず一言でまとめると,「量子多体系の理論を時空の幾何学として表現する手法」と言える.

 場の理論は素粒子理論と物性理論の両分野にまたがる基本的で大変重要な道具であるが,ホログラフイー原理は理論物理学のほぼすべての分野の理論体系は実はその根源において同一であるという驚くべき関係性を強く示唆する.
 ホログラフィー原理やAdSjCFT対応は超弦理論の分野で発見された考え方であり,最近の超弦理論の研究において最もアクテイブに研究されているテーマと言える.

 しかしながら,本書は読むのに超弦理論の知識は必要としないように書いたつもりである.
 本書で想定している読者は理論物理を専門とする修士課程の大学院生程度であるが,場の理論の初歩と一般相対性理論の初歩を習得していれば,学部学生でも意欲があれば多くの部分を読みこなせるようになっている.

 量子エンタングルメントは量子力学の基本的な性質であり,量子情報理論において極めて重要な役割を果たしてきた.
 その概念を定量化する量がエンタングルメント・エントロビーであり,本書で議論する最も重要な物理量である.

 この量を用いてホログラフイー原理を考察すると見通しが良くなり,多くの新しい知見が得られる.
 なぜならエンタングルメント・エントロピーは, I量子多体系の幾何学を記述する最も基本的な量」のーっといえるからである.

つづく
0444現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 14:23:23.81ID:TSR5U7zr
>>443 つづき

 本書の最終目標は,量子エンタングルメントの考え方を用いて「ホログラフイー原理とは一体何なのか?Jを理解することにある.
 一方で,エンタングルメント・エントロピーは複雑な量子多体系を数値的に解析する際に大変便利な量であり,基底状態がどのような量子相にあるか識別する量子的秩序パラメーターとして活用されている.

 つまり, 「数値実験における観測量」という側面も持っているのである.
 量子エンタングルメントやエンタングルメント・エントロビーといっキーワードが,素粒子理論や物性物理・量子多体系の研究者に研究対象として興味を持たれ,世界中で活発にこれらの分野で研究されるようになってからまだ10年も経過していない.

 その意味でも量子エンタングルメントの考え方は, 21世紀の理論物理を牽引する原動力となりえると筆者は期待している.

(引用終り)
0445現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 14:25:57.31ID:TSR5U7zr
>>442

どうぞご勝手に
おれは、個人的には、時枝記事不成立で解決済みなんだ

相手にしてもらえると期待しないでくれ
気まぐれなんでな

よろしく

追伸
数学的ロジックを外さないようにね
あと、定義をしっかりな
0446現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 14:31:26.26ID:TSR5U7zr
>>444

 いいね、その意気や良し!

”量子エンタングルメントという視点で,量子多体系の理論(場の理論)と重力理論(一設相対性理論や超弦理論)という一見全く異なった物理の理論体系を統一的に理解する新しい考え方を説明することを主目的としている.
 この考え方は,ホログラフイー原理と呼ばれ,特別な場合はAdS/CFT対応ないしゲージ・重力対応とも呼ばれる.ホログラフイー原理の内容を誤解を恐れず一言でまとめると,「量子多体系の理論を時空の幾何学として表現する手法」と言える.

 場の理論は素粒子理論と物性理論の両分野にまたがる基本的で大変重要な道具であるが,ホログラフイー原理は理論物理学のほぼすべての分野の理論体系は実はその根源において同一であるという驚くべき関係性を強く示唆する.”

http://www.saiensu.co.jp/?page=book_details&;ISBN=ISBN4910054700442&YEAR=2014
臨時別冊・数理科学2014年4月
「ホログラフィー原理と量子エンタングルメント」 高柳 匡(京都大学教授) 著 より
0447132人目の素数さん
垢版 |
2016/12/18(日) 14:35:59.76ID:reVBejB0
>>420
おっちゃんです。
>何故かというといつも同じことしか言っていないから。
大学教員にも毎年同じことをいう人がよくいるから、
これ「だけ」を根拠にして否定する知恵袋の人間も信用出来ないぞ。
0448132人目の素数さん
垢版 |
2016/12/18(日) 14:52:41.13ID:reVBejB0
>>383
>確率と統計は、数学的にはオーバーラップする部分が多い
予想に反して、オーバーラップする部分は少ない。
確率測度は一応書いてあるが、統計では確率論のように測度論的な議論は余りしない。
そして、統計は、推定法や検定法が主体になってこれらを覚えることが多くなり、
確率論で使われない記号が多く出て来る。これをエクセルなどと併用しつつ
応用することで、現実の色々な場面での統計的手法を使うことが可能になる。
金融工学の方がまだ確率論と数学的にオーバーラップすることは多い。
0449132人目の素数さん
垢版 |
2016/12/18(日) 15:26:16.53ID:reVBejB0
>>410
rを開区間 (-1,1) を動く実変数としよう。すると、 |r|<1。だから、
lim_{r→+1-0}(Σ_{k=1,…,+∞}(-r)^{k-1})=lim_{r→+1-0}(1/(1+r))=1/2。
しかし、
Σ_{k=1,…,+∞}(lim_{r→+1-0}(-r)^{k-1})=Σ_{k=1,…,+∞}(-1)^{k-1}
であって、Σ_{k=1,…,+∞}(-1)^{k-1} は発散級数で、その総和は意味のある和
の値を振り当てない限り値は定まらず振動するから、一般には
lim_{r→+1-0}(Σ_{k=1,…,+∞}(-r)^{k-1})≠Σ_{k=1,…,+∞}(lim_{r→+1-0}(-r)^{k-1})
になる。これは、極限と総和を取る順序を入れ替えることが出来ない一例になる。
0450現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 15:31:03.22ID:TSR5U7zr
>>446 関連

>>444
<「ホログラフィー原理と量子エンタングルメント」 高柳>
(抜粋)
P5
 この AdS/CFT対応は実は,前に述べたホログラフイー原理の一例になっている.
 ここに来てホログラフイー原理は,具体的にそれが成り立つ重要な例を獲得したことになり,それ以後は,ほぼすべての超弦理論の研究者に受け入れられる考え方になった.

1.4 新旧のアイデアの融合:重力のエントロピーとエンタンクルメン卜・エントロピー

 さてホログラフィー原理や AdS/CFT対応という新しく非常に強力なアイテムを手に入れたので,ここで元の問題に戻り,エンタングルメント・エントロピーが重力理論のエントロピーとして解釈できるかどうか考え直してみよう.
 そのためには逆算することを考えて,共形場理論のエンタングルメント・エントロピーが反ドジッタ一時空における重力理論でどのように計算されるのか AdS/CFT対応に基づいて考えてみればよい.
 その結果はシンプルで. (1.1) において,ブラックホールの表面積の代わりに,反ドジッタ一時空の中で面積を最小にする曲面(極小曲面)の面積で置き換えればよいのである.
 この事実は,2006年に笠と著者が発見したもので.ホログラフィックなグルメン卜・工ン卜口ピーと呼ばれる,
 これはベッケンシュタイン・ホーキングの公式をブラックホールの存在しない時空へ拡張したものとも解釈できる.

つづく
0451現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 15:32:33.19ID:TSR5U7zr
>>450 つづき

 つまり場の理論のエンタングルメント・エントロピーを重力理論の立場で解釈すると,ブラックホールのエントロピーとは一般に異なるが,それを一般化した重力的なエントロピーとなっているのである.
 従って,場の理論のエンタングルメント・エントロピーが与えられると,対応する重力理論の様々な曲面の面積が求められるので,最終的に時空の計量を決定できると期待される.
 つまりホログラフイックなエンタングルメント・エントロピーを用いると,重力理論の計量と場の理論の量子エンタングルメン卜が直接対応するという本質的な原理が明らかになったと言える.
 この事実は,量子重力理論の理解には,量子情報理論の考え方が重要であることを示唆している.
 また,ホログラフイツクなエンタングルメント・エントロピーは,一般に相互作用する場の理論では計算が困難なエンタングルメント・エントロピーを,比較的簡単な幾何学的な計算に帰着できるという長所も持っている.このような最近の発展を解説することが本書の主要なテーマである.

http://www.saiensu.co.jp/?page=book_details&;ISBN=ISBN4910054700442&YEAR=2014
臨時別冊・数理科学2014年4月
「ホログラフィー原理と量子エンタングルメント」 高柳 匡(京都大学教授) 著 より
0453現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 15:54:07.97ID:TSR5U7zr
>>451 関連

”エネルギー、物質および情報の等価性”か・・・、情報が主で、エネルギーと物質が従か。そういう話を聞いたことがあったかも・・・(^^
https://ja.wikipedia.org/wiki/%E3%83%9B%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%95%E3%82%A3%E3%83%83%E3%82%AF%E5%8E%9F%E7%90%86
ホログラフィック原理
(抜粋)
より大きなより思弁的な意味では、この理論は、全宇宙は宇宙の地平面上に「描かれた」2次元の情報構造と見なすことができ、我々が観測する3次元は巨視的スケールおよび低エネルギー領域での有効な記述にすぎないことを示唆する。宇宙の地平面は、有限の領域で時間とともに膨張していることもあり、数学的には正確に定義されていない[4][5]。

エネルギー、物質および情報の等価性
例えばEメールメッセージなどに含まれる情報量を定量化するためのシャノンの努力の結果、ボルツマン・エントロピーと同じ公式が予期せず導かれることとなった。
2003年8月号のサイエンティフィック・アメリカンの記事"ホログラフィック宇宙の情報" (Information in the Holographic Universe) において、
ベッケンシュタインは、"熱力学的エントロピーとシャノン・エントロピーは概念的に等価である:ボルツマン・エントロピーによって数え上げられる配置の数は物質とエネルギーの任意の特定の配置を実現するのに必要なシャノン情報量を反映している…"と要約している。
物理の熱力学エントロピーと情報のシャノン・エントロピーの間の唯一の目立った相違は計測単位にある。すなわち、前者はエネルギーを温度で割った単位で表現され、後者は本質的に無次元な情報の"ビット"で表現されるが、これらの相違は単なる慣習の問題である。

ホログラフィック原理は、(ブラックホールだけでなく)通常の物質のエントロピーもまたその体積ではなく表面に比例することを述べる。すなわち、体積自体は幻影であり、宇宙はその境界表面に"刻まれた"情報に同型なホログラムである[13]。
(引用終り)
0454現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 16:14:09.40ID:TSR5U7zr
>>453 関連

http://knyokoyama.blogspot.jp/2013_09_01_archive.html
From Mirror Symmetry to Langlands Correspondence 2013年9月16日月曜日
ブラックホールのファイアウォールについて
(抜粋)
1974年にS. HawkingさんがブラックホールのHawking輻射を提案すると同時に情報パラドックス問題を提起しました.2004年頃にこの問題は、おそらくAdS/CFT対応の提案に氏が同意されて、このことから、『賭けに破れた』としたように思われました。
詳細部分はともかく、大筋では情報はブラックホールの事象の地平線に堆積していて、これがHawking輻射となるとの理解でよいと考えていました.ところが、2012年の8月頃に、ブラックホールのFirewallの問題が再び脚光を浴びていることを知りました.しかも、詳細ではなく根本的な問題を提起していると思われますので、記事にしました。

3、AdS/CFT対応と2004年のHawkingの宣言
おそらく、AdS/CFT対応の主張にHawkingさんが同意したのだと思うが、2004年にHawkingさんは誤りを認めました。[6]Hawking氏の議論も賛否両論があるのだが、宣言が早すぎたのではという専門家もいる。
それは同時から、情報は失われる説の人々からは反対をしていましたし、情報は地平線(拡張された地平線)に堆積するという説の人からも反対が出ていました。

4、ブラックホールのFirewall説の意味
私は2012年の8月頃に、Polchinskiさんらが新しい議論が始まったことを知りました。

Firewall仮説は、ブラックホール相補性のように、量子重力的である。ブラックホール相補性は(部分的には)一度充分に大きな量のHawking輻射を始めるとブラックホールの混合量子状態が遠くに輻射されたHawking輻射の状態と非常に大きなエンタングルメントとなるという予想から来きます。

つづく
0455現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 16:15:05.16ID:TSR5U7zr
>>454 つづき

2012年にAlmheiri, Marolf, Polchinski, とSullyの各氏[9]により、ブラックホールの相補性に中の不整合のように見えることへの解決として、Firewall仮説が提案されました。[9]
この提案はしばしば"AMPS" firewallと言われ、2012年の論文の著者の頭文字をとっています。この主張はHawking氏のそれとは、大きくかけ離れています。大栗先生の文章を引用すると、『ブラックホールに近づいた観測者が、事象の地平線を通り越すときに何も特別なことが起きないとすると矛盾が起きる。
それを避けるために、地平線のところが高温になっていて、観測者は焼き尽くされてしまうのではないか。地平線は防火壁なのではないか、というのです。』
また、このFirewallの主張はエンタングルメントエントロピーの仮説と一体化しています。

5、エンタングルメントエントロピーとの関係
Hawkingの提起した情報パラドックスの論争のときは、遷移行列の純粋性と混合性が問題(ユニタリ性)となったが、もう一つエンタングルメント(量子的もつれ)とそのエントロピーがある。
このエンタングルメントエントロピーのわかりやすい説明は、私のブログにずいぶん前にポストしていた、

『量子エンタングルメントをもった時空の構成』

というMark Van Raamsdonkさんの arxiv:1005.3035 の全訳を掲載しています.この主張が、Firewall仮説と同等の主張ということのようです.[10]

このあたりの話題が、この8月に[4][5]に掲載されています.

追記:しかし、量子エンタングルメントを考慮した上でも、Firewallパラドックスは誤っているのではというBraunsteinさんらの意見もあります.[11]

追記:次の参考資料(Scientific American December 21, 2012)も追加します.[12]
(引用終り)
0456132人目の素数さん
垢版 |
2016/12/18(日) 16:22:40.13ID:l2HBR203
>>452
Do you mean the >>449 is wrong? If so then you gotta show that explicitly and clearly.
0457現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 16:28:43.99ID:TSR5U7zr
>>455 関連

http://knyokoyama.blogspot.jp/2011/01/blog-post_13.html
From Mirror Symmetry to Langlands Correspondence 2011年1月13日木曜日
ブラックホールのファイアウォールについて
(抜粋)
【翻訳】量子エンタングルメントをもった時空の構成
エンタングルメントエントロピーにより時空がどのように出現するのかについて分かりやすいエッセイがありますので【翻訳】しました。一番簡単な事項の説明ではないでしょうか。原文は、arxiv:1005.3035

Building up spacetime with quantum entanglement (in English) http://arxiv.org/abs/1005.3035

訳は、下記です。

量子エンタングルメントをもった時空の構成 https://docs.google.com/leaf?id=0B8F8b2CCkxYUMWEwZmQyY2UtZjMzZi00MjRmLWFmYWYtNjI0MmY3NGE2MTVm&;hl=en

時空が出現(emergence)という意味あいであると理解いたします。

量子重力理論、特にエントロピック重力理論の中で重要な位置を持ってきて、T. JacobsonさんやE. Verlindeさんの理論と関係してくるのではないかと思います。

また、大きくは、Stromingerさんの量子重力理論と関係してくるのだと思います。

12月30日ポスト:ブラックホール-21世紀の調和振動子 http://knyokoyama.blogspot.com/2010/12/21.html
12月31日ポスト:経緯-ブラックホール-21世紀の調和振動子 http://knyokoyama.blogspot.com/2010/12/21_31.html
(引用終り)
0459現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 16:32:30.25ID:TSR5U7zr
こんなバカ板に書いた、ぐしゃぐしゃの数学記号など
特に興味がなければ、読み気がしないし、おれは読まんよ
おっちゃんの証明に同じだ
0460現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 16:39:09.52ID:TSR5U7zr
なお、自分でも数学の証明は
こんな数学記号の不自由なバカ板で書く気はしないし、基本的には書かない

読まされる方もたまらんだろう
それに、だれかのように、訂正につぐ訂正があるとすれば余計に

そもそも、誤記が皆無なのか? (だれかに検証してもらているかい? 苦労して読んだら誤記だったとなると、時間を無駄にしていることになる)
こんなバカ板のぐしゃぐしゃの証明もどきを、丹念にフォローするメンターさんには頭が下がるけど、おれはやらんし、おそらくそれは少数派と思う
0461132人目の素数さん
垢版 |
2016/12/18(日) 16:41:32.20ID:l2HBR203
Holy crap! You are idiot absolutely, aintcha?
0462現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 17:00:27.25ID:TSR5U7zr
>>457 補足
>量子エンタングルメントをもった時空の構成 https://docs.google.com/leaf?id=0B8F8b2CCkxYUMWEwZmQyY2UtZjMzZi00MjRmLWFmYWYtNjI0MmY3NGE2MTVm&;hl=en

(抜粋)
P3
真空状態からはじめ、エンタングルメントエントロ
ピーS(A) を減少させるような方法で、量子状態を変化させるときに双対時空で
何が起きるかを問うてみることができます。最近のRyu とTakayanagi [9] の結
果を使い、何が起きるかについての非常に正確なステートメントを発することが
できます:

P5
前のサブセクションの結果とあわせると、次の素描を得ます。量子重力の非摂動
的な記述の自由度の2 つの集合間のエンタングルメントがゼロになると、対応す
る時空領域の間の固有な距離は無限大になり、他方領域を分離する最小曲面の面
積はゼロに減少します。大まかには、時空の2 つの領域は、Figure 4 に示すよう
に、互いに引き離されちぎられます。Figure 5(次ページ) にみるように、これら
の量の様子は明白に永久AdS ブラックホールの例にみることができて、逆温度
パラメータ ̄ を増加させることで、2 つのCFT の間のエンタングルメントを減
少させることができます。

Conclusions
自由度をエンタングルすることで時空をつなぎ、エンタングルメントを解除
することでそれらを互いに引き離し、分離できることが分かりました。本質的に、
エンタングルメントの量子現象は、古典時空幾何学の出現にとって決定的に思わ
れるということは、素晴らしいことです。
(引用終り)
0464現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 17:12:06.48ID:TSR5U7zr
>>457 補足
>Building up spacetime with quantum entanglement (in English) http://arxiv.org/abs/1005.3035

下記、”Essay written for the Gravity Research Foundation 2010 Awards for Essays on Gravitation”の意味が分からんが
おそらく、2010 Awards for Essays on Gravitation の文を、広く大衆のために投稿したんだろう

著者
Mark Van Raamsdonk
Department of Physics and Astronomy, University of British Columbia

Essay written for the Gravity Research Foundation 2010 Awards for Essays on Gravitation
March 31, 2010

https://arxiv.org/abs/1005.3035
Building up spacetime with quantum entanglement
Mark Van Raamsdonk
(Submitted on 17 May 2010)
0465現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 17:18:58.77ID:TSR5U7zr
>>462 補足

”最近のRyu とTakayanagi [9] の結果を使い”ってところがキーワードか
結局、量子エンタングルメントから時空を構成しようという試みが、2010前から始まっているんだろうね

量子エンタングルメントがいまいちわからん(イメージがわかない)が
物質がなくても、量子エンタングルメントしうるのか?

情報が主で、物質・エネルギーが従としても、情報があれば、物質がありそうに思うけど・・
そういうのは、全部抽象化している(エントロピーに一本化している)のかね?(^^
0466現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 17:42:51.65ID:TSR5U7zr
>>465

ここら、>>451 臨時別冊・数理科学2014年4月
「ホログラフィー原理と量子エンタングルメント」 高柳 匡(京都大学教授) 著
の11章 量子エンタングルメントから量子重力理論の再構築
に結構詳しく書いてあるね
0467132人目の素数さん
垢版 |
2016/12/18(日) 17:50:26.71ID:FVTLpf9/
一方、なんでも実況J板、ニュー速VIP+板、 ニュー速(嫌儲)板、数学版 などに
自己中心で自己満足に張り付いて書き込むのは病気と思われたりする
0469現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 17:56:41.84ID:TSR5U7zr
>>466

引用文献の[112]

https://arxiv.org/abs/0910.1130
Renormalization and tensor product states in spin chains and lattices
J. I. Cirac, F. Verstraete
(Submitted on 6 Oct 2009)
We review different descriptions of many--body quantum systems in terms of tensor product states. We introduce several families of such states in terms of known renormalization procedures, and show that they naturally arise in that context.
We concentrate on Matrix Product States, Tree Tensor States, Multiscale Entanglement Renormalization Ansatz, and Projected Entangled Pair States. We highlight some of their properties, and show how they can be used to describe a variety of systems.

pdf
https://arxiv.org/pdf/0910.1130v1
0470132人目の素数さん
垢版 |
2016/12/18(日) 17:57:28.56ID:FVTLpf9/
量子エンタングルメントと重力理論における時空のダイナミクス
http://www2.yukawa.kyoto-u.ac.jp/~ppp.ws/PPP2014/slides/Takayanagi.pdf
0471132人目の素数さん
垢版 |
2016/12/18(日) 17:58:13.07ID:l2HBR203
Ignoring the truth and going your own way toward never-never land. That's just what you're doing.
0474現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 18:11:07.73ID:TSR5U7zr
>>466
引用文献の[111]
http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/169553/1/KJ00007330962.pdf
エンタングルメントで見る時空の幾何学構造とテンソル積波動関数 松枝, 宏明 物性研究 (2011)

近年, 「エンタングルメント(量子もつれ) 」 の概念が,量子情報科学だけではなく,物
性理論・超弦理論・量子重力理論をはじめとした幅広い研究領域において,非常に重要な
ものとなっています.この状況を傭服的に眺めると, 「系の持つエントロピーを余剰次元
がうまく吸収してくれる」ということなのですが, 「エントロピー 」に「余剰次元 」って何
だかいきなり怪しい響きですね.本稿ではこの物理的イメージと計算の詳細をできるだけ
丁寧に御紹介したいと,思っています.この概念を理解することで, 「エンタングルメント・
エントロピー 」を媒介に, 「密度行列繰り込み群 」「面積則 」「行列積・テンソル積変分法 」
「エンタングルメント繰り込み群 」「双対性 」「ホログラフィー原理 」「Ad S/CFT対応 」「D
ブレーン 」「情報圧縮の上限 」といった各研究領域のホットなキーワードが,実は非常に
密接に結びついていることをご理解いただけると思います.このことは我々の自然認識に
関わる問題であり,エネルギ一階層や対象に依らない普遍性や双対性が存在するという意
味で非常に興味深いことです.

つづく
0475現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 18:11:50.35ID:TSR5U7zr
>>474 つづき

本稿の全体の流れは以下の通りです:先ずは,座標変換で保存すべき情報量の意味,双
対性やホログラフィー原理など,この先で基本となる重要な概念を整理します.それらの
性質を数学的に取り扱うために「エンタングルメント・エントロピー」が導入されます.
エンタングルメント・エントロピーを特徴づけるのは「面積則 」「量子異常 」「量子次元 」
です. 「面積則」からは「テンソル積型変分理論」が派生し,逆にテンソル積変分理論を通
して面積則とその破れに関する知見が得られます.また「量子異常」は,一般座標変換と
量子力学の経路積分表示の視点に立てば「曲がった時空」の特徴ですが,一般に時空の歪
みが認識できるということは,より高次元に内包された部分空間の性質を見ょうとしてい
ることを暗に仮定しています.この「余剰次元 」は面積則と非常に深いつながりがあって,
余剰次元方向への歪みの強さがエントロピーの大きさに対応します.変分理論のテンソル
次元もこの余剰次元に対応するものです.またこの時空のトポロジカルな構造は「量子次
元」を通じて見ることができます.そして以上の結果としての 「AdS/CFT対応 」,その
応用としての「エンタングルメント繰り込み群 」「量子画像処理 」がより深いレベルで理
解できるという全体構造になっています.

(引用終り)
0476現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 18:17:07.96ID:TSR5U7zr
>>475 関連
引用文献の[111]
http://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/169553/1/KJ00007330962.pdf
エンタングルメントで見る時空の幾何学構造とテンソル積波動関数 松枝, 宏明 物性研究 (2011)
(抜粋)
10 最後にちょっとだけ哲学的な自問自答
「余剰次元に意味を見出そうとする働き 」というキーワードで本稿を書きすすめてきた
のですが,単なる数学的技巧以上の物理が隠れているようです.序論でも述べたように,
近年の固体電子論で幾何学に関する話題は増加しているのですが,その立場は,問題を見
通しよく解くために元々のヒルベルト空間の部分空間に着目するとその空間は曲がった
りねじれたりしていると考えれば都合が宜しいというものでした.このときに空間の次元
そのものが変動するような効果は取り扱われてはいません.従って従来とはまた状況の
違った幾何学観が導入されたことになります.

 テンソル積の次元は,エンタングルメント・エントロビーという量を通して見た場合,
いわば系の空間次元と別に量子揺らぎを伝搬させるための隠れた次元です.この次元方向
の空間的広がりの程度χや曲率は,問題に応じて(特に臨界・非臨界の別や元々の空間
次元の大きさ,粒子間相互作用の型などに応じて)柔軟に変化する非常にダイナミカルな
ものです.逆に言うと,曲がった時空とその量子化に際しては,物質の存在形態に応じて
このような空間次元のダイナミカルな変化が起こることが一般的な特徴なのかもしれま
せん.この意味では超弦理論の世界観と相通じるものがあります.プランク・スケールで
は時空の概念すら暖昧であるということと,ネットワーク構造自体まで含めての階層的テ
ンソル積の自動最適化を施すこと(前節で述べたようにどうすればいいかすぐには分かり
ませんが)には何らかのつながりを感じてしまいます.我々の物性物理の問題と超弦理論
の問題ではエネルギー・スケールが果てしなく異なるのですが,それでもなおこのような
類似性が見られることに興味を覚えます.

つづく
0477現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 18:17:44.64ID:TSR5U7zr
>>476 つづき

 初めてAdS/CFT対応を勉強したときに感じたことは, 「数学的な目線に立てば肯定で
きる双対性であっても,あまり常識的ではない場合,やはりそれは物理的実在と言うより
は数学的な産物と思うべきなのではないだろうか? 」ということで,自然に高次元時空に
突入する弦理論の見方には懐疑的でした.しかしながら,例えば普通の量子化に立ち戻っ
てみると,粒子描像が実在ならばその双対である波動描像もまた実在であるということ
は,少なくとも数学的には両者が単純にフーリエ変換で結ぼれているからということに起
因していたはずです.粒子の性質が強く出ているときには波の性質はぼやけていて(色々
な周波数の成分が混ざっていて),逆に波の性質が強く出ているときには粒子としての個
性は失われているわけです.バルク境界対応も,バルクから境界が切り離せないなら,当
然両者は同じ物理を表わす実在です.ホログラムの場合にも,三次元を伝搬する光とその
情報が転写された二次元面はいずれも確かな物理的実在です.そう思うと,ある数学的な
双対原理が存在して,一方が物理的実在ならば他方も実在といってよいのかもしれないと
次第に考え方を改めるようになりました.この問題はあまり深入りするとホログラフィー
の言葉が躍ったSFになってしまいそうなので危険だなと,思っていますが,量子力学の相
補性・双対性には非常な深遠さがあるということを改めて感じております.
(引用終り)
0479現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 18:26:51.20ID:TSR5U7zr
>>441
大栗先生、重箱の隅で悪いが

>もともとは、「量子もつれのトモグラフィー」というタイトルだったのですが

トモグラフィー → ホログラフィー
やね

トモグラフィーは断層写真だから(下記)
https://matome.na 強制改行
ver.jp/odai/2133442119663577801
切断を意味するギリシャ語 トモス (tomos, ) に由来する言葉 - NAVER まとめ:2012年04月15日

トモグラフィー (tomography)

切って(tomos) + 描く(graphein) = 断面図

cf. CT = Computed Tomography
0481現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 19:47:18.92ID:TSR5U7zr
>>469 >>474-477

多体系の繰り込みは、普通の量子力学の繰り込みとは違ったのだが・・
多体系に経路積分が使えるという論文は見たことがあった

それが、普通の量子力学と関連してくるのかな??
あんまり詳しくないのだが・・(^^;

https://ja.wikipedia.org/wiki/%E5%AF%86%E5%BA%A6%E8%A1%8C%E5%88%97%E7%B9%B0%E3%82%8A%E8%BE%BC%E3%81%BF%E7%BE%A4%E6%B3%95
密度行列繰り込み群法

密度行列繰り込み群(みつどぎょうれつくりこみぐんほう 英: density matrix renormalization group; DMRG)は、量子多体系における低エネルギー物理を高精度に計算するために考案された数値変分法である。1992年に Steven R. White により開発された[1]。

目次
1 DMRG の背景にある考え方
2 実装上の技術的詳細
3 応用
4 行列積仮設
5 DMRG の拡張

DMRG の背景にある考え方

量子多体系の物理に関して主に問題となるのは、ヒルベルト空間が指数関数的に大きくなることである。例えば、長さ L のスピン 1/2(英語版) チェインは、2L の自由度をもつ。DMRG法は反復的な変分法であり、問題の量子状態についてもっとも重要な自由度にのみ有効自由度を絞り込むことができる。問題とされるのは基底状態であることが多い。

この手法では、ウォームアップサイクル後に系を(同じサイズとは限らない)二つのブロックと、その間に位置するの二つのサイトに分ける。ウォームアップ中に、各ブロックを「代表する」一連の状態を選定する。左ブロック + 二つのサイト + 右ブロックを合わせてスーパーブロックと呼ばれる。
スーパーブロックは全系よりも自由度が低減しており、基底状態の候補が見付けやすい。その代償として精度は低下するが、下記の反復法により向上させることができる。

つづく
0482現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 19:49:04.59ID:TSR5U7zr
>>481 つづき

見付かった基底状態の候補を、名前の通り密度行列を用いて各ブロックに対応する部分空間上に射影する。これにより、各ブロックの「関連する状態」が更新される。

ここで、片方のブロックを大きくし、もう片方を小さくして同じ手続きを繰り返す。大きくしたブロックが最大サイズに到達したら、かわりにもう片方を大きくする。最初の(等しいサイズの)状況に立ち戻ったとき、「スイープ」が完了したという。1 次元格子ならば通常、数回のスイープで 1010 分の 1 の精度を得るのに十分である。

DMRG法は Steven White と Reinhard Noack により、1 次元箱内のスピン 0 粒子のスペクトルを求めるというトイモデル(英語版)に対して始めて適用された。
このモデルはケネス・ウィルソンにより、何らかの新しいくりこみ群の方法をテストするために考案された。このような単純な問題でも、正しく解けない方法ばかりだったのである。
DMRG法は従来のくりこみ群の方法にあった問題点を、系を一つのブロックと一つのサイトに分けるのではなく二つのブロックを二つのサイトで繋ぐように分け、さらに各ステップの最後に最も重要で保存するべき状態を密度行列を用いて識別することにより克服している。
このトイモデルを解くことに成功したのち、DRMG法はハイゼンベルグモデル(英語版)にも適用され、成功している。

応用

DMRG法は、横磁場イジングモデルやハイゼンベルグモデル(英語版)など、およびハバードモデルなどのフェルミオン系、近藤効果などの欠陥のある問題、ボソン系、量子ワイヤー(英語版)に接続された量子ドットの物理など、スピンチェインの低エネルギー物性を得るための応用が成功している。
樹状グラフを扱えるよう拡張されたものもあり、デンドリマーの研究に応用されている。片方の次元がもう片方よりも非常に大きいような二次元系も精度よく扱えるため、ラダーの研究にも有用であることが知られている。

二次元系の平衡状態についての統計物理学(英語版)的研究向けや、一次元系の非平衡(英語版)現象の解析向けの拡張も存在する。

量子化学分野においては強相関系を扱うための応用もされている。

つづく
0483現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/18(日) 19:50:00.00ID:TSR5U7zr
>>482 つづき

DMRG の拡張

2004年、行列積状態の実時間発展向けに時間発展ブロックデシメーション法(英語版)が実装された。このアイデアは量子コンピュータの古典シミュレーションに基いている。続いて、DRMG形式の実時間発展を計算する新手法が考案された。これについては A. Feiguin と S.R. White による論文を参照のこと。

近年、行列積状態の定義を拡張することにより、二次元および三次元へと拡張する提案がなされている。これについては F. Verstraete と I. Cirac による論文を参照のこと。

関連項目

量子モンテカルロ(英語版)
ハイゼンベルグモデルにおける密度行列繰り込み群法(英語版)
時間発展ブロックデシメーション法(英語版)
配置間相互作用法

(引用終り)
0484132人目の素数さん
垢版 |
2016/12/18(日) 21:51:33.40ID:y2ndyS62
>>424
> 無限大の極限を考える必要がある

同値類の定義からΔrの無限数列のシッポは全て0になることは確定しているから
極限を考えた場合の無限数列のシッポは全て0になって決定番号は無限大にはならない

最初にシッポの0をカットして有限数列にしても極限を考えるときに
ある番号nから先の「s'n-sn, ...」が再度全て0になる
0485132人目の素数さん
垢版 |
2016/12/19(月) 21:38:21.58ID:Nz/IKoyB
時枝記事は自分でネタバラシ>>4でをしていて、
>>1-3の不思議な戦略は既存の測度論的確率論では
正当化されない。これが正当化されるような確率論を
構築してくださいね!というのが、問題提起だった。

それへの答えは、何らかの数学モデルを構築して
初めて意味がある。物理現象などを持ち出して
それを成し得たら何が定式化できるかを並べても、
>>4の出題から一歩も踏み出してはいない。
時枝に対して「それホントに解けるといいね」と
相槌を打ったことにしかならない。

例えばデルタ関数は、関数でなく分布と捉えることで
初めて数学的に意味を持ったが、
分布としての意味を与えられた後も依然として
デルタ関数が「関数」ではないことに変わりはない。
上のレスに出てきた「拡張一様分布」も、
確率分布でないことは既に決まっているが、
確率分布の概念を拡張して何らかの定式化が可能か
が問題になる。誰かが何かの提案をして
こんなにスレが続いているのか?を確認しておきたい。
0486132人目の素数さん
垢版 |
2016/12/19(月) 23:48:42.50ID:2BMqIuj5
No one has ever done such nice things.
One person has made a lot of something fuckin' crazy, foolish.
As a matter of fact, that's the reason why this thread is so active.
Don't overestimate about that.
0487132人目の素数さん
垢版 |
2016/12/20(火) 00:03:14.11ID:xV6MYIZE
>>485
> 誰かが何かの提案をしてこんなにスレが続いているのか?を確認しておきたい。

・決定番号が有限値でないことがあるから時枝の戦略は成り立たない
・キマイラ数列∈/R^Nが存在するから時枝の戦略は成り立たない
・決定番号の確率分布は裾が重いから時枝の戦略は成り立たない
・決定番号の確率分布では期待値や分散が求まらないから時枝の戦略は成り立たない
・R^Nはヒルベルト空間外だから時枝の戦略は成り立たない
・ヒルベルトのホテルのパラドックスを考えると時枝の戦略は成り立たない
・決定番号は宇宙に存在する原子数よりも大きくなるから時枝の戦略は成り立たない
・エントロピーはほとんど変化しないから時枝の戦略は成り立たない
・"確率の専門家"が疑問を呈したから時枝の戦略は成り立たない
・"院生クラスの誰か"が与太話とコメントしたから時枝の戦略は成り立たない
・なにはともあれ個人的に時枝の戦略は不成立だと思う

こういったスレ主のコメントに対して
⇒住人が突っ込む
⇒突っ込みを無視してスレ主がコメント
⇒再度住人が突っ込む
⇒再度突っ込みを無視してスレ主がコメント
⇒再度住人が突っ込む


という無限ループに入っていますw

なんだかんだ皆スレ主が好きなのかい?ww
貴重な時間を無駄にするのはやめにしませんか
0488132人目の素数さん
垢版 |
2016/12/20(火) 19:06:20.13ID:jwR2BCLH
ここのスレ主は共立のガロア・アーベルの本読んだの?
0489現代数学の系譜11 ガロア理論を読む
垢版 |
2016/12/22(木) 22:42:28.40ID:VgRjj8BR
>>484
ああーあ

”y=f(x)=1/x R=(−∞,∞)から0を除いたR−{0}=(−∞,0)∪(0, +∞)で定義された対応は、関数の定義を満たす。 ”(下記)
で、区間(−∞,0)と、(0, +∞)とは、開。だが、極限としては、−∞,0,+∞ は、可能だろう? 分かってる? 同じだよ
http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/Function/Hanpirei.htm
y=1/xの属性[数学についてのwebノート]: 投稿者 Tirom (2013?)
1変数関数y=1/xの性質 :トピック一覧   
(抜粋)
y=f(x)=1/x 

・R=(−∞,∞)で定義された対応y=f (x)=1/xは、関数の定義を満たさない。
   なぜなら、
   x=0∈Rにおいて、 f(0)=1/0=φとなる(∵実数体の定義)から。
・しかし、
 R=(−∞,∞)から0を除いたR−{0}=(−∞,0)∪(0, +∞)で定義された対応
    y=f (x)=1/x
 は、関数の定義を満たす。
・したがって、通常、「y=f (x)=1/xの定義域」は、
 0を除く実数全体(−∞,0)∪(0, +∞)とされる。
(引用終り)
http://www.ne.jp/asahi/search-center/internationalrelation/mathWeb/index.htm
数学についてのwebノート:
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況