分からない問題はここに書いてね478

1132人目の素数さん2017/11/25(土) 19:03:49.83ID:72bNNadQ
さあ、今日も1日がんばっぺ★☆

前スレ
分からない問題はここに書いてね437
http://rio2016.5ch.net/test/read.cgi/math/1510671832/

2132人目の素数さん2017/11/25(土) 19:07:13.15ID:72bNNadQ
間違えちったっぺ ゴメンネゴメンネ〜〜

3132人目の素数さん2017/11/25(土) 19:13:58.19ID:GIU2RYfR
削除依頼を出しました

4132人目の素数さん2017/11/25(土) 19:18:13.66ID:rNnPKrVp
>>3
ありがとーね
スレ立てられないから代わりに立てて

5132人目の素数さん2017/11/25(土) 19:21:13.02ID:PoVN6QqC
理系思考の残念な点

・なんでも数字に置き換えて簡略化するから、複雑な物事を考える力がない
・論理性に頼りすぎてきたからアバウトな考え方ができない
・できるだけ小さく狭いミクロでものを考えるので、マクロで考える事ができる文系ほど論理的思考が 得意でない
・裏切りの少ない数学や論理性を信仰してきたから思い込みが激しく騙されやすい
・上記の理由から頭が固い
・上記の理由や世間から外れたところにいる時間が長いせいで常識、常識的な事を知らない
・上記の理由やそれによるプライドが凄いせいで成長しない、成長が遅い
・文盲だったり視野が狭いせいで、自分の何を指摘されてるのか理解できない

6132人目の素数さん2017/11/25(土) 19:21:29.47ID:PoVN6QqC
理系も内心では理解してるからな、実際に社会を動かすのは文系だと

立法や行政を担うのは殆どが文系だし
民間で技術職は現場のトップが精々だが文系のエリートなら経営に携われる
理系が何か開発してもそれを商業化して利益を得るのは文系

結局理系ってのは文系のエリート層の肥やしになるだけの存在
それがわかってはいるけど認めたくないから文系の下位層を見て文系全体を貶し自尊心を保つ

7132人目の素数さん2017/11/25(土) 19:21:48.26ID:PoVN6QqC
受験数学は全然できなくて無問題
あんなのは所詮公式と解法パターンの丸暗記競争だから
ルービックキューブと一緒でやり方知ってりゃ10秒で解法が組み上がる
大学行ったら数学や物理は勿論、化学だって高校数学なんか全く役に立たないよ
そうはいっても国公立の理系は少なくともセンター数学を受けないと入れない
国立、特に下位駅弁からは同レベルの理系単科私大等と比べて突出した才能が出ない一因でもある
俺も文系からの理系学部進学組みだけど高校で理系だった奴は暗記重視で本質を理解している奴はいなかった印象がある
何でも覚えようとしちゃうのね。理解しようとしないで
今でも私大なら理系学部で入試に数学を課してない所があるはず(理由は前述のとおり)
但し記述式の国語があるから地頭勝負になるけどね
数学や理科といった暗記科目で挽回の効く東大理系前期なんかよりある意味難関

8132人目の素数さん2017/11/25(土) 19:24:14.09ID:FkKGW7h5
>>5
予備校を首になったのですね(笑)

9132人目の素数さん2017/11/25(土) 19:33:15.89ID:PoVN6QqC
>>8
ペアノ算術を含む任意の無矛盾な公理系に対し、あるモデルM,Nおよび論理式φが存在して、M|=φかつN|≠φとできることを示せ、という問題がわかりません

10132人目の素数さん2017/11/25(土) 19:40:13.08ID:kubbQf92
日本人は全員ゴミ

11132人目の素数さん2017/11/25(土) 20:07:04.98ID:oBBjRnDG
劣等感の強い文系が涌いているなあ。

12132人目の素数さん2017/11/25(土) 20:41:24.44ID:DPkvhAzj
>>4

立てますた。。。

分からない問題はここに書いてね438
http://rio2016.5ch.net/test/read.cgi/math/1511609929/

13132人目の素数さん2017/11/25(土) 21:12:57.39ID:vzPz5wed
正統派スレ保守

14132人目の素数さん2017/11/25(土) 21:14:41.71ID:zcRWxt/D
>>9
予備校首になったのですね(大爆笑)

15132人目の素数さん2017/11/25(土) 21:24:38.46ID:zcRWxt/D
>>6
予備校首になったのですね(苦笑)

106 名前:電気力線は有限本[sage] 投稿日:2017/11/24(金) 16:22:55.32 ID:???
東大生さんとかファインマンの日本語訳で勉強した人とか答えてあげたらどうなんです?

私はニートだからわかりませんけど

16132人目の素数さん2017/11/25(土) 21:26:07.19ID:kXx10UO+
皆んなが友達恋人と一緒にお祭り巡りしてる間に家に篭って1人でにちゃんねる監視し続けていた東大生さんこんばんは

17132人目の素数さん2017/11/25(土) 23:03:40.60ID:jc7SpJAE
東京大学理学部数学科に入りたい。

18132人目の素数さん2017/11/25(土) 23:30:24.97ID:jc7SpJAE
大魔神と超絶天才数学者はどっちの方が凄いですか?

19132人目の素数さん2017/11/25(土) 23:33:11.30ID:jc7SpJAE
インドラと望月新一はどっちの方が凄いですか?

20132人目の素数さん2017/11/26(日) 12:57:54.78ID:nwA6pZC8
そんな事書いて楽しい?

21◆2VB8wsVUoo 2017/12/28(木) 03:14:02.69ID:THlb34Rw

22◆2VB8wsVUoo 2017/12/28(木) 03:14:18.46ID:THlb34Rw

23◆2VB8wsVUoo 2017/12/28(木) 03:14:34.24ID:THlb34Rw

24◆2VB8wsVUoo 2017/12/28(木) 03:14:49.53ID:THlb34Rw

25◆2VB8wsVUoo 2017/12/28(木) 03:15:07.28ID:THlb34Rw

26◆2VB8wsVUoo 2017/12/28(木) 03:15:22.96ID:THlb34Rw

27◆2VB8wsVUoo 2017/12/28(木) 03:15:38.70ID:THlb34Rw

28◆2VB8wsVUoo 2017/12/28(木) 03:15:54.68ID:THlb34Rw

29◆2VB8wsVUoo 2017/12/28(木) 03:16:11.27ID:THlb34Rw

30◆2VB8wsVUoo 2017/12/28(木) 03:16:28.36ID:THlb34Rw

31132人目の素数さん2018/04/11(水) 22:25:52.96ID:7O9NLb15
杉浦光夫の解析入門1のp.207(2.3) I_k : k ∈ K(Δ)とは何でしょうか?
全く説明がありません。

32132人目の素数さん2018/04/12(木) 10:08:21.75ID:/tcChJYO
杉浦光夫の解析入門1のp.207(2.3) K(Δ)とは何でしょうか?
全く説明がありません。

33132人目の素数さん2018/04/12(木) 10:38:50.33ID:vnSZMtMQ
>>32
コテつけたら教えてあげる

34132人目の素数さん2018/04/12(木) 15:53:30.36ID:/tcChJYO
杉浦光夫の解析入門1のp.207(2.3) K(Δ)とは何でしょうか?
全く説明がありません。

35132人目の素数さん2018/04/13(金) 12:53:25.28ID:AjRSb95f
惨めなやっちゃ

36◆2VB8wsVUoo 2018/04/13(金) 18:26:47.22ID:uddKuSDq

37◆2VB8wsVUoo 2018/04/13(金) 18:27:06.67ID:uddKuSDq

38◆2VB8wsVUoo 2018/04/13(金) 18:27:23.84ID:uddKuSDq

39◆2VB8wsVUoo 2018/04/13(金) 18:27:58.20ID:uddKuSDq

40◆2VB8wsVUoo 2018/04/13(金) 18:28:19.12ID:uddKuSDq

41◆2VB8wsVUoo 2018/04/13(金) 18:28:39.69ID:uddKuSDq

42◆2VB8wsVUoo 2018/04/13(金) 18:28:58.03ID:uddKuSDq

43◆2VB8wsVUoo 2018/04/13(金) 18:29:17.89ID:uddKuSDq

44◆2VB8wsVUoo 2018/04/13(金) 18:29:36.97ID:uddKuSDq

45◆2VB8wsVUoo 2018/04/13(金) 18:29:55.56ID:uddKuSDq

46132人目の素数さん2018/04/13(金) 18:58:48.58ID:kt3VyxpS
x, y ∈ R^n - {0}
x, y の間の角 ∠(x, y) を ∠(x, y) = arccos(<x, y> / (|x|*|y|)) で定義する。

T を線形変換とする。∠(Tx, Ty) = ∠(x, y) であるとき、線形変換 T は角を保存するという。

(b)
T を線形変換とする。
x_1, …, x_n ∈ R^n を基底 とする。
T(x_i) = λ_i * x_i(λ_1, …, λ_n ∈ R)とする。

このとき、

T が角を保存する ⇔ |λ_1| = … = |λ_n|

を証明せよ。

47132人目の素数さん2018/04/14(土) 01:18:24.35ID:jmRykOUA
|x|=|y| とすると <x+y,x-y>=|x|^2-|y|^2=0
∠(T(x+y),T(x-y))=∠((x+y),(x-y)) なら
0=<Tx+Ty,Tx-Ty>=|Tx|^2-|Ty|^2 ∴ |Tx|^2=|Ty|^2

48132人目の素数さん2018/04/14(土) 05:24:54.34ID:BplYsnvb
「空ではない」はどう発音したらいいですか?

49132人目の素数さん2018/04/14(土) 09:39:25.65ID:7UzfzUkx
以下は、赤いチャート式に載っている問題です。

正の実数xでその逆数の小数部分がx/4に等しく、しかも、0<1/x≦3を満たすものをすべて求めよ。

解答が以下ですが、最後に、0≦x/4<1をチェックしていません。これはチェックしなくてもいいのでしょうか?

https://imgur.com/wElrEDc.jpg

50132人目の素数さん2018/04/14(土) 12:50:58.81ID:jmRykOUA
>>48
文脈次第

51132人目の素数さん2018/04/16(月) 12:22:40.48ID:aYK7ekq/
Xを距離空間とし、A⊂Xとする。
δ(cl(A)) = δ(A)であることを証明せよ。

ただし、B⊂Xに対して、δ(B) = sup{d(a, b) | a, b∈B}

52132人目の素数さん2018/04/16(月) 12:38:11.18ID:1A38i3Dk
εδで簡単

53132人目の素数さん2018/04/18(水) 19:09:22.69ID:JZ4hdJBs
線形写像 L のノルムを

||L||| := sup_{|x|≦1} |L(x)|

と定義するのはなぜですか?

||L||| := max_{|x|≦1} |L(x)|

と定義しないのはなぜですか?

54132人目の素数さん2018/04/18(水) 19:25:34.07ID:R0uLZ03r
完備じゃなくても定義できる方がいい気分だからじゃね?

55132人目の素数さん2018/04/18(水) 19:30:56.31ID:3HkyYObn
スレ立てるまでもないのでここに書くけど
やっぱ初等幾何って数学教育に不要なんじゃないの?
・入試問題の幾何はほとんどが座標や三角比やベクトルで解析的に解ける(むしろIMOのGeometry問題が異常)
・ Euclidean 幾何学の公理系は特殊
・ Dieudonné が不要と言っている

56132人目の素数さん2018/04/19(木) 00:24:40.96ID:/ggojok5
新スレが立たないのでここで再質問
----https://ja.wikipedia.org/wiki/%E3%82%B9%E3%82%BF%E3%83%BC%E3%83%AA%E3%83%B3%E3%82%B0%E3%81%AE%E8%BF%91%E4%BC%BC
の収束級数形式のスターリングの公式の所にある
∫[0,∞]arctan(t/x)/(exp(2πt)-1)dt = Σ[n=0,∞]cn /x^(n)
ただし
x^(n) = x(x+1)…(x+n-1)
cn = 1/n∫[0,1]x^(n)(x-1/2)dx
の証明が全く思いつきません。どなたかわかりますか?
----
wikipediaっ大概証明がのってるサイトへのリンクなり教科書なり論文なりのソースが載ってることが多いのにこれにはついてなくて自力でもおもいつきませんorz

57132人目の素数さん2018/04/19(木) 01:46:16.91ID:X3rbAxvj
>>55
イメージ操作を訓練できる手段が他に有れば不要だろうな
たとえばマンガを描くとか

58132人目の素数さん2018/04/19(木) 18:42:10.67ID:wXENgeIw
>>56
この展開はBinetの第一積分
∫[0,∞]((1/2)-(1/u)+1/(e^u-1))e^(-uz)/udu = logΓ(z)-(z-1/2)log(z)+z-(1/2)log(2π)
から示すのが素直です(wikipediaの表示はBinetの第二積分で、
これらの積分が等しくなることは検索で出てきます)。

以下導出:ベータ関数の積分から階乗冪を積分で表し
1/(z+1)^{(n)}=Β(n,z+1)/(n-1)! = (1/(n-1)!)∫[0,1]t^(n-1)(1-t)^zdt
これをcnの展開式に代入

Σ[n=1,∞]cn/(z+1)^{(n)}
= Σ[n=1,∞](1/n!)∫[0,1]x^{(n)}(x-1/2)∫[0,1]t^(n-1)(1-t)^zdtdx

↓ 二項級数 Σ[n=1,∞](1/n!)x^{(n)}t^n = (1-t)^(-x)-1 より

= ∫[0,1]∫[0,1](x-1/2)((1-t)^(-x)-1)dx(1-t)^z/tdt
= ∫[0,1](-2t+(t-2)log(1-t))(1-t)^z/(2t(1-t)log^2(1-t))dt

↓ 1-t=e^(-u), dt=(1-t)du と置く

Binetの第一積分

59132人目の素数さん2018/04/20(金) 00:53:05.73ID:msDRzdq1
>>58
おお、素晴らしい!あざっす!
ところでこの周辺の研究についてまとめられてる教科書とかはないですか?
まだ論文レベルをサーベイしないと無理ですか?
Binetの第1積分の初等的証明はネットでみつかって
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.384.3258&rep=rep1&type=pdf
それはそれでいいんですがそれだけだと人が見つけた公式確認して終わりなので不愉快。
wikipediaの第二積分の導出のように"うん、これなら思いつきそう"と思える方法も知っときたい気分です。

60132人目の素数さん2018/04/20(金) 02:02:04.37ID:FD/kSwMJ
>>59
スターリングの公式の収束形はLanczosの近似が有名で、こちらのほうが近似精度が高いです。
Wikipedia:
https://en.wikipedia.org/wiki/Lanczos_approximation
サーベイ:
http://bh0.physics.ubc.ca/ThesesOthers/Phd/pugh.pdf

61132人目の素数さん2018/04/20(金) 02:16:39.73ID:VlBnKZIi
>>59あざっす!勉強しときます!

62◆2VB8wsVUoo 2018/04/21(土) 14:55:13.24ID:egA1fDFk

63◆2VB8wsVUoo 2018/04/21(土) 14:55:31.48ID:egA1fDFk

64◆2VB8wsVUoo 2018/04/21(土) 14:55:47.42ID:egA1fDFk

65◆2VB8wsVUoo 2018/04/21(土) 14:56:09.12ID:egA1fDFk

66◆2VB8wsVUoo 2018/04/21(土) 14:56:29.36ID:egA1fDFk

67◆2VB8wsVUoo 2018/04/21(土) 14:56:53.66ID:egA1fDFk

68◆2VB8wsVUoo 2018/04/21(土) 14:57:15.17ID:egA1fDFk

69◆2VB8wsVUoo 2018/04/21(土) 14:57:37.19ID:egA1fDFk

70◆2VB8wsVUoo 2018/04/21(土) 14:57:58.83ID:egA1fDFk

71◆2VB8wsVUoo 2018/04/21(土) 14:58:20.89ID:egA1fDFk

72132人目の素数さん2018/04/22(日) 12:56:54.03ID:9hXwjWmh
惨めな奴

73◆2VB8wsVUoo 2018/04/24(火) 12:36:01.81ID:PEVpi1uJ

74◆2VB8wsVUoo 2018/04/24(火) 12:36:21.19ID:PEVpi1uJ

75◆2VB8wsVUoo 2018/04/24(火) 12:36:41.37ID:PEVpi1uJ

76◆2VB8wsVUoo 2018/04/24(火) 12:37:04.88ID:PEVpi1uJ

77◆2VB8wsVUoo 2018/04/24(火) 12:37:27.91ID:PEVpi1uJ

78◆2VB8wsVUoo 2018/04/24(火) 12:37:54.17ID:PEVpi1uJ

79◆2VB8wsVUoo 2018/04/24(火) 12:38:19.71ID:PEVpi1uJ

80◆2VB8wsVUoo 2018/04/24(火) 12:38:42.69ID:PEVpi1uJ

81◆2VB8wsVUoo 2018/04/24(火) 12:39:09.03ID:PEVpi1uJ

82◆2VB8wsVUoo 2018/04/24(火) 12:39:34.51ID:PEVpi1uJ

83132人目の素数さん2018/04/24(火) 12:58:11.61ID:eNfO4Y11
惨めな奴

84◆2VB8wsVUoo 2018/04/28(土) 09:37:18.00ID:WQ9TBcF4

85◆2VB8wsVUoo 2018/04/28(土) 09:37:37.17ID:WQ9TBcF4

86◆2VB8wsVUoo 2018/04/28(土) 09:37:56.76ID:WQ9TBcF4

87◆2VB8wsVUoo 2018/04/28(土) 09:38:16.38ID:WQ9TBcF4

88◆2VB8wsVUoo 2018/04/28(土) 09:38:36.06ID:WQ9TBcF4

89◆2VB8wsVUoo 2018/04/28(土) 09:38:55.55ID:WQ9TBcF4

90◆2VB8wsVUoo 2018/04/28(土) 09:39:15.07ID:WQ9TBcF4

91◆2VB8wsVUoo 2018/04/28(土) 09:39:35.50ID:WQ9TBcF4

92◆2VB8wsVUoo 2018/04/28(土) 09:39:56.90ID:WQ9TBcF4

93◆2VB8wsVUoo 2018/04/28(土) 09:40:20.53ID:WQ9TBcF4

94132人目の素数さん2018/05/12(土) 19:33:30.90ID:g52P8YZE
https://i.imgur.com/5CMzGhd.jpg
αとβの中点がPであるというのに納得がいきません

95132人目の素数さん2018/05/12(土) 19:36:22.16ID:g52P8YZE
わかりました。恥ずかしいので荒らしてください

96132人目の素数さん2018/05/12(土) 19:37:55.96ID:V/h8huAS
(もしかしてy軸との中点を思い浮かべてたのかな)

97132人目の素数さん2018/05/19(土) 20:03:10.38ID:M4pEwFRY
計算用に↓のような電子ペーパーを使っている人っていますか?

https://av.watch.impress.co.jp/docs/news/1117150.html

98132人目の素数さん2018/05/20(日) 15:26:35.39ID:wzoQi6WV
小学校中学年の子供が受験を考えています。

中学受験をにらんでおすすめの数学の参考書とかあれば教えてください。

99132人目の素数さん2018/05/20(日) 15:30:41.20ID:QxVZJtyx
>>98
よそで聞いたほうがよろしいかと

小中学校範囲の算数・数学の問題のスレ Part 54 [無断転載禁止](c)2ch.net
http://rio2016.5ch.net/test/read.cgi/math/1483872494/

100132人目の素数さん2018/05/22(火) 12:10:51.46ID:yXdy01CV
問題:
x の2次方程式 25*x^2 - 35*x + 4*k = 0 が異なる2つの解をもち、
それぞれ sin(θ), cos(θ) で表わされるとき、定数 k の値を求めよ。

↑これについてですが、他スレで、


347 返信:132人目の素数さん[] 投稿日:2018/05/21(月) 15:40:20.96 ID:bPLA4deP [1/2]
>>339
x の2次方程式 25*x^2 - 35*x + 4*k = 0 が異なる2つの解をもち、
それぞれ sin(θ), cos(θ) で表わされる

k=3

という解答を述べているまでだから、問題文で与えられている前提の真偽は関係ない


と言われたのですが、


この問題は、↓の意味ですよね。明らかに。

問題:
x の2次方程式 25*x^2 - 35*x + 4*k = 0 が異なる2つの解をもち、
それぞれ sin(θ), cos(θ) で表わされる。そのとき、定数 k の値を求めよ。  👀
Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)

101132人目の素数さん2018/05/22(火) 12:30:06.66ID:yGAQEFRZ

新着レスの表示
レスを投稿する