X



トップページ数学
967コメント821KB

純粋・応用数学(含むガロア理論)10

レス数が950を超えています。1000を超えると書き込みができなくなります。
0001132人目の素数さん
垢版 |
2022/03/06(日) 10:33:12.21ID:1uP7mIdZ
クレレ誌:
https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AC%E3%83%AC%E8%AA%8C
クレレ誌はアカデミーの紀要ではない最初の主要な数学学術誌の一つである(Neuenschwander 1994, p. 1533)。ニールス・アーベル、ゲオルク・カントール、ゴットホルト・アイゼンシュタインらの研究を含む著名な論文を掲載してきた。
(引用終り)

そこで
現代の純粋・応用数学(含むガロア理論)を目指して
新スレを立てる(^^;

<前スレ>
純粋・応用数学(含むガロア理論)9
https://rio2016.5ch.net/test/read.cgi/math/1623019011/
<関連姉妹スレ>
ガロア第一論文及びその関連の資料スレ
https://rio2016.5ch.net/test/read.cgi/math/1615510393/1-
箱入り無数目を語る部屋
Inter-universal geometry と ABC予想 (応援スレ) 65
https://rio2016.5ch.net/test/read.cgi/math/1644632425/
IUTを読むための用語集資料スレ2
https://rio2016.5ch.net/test/read.cgi/math/1606813903/
現代数学の系譜 カントル 超限集合論他 3
https://rio2016.5ch.net/test/read.cgi/math/1595034113/

<過去スレの関連(含むガロア理論)>
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む84
https://rio2016.5ch.net/test/read.cgi/math/1582200067/
・現代数学の系譜 工学物理雑談 古典ガロア理論も読む83
https://rio2016.5ch.net/test/read.cgi/math/1581243504/
0877132人目の素数さん
垢版 |
2022/07/30(土) 17:28:04.34ID:D7ZAANTs
>>875
閉曲面と書かなかったことには何か意味があるか?
リーマン面でなければ可算基を持つとは限らない。
0878132人目の素数さん
垢版 |
2022/07/30(土) 17:28:46.92ID:aeFM8Twi
>>874
de Rhamコホモロジーなら当然だな
Bott-Tuでもそうやってる
単体分割しか知らなかったから新鮮だったな
ああ、被覆とか1の分割ってそう使うのかって
日本人の書く教科書ではそんなの見なかったから
日本ってクソだなとそん時思った
0879132人目の素数さん
垢版 |
2022/07/30(土) 17:30:27.17ID:aeFM8Twi
>>877
>閉曲面と書かなかったことには何か意味があるか?
 単なる抜けw 素人相手に研究者がアツくなるなよw
0881132人目の素数さん
垢版 |
2022/07/30(土) 17:35:38.03ID:D7ZAANTs
>>879
研究者だということがどこで分かる?
筋の通った議論のまったくできないアホが。
0882132人目の素数さん
垢版 |
2022/07/30(土) 17:37:25.71ID:D7ZAANTs
>>880
個人的な感想にいちいち付き合うほどの
お人よしではない。
0884132人目の素数さん
垢版 |
2022/07/30(土) 18:30:36.55ID:D7ZAANTs
>>883
>>なんだこいつ?
無理に理解しろとは言っていない。
>>負け犬はクタバレよ
急逝した有名な数学者への追悼文を書きながら
こういう罵詈雑言を受けるのも
乙なものだ。
追悼文は故人を喜ばせるものでなければいけないので
多少の誇張は許される。
それを楽しみながら書いているが、その分アホにはきつく当たりたくなってしまう。
0885132人目の素数さん
垢版 |
2022/07/30(土) 18:46:12.00ID:D7ZAANTs
>>日本人の書く教科書ではそんなの見なかったから
>>日本ってクソだなとそん時思った

松島与三の「多様体入門」はジュンク堂とかに行けば
まだ手に入る。
これを一度眺めてみることをお勧めする。
できればそこに書かれた未解決問題に挑戦してみてほしい。
S^6に複素構造が入らないことが示せれば
フィールズ賞クラスの業績だ。
0886132人目の素数さん
垢版 |
2022/07/30(土) 20:43:09.62ID:aeFM8Twi
>>885
>S^6に複素構造が入らないことが示せればフィールズ賞クラスの業績だ。
 そういう「つまらん問題」にはまったく興味がない
0887132人目の素数さん
垢版 |
2022/07/30(土) 20:47:24.42ID:aeFM8Twi
日本の数学者がダメなのは
数学の何がどう面白いのか
まったく語れないことだ

おそらく数学そのものを全く面白いと思っておらず
ただ自分が賢いと自慢するためだけに数学をやっているのだろう
だから実につまらん業績しか上げられず数学史に名が残らない
数学の全体が見えない小人物というのは哀れなものである(嘲)
0888132人目の素数さん
垢版 |
2022/07/30(土) 20:56:34.84ID:91nUc23I
>>そういう「つまらん問題」にはまったく興味がない

おそらくこれに興味がある数学者は非常に多い。

>>数学の何がどう面白いのか
>>まったく語れないことだ

高木貞治、岡潔、小平邦彦、広中平佑

こういう人たちは大いに語り、それに元気をもらった数学者は多い。

岡潔の文章は中国語や韓国語に訳されて
かの地の若者たちをも鼓舞している。
0889132人目の素数さん
垢版 |
2022/07/30(土) 21:02:12.17ID:91nUc23I
加藤和也とか深谷賢治は
結構語っている
0890132人目の素数さん
垢版 |
2022/07/30(土) 21:03:34.42ID:aeFM8Twi
>>888
>「S^6に複素構造が入らないこと」
>おそらくこれに興味がある数学者は非常に多い。
 あなた自身はどうなの?
 あなた自身の言葉で上記の問題の何がどう面白いのか語ってごらんよ
 「おそらく」とかいって他人に押し付けて逃げるんじゃなくてさ
 数学者として大学教師として学生に示しがつかないよ
0891132人目の素数さん
垢版 |
2022/07/30(土) 21:05:42.36ID:aeFM8Twi
>>888
>高木貞治、岡潔、小平邦彦、広中平佑
 そんな素人でも知ってる名前しか上げられないの?

 あんたほんとに数学者?
0892132人目の素数さん
垢版 |
2022/07/30(土) 21:07:28.41ID:aeFM8Twi
>>889
つーか数学者なら語れるでしょ
887はちょっと煽ったけど、ホントなら語れる筈なのよ
なに怖がってんのか知らないけどさ
0893132人目の素数さん
垢版 |
2022/07/30(土) 21:21:21.35ID:91nUc23I
>>890
この問題の面白さの一つは
S^6には簡単な仕方で概複素構造を入れることができて
それがNewlander-Nirenbergの条件を満たさないことが
容易にチェックできるということ。
小平先生もこれに取り組まれたことがあった。
かつてAdlerが解決したと称する論文を出したが
間違っていた。論文が出たとき
小平先生は「Adlerなんかにできるわけがない」と
言われたそうだ。
そんなこんなを聞かされながら
自分も含め、多くの数学者がこれに取り組んできた。
今世紀にはAtiyahが指数定理の応用で解けるという論文を
書いたが誰も理解できなかった。
問題は簡単に理解できるが奥が深いというところが
フェルマー予想に似て魅力的である。
0894132人目の素数さん
垢版 |
2022/07/30(土) 21:30:21.76ID:91nUc23I
昔のことだから記憶が定かではないが
S^6がもし複素構造を持つとしたら
ケーラー計量を持つことが導けてしまうのではないかと考えて
計算をしてみたことがあった。
0895132人目の素数さん
垢版 |
2022/07/30(土) 22:47:24.18ID:91nUc23I
語ってみたけど反応がないところを見ると
専門用語が通じなかったようだね。
でもNewlander-Nirenbergくらいは
ググって読めばすぐわかるのだが。
0896132人目の素数さん
垢版 |
2022/07/30(土) 22:53:26.00ID:91nUc23I
昔数学の問題を考えながら歩いていると
浄霊会の連中につかまって
手かざしをさせてくれと付きまとわれることがあった。
コホモロジーでやいのやいの言われて
あの時のことを思い出した。
0897132人目の素数さん
垢版 |
2022/07/31(日) 07:11:28.42ID:X5ediXOV
>>892
お望み通りのことを語ったことになったかどうかはわからない
0899132人目の素数さん
垢版 |
2022/07/31(日) 08:55:52.50ID:X5ediXOV
>>898
コホモロジーと
コホモロジーの公理の
区別がつかない🐎🦌

概複素構造と複素構造の違いは
実4次元以上で初めて現れる。
接束に複素ベクトル束の構造を入れたのが概複素構造で
多様体に複素局所座標系を入れて座標変換がみな正則写像になるようにしたのが
複素構造。
0900132人目の素数さん
垢版 |
2022/07/31(日) 09:00:29.76ID:A0tPI6fj
>>899
>コホモロジーと
>コホモロジーの公理の
>区別がつかない🐎🦌

なにいってんのかわからん ●違いか?
コホモロジーの公理を満たさん
コホモロジーがあるのか?
0901132人目の素数さん
垢版 |
2022/07/31(日) 09:07:58.44ID:X5ediXOV
>>900
>>コホモロジーの公理を満たさん
>>コホモロジーがあるのか?
L^pコホモロジー
0902132人目の素数さん
垢版 |
2022/07/31(日) 09:17:16.98ID:A0tPI6fj
>>901
・具体的にどの公理を満たさないのか?
・その公理を満たさないにもかかわらず
 コホモロジーとするのはいかなる理由によるのか?
0903132人目の素数さん
垢版 |
2022/07/31(日) 09:28:45.22ID:X5ediXOV
補足

多様体は特に断らない限り
パラコンパクトでハウスドルフ
かつ連結とする
0904132人目の素数さん
垢版 |
2022/07/31(日) 09:32:01.49ID:X5ediXOV
>>902
例えば切除公理を満たさない。
functoriarityがないことが
L^2コホモロジーの欠点だという指摘をされて久しいが
すでに広く通用している用語である。
0905132人目の素数さん
垢版 |
2022/07/31(日) 09:39:41.29ID:X5ediXOV
L^pコホモロジーと言っても
複体のコホモロジーであることには変わりないのだが。
ただし、最初からL^pコホモロジーがそういう形で
定義されていたわけではない。
複体のコホモロジーの一種だという認識は
大島利雄氏以来である。
0906132人目の素数さん
垢版 |
2022/07/31(日) 09:39:44.51ID:A0tPI6fj
>>904
>切除公理を満たさない。
 幾何学的じゃないな
>functoriarityがない
 圏論的じゃないな
0908132人目の素数さん
垢版 |
2022/07/31(日) 09:52:15.46ID:X5ediXOV
>>907
位相ベクトル空間と閉作用素からなる列で
隣接作用素の合成が(可能で)0であると
核を像で割ったものが定義できるので
それをコホモロジーと称していた。
0909132人目の素数さん
垢版 |
2022/07/31(日) 09:59:45.17ID:A0tPI6fj
>>908
>位相ベクトル空間と閉作用素からなる列で
>隣接作用素の合成が(可能で)0である…
 それはコチェインではないんですか?
>核を像で割ったもの
 そこが「コホモロジー」ってことですね
0910132人目の素数さん
垢版 |
2022/07/31(日) 10:08:59.74ID:X5ediXOV
閉作用素とは稠密な定義域を持ちグラフが
閉集合であるような対応のことで
一般には通常の写像ではない。
通常のドラムコホモロジーが
L^2コホモロジーと同型になるのは
どのような場合かという問題は
曲率条件などが絡むので興味深い幾何学の問題でもある。
すでにドラムの「可微分多様体」(新版で和訳はない)の
終章でこの問題が示唆されている。
0911132人目の素数さん
垢版 |
2022/07/31(日) 12:08:53.47ID:0Z++3IBk
最近よく聞くようになった
「幾何解析」の
話題でもありますね。
0912132人目の素数さん
垢版 |
2022/07/31(日) 12:54:57.70ID:Yv8/4zbG
で結局、ID:A0tPI6fj=ID:aeFM8Twiが🐎🦌なの? ID:X5ediXOV=ID:91nUc23I=ID:D7ZAANTsが●違いなの?
俺には前者のように見えるが
0913132人目の素数さん
垢版 |
2022/07/31(日) 14:06:02.68ID:0Z++3IBk
それはなかなかわかりにくいことではあるが
人にきくほどのことではなかろう。
0915132人目の素数さん
垢版 |
2022/07/31(日) 15:56:45.52ID:QgOwogiU
次スレ立てておきました

純粋・応用数学・数学隣接分野(含むガロア理論)11
https://rio2016.5ch.net/test/read.cgi/math/1659249925/

なお、ワッチョイ導入で下記 !extend:checked:vvvvv:1000:512
を冒頭に入れて、スレ立てをしようとしましたが
はじかれました
数学板では、ワッチョイ導入が出来ない仕様かも

(参考)
https://rio2016.5ch.net/test/read.cgi/math/1650714023/898
あと次のスレからワッチョイ導入して欲しい
どうみても自作自演してるやつがいるし、
頭がおかしいやつの連投はあぼーんしたいから
IPまでは表示しなくていいから
!extend:checked:vvvvv:1000:512
でいいだろ
(引用終り)
0918132人目の素数さん
垢版 |
2022/07/31(日) 17:04:58.61ID:A0tPI6fj
数学板でワッチョイ導入が出来ない仕様の理由
「閑散板だから」
(完)
0920132人目の素数さん
垢版 |
2022/07/31(日) 17:13:57.52ID:0Z++3IBk
>>914
>>919
何かあと少しコメントしたそうだけど?
0921132人目の素数さん
垢版 |
2022/08/01(月) 09:21:09.37ID:0c3xP5Im
「幾何解析」は生協の書店で見つけて買ったが
すぐ新本が補充されていた。
0922132人目の素数さん
垢版 |
2022/08/01(月) 12:07:02.56ID:0c3xP5Im
最近だと宮岡礼子先生の話にも
L^2コホモロジーが出てきた
0923132人目の素数さん
垢版 |
2022/08/01(月) 18:04:32.69ID:ni+squ1I
裳華房の本が2割引きになっている。
0924132人目の素数さん
垢版 |
2022/08/02(火) 09:13:09.56ID:XdN9uWcE
店じまいか?
0925132人目の素数さん
垢版 |
2022/08/02(火) 12:33:09.12ID:VlWpSq8T
922の補足

宮岡先生の話に出てきたのは被約L^2コホモロジー。
1967年のVesentiniの講義録で
無限遠で平坦なリーマン多様体の被約L^2コホモロジーが
有限次元であることが示されているが
Dodziukは1982年の論文でそれらを
トポロジカルな不変量で表すことを問題にした。
これを解決したのがG.Carronの2003年の論文。
0926132人目の素数さん
垢版 |
2022/08/03(水) 21:01:29.79ID:22Dgj5ca
Vesentiniは昨年亡くなった。
追悼文の依頼は来なかった。
そういえば会ったこともなかったな。
0927132人目の素数さん
垢版 |
2022/08/11(木) 15:16:20.03ID:4tLnuvfp
世界平和統一家庭連合(せかいへいわとういつかていれんごう、
英語: Family Federation for World Peace and Unification、
略称: 家庭連合、FFWPU)は、朝鮮半島のキリスト教の土壌から発生し、
文鮮明によって1954年に韓国で創設された新興宗教の宗教団体・宗教法人。
0928132人目の素数さん
垢版 |
2022/08/11(木) 15:17:36.38ID:4tLnuvfp
>>927
旧名称は世界基督教統一神霊協会
(せかいキリストきょうとういつしんれいきょうかい、
 英語: Holy Spirit Association for the Unification of World Christianity)、
旧略称は統一教会、統一協会
(とういつきょうかい、
 英語: Unification Church)。
0929132人目の素数さん
垢版 |
2022/08/11(木) 15:18:44.92ID:4tLnuvfp
>>928
統一教会は宗教学ではキリスト教系の新宗教とされ、
文化庁が発行している宗教年鑑では
キリスト教系の単立に分類されている。
また、欧米ではカルト宗教であるとされている。
0930132人目の素数さん
垢版 |
2022/08/11(木) 15:20:04.02ID:4tLnuvfp
>>927-928
1994年5月に名称が変更され、
日本では遅れて、2015年8月26日に
宗教法人名を管轄している文化庁から
改称を認証された。
0931132人目の素数さん
垢版 |
2022/08/20(土) 09:08:46.91ID:yumbgJFn
葬儀費用は統一教会が負担するのが筋では?
0932132人目の素数さん
垢版 |
2022/08/22(月) 22:48:50.58ID:Pk6/NEyr
統一の金を取り上げて、被害者救済にあてよう
0933132人目の素数さん
垢版 |
2022/08/25(木) 16:38:42.96ID:v3VGVXcm
統一場の理論、国際平和を主張したアインシュタインも
元は米国の原爆の開発を推奨した大統領宛の手紙に署名した人間だ。
ナチスに対して原爆が使われたのならば良かったなどと言えるのだろうか?
0934132人目の素数さん
垢版 |
2022/08/25(木) 17:05:19.16ID:MxcGhbg3
>>933
統一教会は統一場の理論と深い関係にあるという話?
0938132人目の素数さん
垢版 |
2022/08/27(土) 11:10:35.95ID:zyqPAIcH
>>937
これだね
日本人だけを食い物にしている悪いやつら

https://ja.wikipedia.org/wiki/%E4%B8%96%E7%95%8C%E5%B9%B3%E5%92%8C%E7%B5%B1%E4%B8%80%E5%AE%B6%E5%BA%AD%E9%80%A3%E5%90%88
世界平和統一家庭連合
日本は"エバ国家"で「サタン(悪魔)の国[19]」であるとの反日教義が教えられている[20][21]

統一教会は韓国と日本では史観が違っており、韓国では献金などのノルマなどは厳しくないが、日本国内での統一教会の信仰者はまず始めに全財産の額の把握を教会にされる[22][80]。
その後「地獄に行く、天国にいけない」と教えられ、莫大な献金を促される[22][80]。全財産を捧げる事を教義としており、破産しても借金する方法を教える事で貢がせ続ける[22][80]。
0939132人目の素数さん
垢版 |
2022/08/29(月) 07:00:30.15ID:n5OXCDUN
>>938
馬鹿の書く文章は一発で分かるなw
0940132人目の素数さん
垢版 |
2022/08/29(月) 07:01:05.28ID:n5OXCDUN
馬鹿はコピペ欲が抑えられない
0941132人目の素数さん
垢版 |
2022/08/29(月) 12:11:24.15ID:WTxVhLjy
..940
その通り

抜き打ち試験のパラドックスのコピペ

ウィラード・ヴァン・オーマン・クワイン(『マインド』1953年1月号)によると、
1940年代の初めに「絞首刑を宣告された男のパズル」というスタイルで、
流布されるようになったのが起源だとしている。
1943年か1944年にスウェーデン放送会社が、
来週民間防衛練習が行われて民間防衛隊の能力がテストされると放送したが、
当日の朝になっても誰もそれを予言することができなかったという。
これをマーティン・ガードナーに報告したレナート・エクボン自身は、
このパラドックスがスウェーデンの民間防衛放送より古いと信じていた。
ドナルド・ジョン・オコンナーが初めて印刷物(『マインド』1947年8月号)
でこのパラドックスを論じた。次の週にA級灯火管制を行うと告げた軍司令官の
話になっている。
オコンナーのものを含む初期の3つの論文では(灯火管制であろうと絞首刑であろうと)
実施不可能という結論で終わっているが、マイケル・スクリブンが
『マインド』1951年7月号で、初めて絞首刑が実施可能であることを示した。
0942132人目の素数さん
垢版 |
2022/08/31(水) 06:06:11.84ID:oJL44hPV
ある教師が、学生たちの前で次のように予告した。

来週の月曜日から金曜日までのいずれかの日にテストを1回行う。
抜き打ちテストであり、テストが行われる日がいつかはわからない。
0943132人目の素数さん
垢版 |
2022/08/31(水) 06:07:49.03ID:oJL44hPV
これを聞いたある学生は、以下の推論の結果「抜き打ちテストは不可能である」という結論に達した。

まず、金曜日に抜き打ちテストがあると仮定する。
すると、月曜日から木曜日まで抜き打ちテストがないことになるから、
木曜日の夜の時点で、翌日(金曜日)が抜き打ちテストの日であると予測できてしまう。
これでは抜き打ちとは言えないので、金曜日には抜き打ちテストを行うことができないということが分かる。

次に、木曜日に抜き打ちテストがあると仮定する。
すると、月曜日から水曜日まで抜き打ちテストがないことになるから、
水曜日の夜の時点で木曜日か金曜日のどちらかの日に抜き打ちテストがあることが予測できるが、
1. により金曜日には抜き打ちテストがないことが既に分かっているので、
翌日(木曜日)が抜き打ちテストの日であると予測できてしまう。
よって、木曜日にも抜き打ちテストを行うことができないということが分かる。

以下同様に推論していくと、
水曜日、火曜日、月曜日にも抜き打ちテストを行うことができない
ということが分かる。
したがって、
「先生はいずれの日にも抜き打ちテストを行うことができない」
という結論になる。
0944132人目の素数さん
垢版 |
2022/08/31(水) 06:08:23.89ID:oJL44hPV
しかし翌週、テストは水曜日に行われた。
上記の推論にもかかわらず、学生は全くテストの日を予測できなかった。

すべては教師の予告通りになった。
0945132人目の素数さん
垢版 |
2022/08/31(水) 06:24:05.61ID:oJL44hPV
このパラドックスは、
「教師の宣言を信じれば不整合になり、信じなければ誤った信念を抱くことになる」
という構造をもっている。

教師の宣言は、次の二つの命題に分割できる。

1.予告した期間(来週の月曜日から金曜日)のいずれかの日に必ずテストを実施する。
2.学生が推論によって予測できる日には、テストを実施しない。
0946132人目の素数さん
垢版 |
2022/08/31(水) 06:25:33.78ID:oJL44hPV
学生が教師の宣言を信じるかどうかによって、次の二つの場合がある。

学生が教師の宣言を信じる場合
 学生は 1. と 2. の双方を信じることになる。
 しかし、上述した推論によって「1. と 2. は両立しない」という結論が導けるので、
 矛盾をきたす。

学生が教師の宣言を信じない場合
 学生は 1. か 2. のいずれかが誤りであると信じることになる。
 つまり、「予測可能な日にテストを行う」か「全くテストを行わない」のどちらかを信じることになる。
 しかし、どちらも起こりうるので、どちらが実際に起こるかは学生には予測できない。
 したがって、教師がいつ試験を実施しても、学生にとっては予測不可能な試験が行われることになる
 (「1. か 2. のいずれかが誤り」という信念は偽になる)。
0947132人目の素数さん
垢版 |
2022/08/31(水) 06:26:14.34ID:oJL44hPV
重要なのは、矛盾が生じるのは 1. と 2. を満たすテストが行われると"信じた"ときであって、
1. と 2. 自体がただちに矛盾を引き起こすわけではないということである
(このことは、現実に抜き打ちテストが行われ得ることからも明らかであろう)。
その意味で、このパラドックスは信念を扱う様相論理的なパラドックスであるといえる。
0948132人目の素数さん
垢版 |
2022/08/31(水) 07:47:12.35ID:IgYKuUtA
昔、修論発表会で論文のタイトルに
「信念」の文字を見て驚いたことがあった。
0949132人目の素数さん
垢版 |
2022/08/31(水) 13:50:39.44ID:wQL2i5Js
行列式に関する最初期の計算
楊輝(中国、1238年? - 1298年)は『詳解九章算術』で
数字係数の二元連立一次方程式の解をクラメルの公式の形で、
行列式的なものを含んだ形で与えている。
また1545年にジェロラモ・カルダノは、著書 Ars Magna の中で同じく2×2の場合の
クラメルの公式を与えている。この公式は
regula de modo(ラテン語で「様態に関するの規則」の意味)と呼ばれている。
彼らは「行列式」を定義したわけではないが、その概念の萌芽を見てとることができる。
0950132人目の素数さん
垢版 |
2022/08/31(水) 19:41:29.83ID:oJL44hPV
行列式が実は掃き出し法で証明できると最初に気づいたのは誰?
0951132人目の素数さん
垢版 |
2022/08/31(水) 22:17:58.98ID:IgYKuUtA
>>950
>>行列式が実は掃き出し法で証明できると最初に気づいたのは誰?
どうも認知症になったせいか
この文章の意味がよくわからない
「行列式を証明する」とはどんな命題を証明することなのか
教えてくれませんか。
0952132人目の素数さん
垢版 |
2022/09/02(金) 07:03:00.13ID:yci7l7C3
>>951
すみません 私が認知症でした・・・OTL

正しくは以下の通りです
「行列式が実は掃き出し法で「計算」できると最初に気づいたのは誰?」
0953132人目の素数さん
垢版 |
2022/09/13(火) 22:27:25.85ID:C+pPFqyr
統一場の理論とか大統一理論とか、
日本の理論物理学者は「統一」という言葉がお好きなようであった。
0955132人目の素数さん
垢版 |
2022/09/19(月) 06:11:28.47ID:A2bkdkFJ
「統一地方選挙」という名称も某団体によって影響されていたのかもしれないな。
0956132人目の素数さん
垢版 |
2022/09/19(月) 06:12:29.48ID:pcesVYMA
>>955
マジで云ってる?w
0957132人目の素数さん
垢版 |
2022/10/11(火) 10:19:49.00ID:xzBPUGE/
>>952
定義に気づいた時点でその程度の計算法は自明ではないか
0959132人目の素数さん
垢版 |
2022/10/13(木) 11:54:26.18ID:spR+mnLQ
wiki

The method of Gaussian elimination appears – albeit without proof – in the Chinese mathematical text Chapter Eight: Rectangular Arrays of The Nine Chapters on the Mathematical Art. Its use is illustrated in eighteen problems, with two to five equations. The first reference to the book by this title is dated to 179 AD, but parts of it were written as early as approximately 150 BC. It was commented on by Liu Hui in the 3rd century.

https://en.wikipedia.org/wiki/Gaussian_elimination?wprov=sfti1
0960132人目の素数さん
垢版 |
2022/10/14(金) 20:28:13.99ID:rIHkiAaS
>>951
証明の文脈で名詞が書かれた場合は
「その概念の存在」または「その概念がwell definedであること」
を意味する
従って
「行列式が実は掃き出し法で証明できると最初に気づいたのは誰?」
の意味は
「行列式がwell definedであることを掃き出し法で証明できると最初に気づいたのは誰?」
である
0962132人目の素数さん
垢版 |
2022/11/04(金) 21:12:10.89ID:p1Gv5252
行列式の定義を
well-definednessをチェックしなければ使えない形で
書いたのは誰?
0963132人目の素数さん
垢版 |
2022/11/05(土) 09:54:32.72ID:b+W23d63
>>960
よく知られてる行列式の定義がwell-definedであることは自明
もっとペダンディックな定義がそうかどうかは証明の必要があるが
その場合結局よく知られてる定義に還元することになる
0964132人目の素数さん
垢版 |
2022/11/08(火) 06:38:44.32ID:Mb93uGhw
外積による定義は
外積のwell-definednessを
チェックする必要があるかもしれない
0965132人目の素数さん
垢版 |
2022/11/08(火) 22:13:11.03ID:WGeOLT6A
外積はフランスの大学性には
程度が高すぎると
ある有名数学者がこぼしていた
0966132人目の素数さん
垢版 |
2022/11/08(火) 22:14:00.27ID:WGeOLT6A
訂正
大学性ー−>大学生
レス数が950を超えています。1000を超えると書き込みができなくなります。

ニューススポーツなんでも実況