X



トップページ数学
421コメント655KB
IUTを読むための用語集資料スレ2
0001132人目の素数さん
垢版 |
2020/12/01(火) 18:11:43.01ID:g/5kciS4
テンプレは後で
0290132人目の素数さん
垢版 |
2022/07/09(土) 08:26:05.74ID:ETpiR2xz
>>289
つづき

① X は位相空間
まず、「X は位相空間である」ことを示す必要があります。位相空間の定義はここでは省略します。

「X は位相空間である」を示すためには、X の開集合系を決定するなどの方法があります。ほかにも、別の位相空間を定義してから、その位相空間から誘導される位相を考えることもあります。次回具体的な例を作る際には、後者の方法をとりたいと思いますが、具体的な方法についてはそのときに議論しましょう。

⑥ C の開集合への同相写像 φi:Ui→C
上で定めた開被覆の各開集合 Ui に対して、「C の開集合への同相写像 φi:Ui→C」とは、C のある開集合 Vi に対して、同相写像

φi:Ui→Vi
を考えるということですね。この Ui と φi:Ui→C の組 (Ui,φi) を座標近傍系といい、今考えている座標近傍系全体の集合 {(Ui,φi)}i∈I をアトラスといいます。

同相写像 φi の行き先は C ということで、C の各点には複素数の値が定まります。したがって、X の一部分に、φi を通して C による座標が貼り付けられるということです。

X の開被覆に属するすべての開集合に対して座標近傍系が定義されているので、X の各点に座標が定まったといえます。

また、座標近傍系は、今考えている特定の開被覆に対して定めれば十分であることに注意します。

ここは僕が最初に誤解したポイントでした。座標近傍系はあくまで「今考えている開被覆に対して」定めればよいのであって、その開被覆に属さないような「任意の開集合に対して」定める必要はないということですね。

なお、φi が同相写像であるとは、φi が次の3つの条件を満たすことをいいます。

・φi が全単射
・φi が連続写像
・φ-1i が連続写像
さらっと「同相写像である」と書いていましたが、条件を示すのが結構大変だとわかるでしょう。

つづく
0291132人目の素数さん
垢版 |
2022/07/09(土) 08:26:40.17ID:ETpiR2xz
>>290
つづき

⑦ φj*φ-1i:φi(Ui∩Uj)→φj(Ui∩Uj) は正則関数
上によって、X には各点に対して座標が定まったわけです。局所的には座標が定まっていますが、それが全体的に「うまくいっている」かどうか考える必要があります。

共通部分を持つ開被覆 Ui,Uj を考えたときに、Ui,Uj にはそれぞれ異なる座標近傍系 φi,φj が定まっています。つまり、共通部分 Ui∩Uj には φi,φj という2通りの座標近傍系が定まっているわけですね。リーマン面の条件⑦では、これらの座標近傍系の間の「整合性」を要請しています。

この整合性についてより詳しく説明したいと思います。Ui∩Uj を φi,φj によって写したものをそれぞれ φi(Ui∩Uj),φj(Ui∩Uj) と書くことにします。これらはどちらも C の開集合で、Ui∩Uj と同相です。

https://cdn-ak.f.st-hatena.com/images/fotolife/t/tsujimotter/20200203/20200203084943.png

よって、次のような合成写像を考えることができます。φi の逆写像 φ-1i によって φi(Ui∩Uj) を Ui∩Uj に戻します。さらに、φj によって Ui∩Uj を φi(Ui∩Uj) に写します。この合成写像を
φj*φ-1i:φi(Ui∩Uj)-→-φ-1iUi∩Uj-→φjφj(Ui∩Uj)
とします。

https://cdn-ak.f.st-hatena.com/images/fotolife/t/tsujimotter/20200203/20200203084924.png

構成からわかるように、φj*φ-1i は C の開集合から C の開集合への写像となっていますね。つまり、単なる複素関数になります。

条件⑦では、複素関数 φj*φ-1i が正則であることを要請しているというわけです。

リーマン面と多様体の関係
多様体のことを知っている人は、リーマン面の定義が多様体の定義に似ていることに気づいたと思います。

実際、上の定義で C となっているところを Rn に置き換えて、「正則関数」のところを「連続関数(あるいは無限回微分可能)」と置き換えると「n 次元多様体(あるいは n 次元可微分多様体)」の定義そのものになります。C は R2 だと思えて、正則関数は連続関数なので、リーマン面は2次元の多様体となります。

一方、C のところを Cn に置き換えると、これは n 次元複素多様体の定義となります。リーマン面は1次元複素多様体だということができます。

つづく
0292132人目の素数さん
垢版 |
2022/07/09(土) 08:27:14.10ID:ETpiR2xz
>>291
つづき

おわりに
以上がリーマン面の定義で主張していることの全容です。ある与えられた X がリーマン面であることを示すためには、上記の条件①~⑤がすべて成り立つことを言う必要があります。

次回は、このことを具体的に X=P1 で確認したいと思います。リーマン面の定義を丁寧にすべて確認していくのは、相当に骨が折れます。リーマン面の練習として、頑張って全部の条件を示したいと思います。

それでは今日はこの辺で。
(引用終り)
以上
0293132人目の素数さん
垢版 |
2022/07/09(土) 09:22:34.10ID:ETpiR2xz
>>291
>多様体のことを知っている人は、リーマン面の定義が多様体の定義に似ていることに気づいたと思います。

(参考)
https://ja.wikipedia.org/wiki/%E5%A4%9A%E6%A7%98%E4%BD%93
多様体
多様体(たようたい、英: manifold, 独: Mannigfaltigkeit)とは、局所的にはユークリッド空間と見なせるような図形や空間(位相空間)のことである。多様体上には好きなところに局所的に座標を描き込むことができる。

直感的な説明
多様体に座標を描くという作業は地球上の地図を作る作業に似ている。地図の上の点は地球上の点に対応し、さらに地面には描かれていない緯線や経線を地図に描き込むことによって、地図に描いてある地域の様子が分かりやすくなる。座標の無い地球上の様子は、人間が作った座標のある地図と対応させることによって非常に把握しやすくなる。

地球は球であり、世界地図を一枚の平面的な地図におさめようとすれば、南極大陸が肥大化したり、地図の端の方では一枚の地図の中に(連続性を表現するために)同じ地点が複数描き込まれたりする。世界地図をいくつかの小さな地図に分割すると、こういった奇妙なことはある程度回避できる。例えば、北極を中心とした地図、南極を中心とした地図、ハワイを中心とした地図、ガーナを中心とした地図…… などのように分割できる。そして隣り合った地図の繋がりをそれぞれの地図に同じ地域を含めることで表現すればよい。こうすることによって異なる地図同士では重複する部分が出てきてしまうものの、一枚の地図の中に同じ地域が 2 箇所以上描かれることをなくすことはできる。

地球と同じように多様体は好きなところに小さな地図(局所座標系)が描ける図形である。逆に、このような小さな地図を繋げていったら全体としてどのような図形ができあがるのか?という問題は位相幾何学の重要な問題の一つでもある。地図だけみれば地球をまねて作っているようなゲーム(例えば、ファミコン版のドラゴンクエストシリーズ[1])の世界が、実は球面ではなく平坦トーラスだったということもある。

つづく
0294132人目の素数さん
垢版 |
2022/07/09(土) 09:22:54.89ID:ETpiR2xz
>>293
つづき

多様体は性質のよい図形であり、多様体でない図形も多く存在する。円や球や多角形、多面体などは全て多様体として扱えるが、ペアノ曲線やフラクタルなどは適当な地図を描くことはできず、多様体にはならない。

定義
多様体の定義で重要な点は、多様体の上にいかにして座標系を貼り付けるか?ということと、どのような座標系を用いたとしても計算に違いが現れないようにすることである。多様体は計算したいときに座標を導入でき、しかもどのような座標系で計算したとしても違いがない、すなわち座標系に依存しないという非常に扱いやすい性質が追求された図形である。

ここでいう計算とは関数やベクトル、それらの微分、積分などのユークリッド空間の上で普通に行われているような座標を用いた計算のことである。

つづく
0295132人目の素数さん
垢版 |
2022/07/09(土) 09:23:15.85ID:ETpiR2xz
>>294
つづき

局所座標系
M を位相空間とする。M の開集合 U に対して、m 次元ユークリッド空間の開集合 U ' への 同相写像

{\displaystyle φ : U → U'}
を局所座標系 (local coordinate system) あるいは(局所)チャート (chart) という。

局所座標を用いることにより U 上の点を m 次元ユークリッド空間の点であるかのように扱うことが可能になる。U 上に局所座標系 φ が定義されていることを (U, φ) という対で表し、これを m 次元座標近傍 (coordinate neighborhood) あるいはチャートという。局所座標系の成分を明示的に (U;φ1, ..., φm) のように書き表すこともある。

M の二つの座標近傍 (U,φ) と (V,ψ) について、 U ∩ V が空でないとする。局所座標系 φ と ψ は U と V をそれぞれ m 次元ユークリッド空間の開集合 U ', V ' に写すとする。すなわち

φ : U → U',
ψ : V → V'
である。このとき

ψ * φ ^-1: φ (U ∩ V) → ψ (U ∩ V)
は、m 次元ユークリッド空間の開集合から開集合への同相写像になる。この写像を (U, φ) から (V, ψ) への座標変換 (coordinate transformation) という。座標変換を用いれば、同じ開集合 U ∩ V に定義された異なる局所座標 φ と ψ を同じものとして扱うことができる。

つづく
0296132人目の素数さん
垢版 |
2022/07/09(土) 09:23:35.69ID:ETpiR2xz
>>295
つづき

座標変換はまず φ?1 で M に戻してから ψ によって座標のある集合 V ' に写す写像である。間に座標が決められていない空間 M を挟む形になっているものの、座標変換全体はユークリッド空間の部分集合 U ' からユークリッド空間の部分集合 V ' への写像になっている。すなわち M を経由しているという事実を無視し、座標変換を合成写像としてではなく全体で 1 つの写像として捉えると、それは普通のユークリッド空間からユークリッド空間への写像である。

m 次元座標近傍の族 S = {(Uλ, φλ) | λ ∈ Λ} が M 全体を覆っているとする:

M= λ∈Λ U_λ.
このとき、S を座標近傍系 (system of coordinate neighborhoods) あるいはアトラス (atlas) という。アトラスというのは地図帳のことで、局所的な地図であるチャートをいくつも集めて作った地図帳という意味である。

位相多様体
M をハウスドルフ空間とする。M の任意の点 a に対して、a を含む m 次元座標近傍 (U, φ) が存在するとき、M を(境界のない)m 次元位相多様体 (topological manifold) という。

これまで、局所座標 φ(a) はユークリッド空間 Rm に値を取ると考えてきたが、代わりに半空間 Hm = {(x1, x2, ..., xm) ∈ Rm | xm ? 0} に値を取ると考え局所座標の定義を修正すると境界のある位相多様体が定義される。

可微分多様体
m 次元位相多様体 M の座標近傍系 S = {(Uλ, φλ) | λ ∈ Λ} の任意の 2 つの座標近傍 (U1, φ1), (U2, φ2) に対し、U1 ∩ U2 が空でないならば座標変換

φ _1* φ _2^-1:φ _2(U_1 ∩ U_2) → φ _1(U_1 ∩ U_2)
のすべての成分が、Cn 級関数(n 回連続微分可能関数、すなわち n 回微分可能でありかつ n 階偏導関数がすべて連続となるような関数)となるとき、S を Cn 級座標近傍系という。

特に n = ω すなわち、全ての座標変換が実解析関数であるときは特に解析多様体 (analytic manifold) という。

つづく
0297132人目の素数さん
垢版 |
2022/07/09(土) 09:23:53.47ID:ETpiR2xz
>>296
つづき

極大座標近傍系
m 次元位相多様体 M に対し Cn 級座標近傍系として S と T の 2つを取るとする。和集合 S ∪ T が再び M のCn 級座標近傍系になるとき、 S と T は同値であるという。これは同値関係を定める。これは S に属する座標近傍と T に属する座標近傍の間にも座標変換が存在し S での計算と T での計算に違いが無いという性質を保証するための同値関係である。

こうして座標近傍系の取り方に依存しない Cn 級多様体が定義される。m 次元位相多様体 M 上に互いに微分同相でない複数の微分構造が存在することもある。

多様体上の関数
m 次元 Cn 級多様体 M 上で定義された実数値関数 f を考える。

f: M → R
これは、多様体上の点 p ∈ M に対して実数値 f(p) を対応させる関数である。特定の局所座標を考えているわけではないので、この関数の変数は (x1, x2, ..., xm) のように数を並べた座標ではなく単に点を表している。

多様体上には局所座標を貼ることができるためこの座標を用いた微積分などの計算が可能である。

多様体の間の写像
m1 次元 Cs 級多様体 (M1,S) から m2 次元 Ct 級多様体 (M2,T) への写像 f を考える。

f: M1 → M2
それぞれの多様体に与えられている座標近傍系が S = {(Uλ, φλ) | λ ∈ Λ} , T = {(Vτ, ψτ) | τ ∈ Τ} で定められているとする。多様体上の関数と同じように、写像も座標を用いて表現することができる。関数の場合と違うのは写像でうつる先でも座標について考えなければならないことである。

M2 = R という「特別な」場合の写像が関数になる。

つづく
0298132人目の素数さん
垢版 |
2022/07/09(土) 09:24:15.69ID:ETpiR2xz
>>297
つづき

多様体上の曲線
R の開区間 I = (a, b) から Cs 級多様体 M への Cr 級写像

φ: I → M
のことを、 Cr 級曲線 (Cr-curve) という (0 ? r ? s)。

{ φ(t) ∈ M | t ∈ I} という点の集合を曲線というのではなく、写像 φ を曲線というのである。なお、φ の変数 t を媒介変数という。

a ? c < d ? b
とする。φ が 開区間 I = (a,b) で定義された Cr 級曲線であるとき、 I に含まれる閉区間 [c,d] や 半開区間 [c,d), (c,d] に φ の定義域を制限して得られる写像も Cr 級曲線という。

歴史
多様体の歴史はゲッティンゲンで行われたリーマンの講演に始まる。

多様体論は、ロバチェフスキーの双曲幾何学によって始まった非ユークリッド幾何学やガウスの曲面論を背景として様々な幾何学を統一し、 n 次元の幾何学へと飛躍させた。発見当初はカント哲学に打撃を与えた非ユークリッド幾何学も多様体論の一例でしかなくなってしまった。

リーマンがゲッティンゲン大学の私講師に就任するために行った講演『幾何学の基礎に関する仮説について』の中で「何重にも拡がったもの」と表現した概念が n 次元多様体のもとになり n 次元の幾何学に関する研究が始まった。この講演を聴いていたガウスがその着想に夢中になり、(ガウスは普段はあまり表立って他人を褒めることはなかったが、)リーマンの着想がいかに素晴らしいかを同僚に語り続けたり、帰り道にうわの空で道端の溝に落ちたりしたと言われている。

年表
1826年『平行線公準の厳密な証明』(ロバチェフスキー)
1827年『曲面の研究』(ガウス)
1829年『幾何学の新原理並びに平行線の完全な理論』(ロバチェフスキー)
1854年6月10日『幾何学の基礎に関する仮説について』(リーマン)
1872年エルランゲン目録(クライン)
1895年『位置解析』(アンリ・ポアンカレ)
1916年一般相対性理論(アルベルト・アインシュタイン)
1936年『微分可能多様体』(ハスラー・ホイットニー)

つづく
0299132人目の素数さん
垢版 |
2022/07/09(土) 09:24:36.31ID:ETpiR2xz
>>298
つづき

https://en.wikipedia.org/wiki/Manifold
Manifold google訳
多様体
ポアンカレの定義
ヘルマン・ワイルは、1911年から1912年のリーマン面に関する講義コースで可微分多様体の本質的な定義を示し、まもなく続く位相空間の一般的な概念への道を開きました。1930年代に、ハスラーホイットニーなどが主題の基本的な側面を明らかにし、19世紀後半にさかのぼる直感が正確になり、微分幾何学とリー群論によって発展しました。特に、ホイットニー埋め込み定理[6]は、チャートに関する本質的な定義が、ユークリッド空間のサブセットに関するポアンカレの定義と同等であることを示しました。

原文
Hermann Weyl gave an intrinsic definition for differentiable manifolds in his lecture course on Riemann surfaces in 1911?1912, opening the road to the general concept of a topological space that followed shortly. During the 1930s Hassler Whitney and others clarified the foundational aspects of the subject, and thus intuitions dating back to the latter half of the 19th century became precise, and developed through differential geometry and Lie group theory. Notably, the Whitney embedding theorem[6] showed that the intrinsic definition in terms of charts was equivalent to Poincare's definition in terms of subsets of Euclidean space.
(引用終り)
以上
0300132人目の素数さん
垢版 |
2022/07/14(木) 16:57:25.04ID:/Ighvrnv
これいいね!
https://www.youtube.com/watch?v=gLSbnGns1M4
【位相幾何】被覆空間の定義とリフトの一意性【代数トポロジー】
578 回視聴 2022/02/16 【参考文献】
・講座 数学の考え方〈15〉代数的トポロジー
https://www.アマゾン.co.jp/%E8%AC%9B%E5...

【Contents】
00:00 初めに
04:12 位相空間論・基本事項
05:50 被覆空間の定義
08:22 リフトの一意性(主張)
09:47 リフトの一意性(証明)

MakkyoExists 数学チャンネル

ぅす
4 か月前
テスト終わったんで、心置きなく位相幾何学一日中勉強してます笑
めちゃくちゃ幸せです!

しみずハルオ
4 か月前
「ガロアの夢―群論と微分方程式」久賀 道郎 (著)の解説も期待しています。
0301132人目の素数さん
垢版 |
2022/07/22(金) 08:01:57.95ID:n1cxh6b7
>>817
>「IUTは全く新しい数学」

数学史の教えるところ
数学とは、新しい数学概念の歴史でもあり、
「数学は言葉」です by 新井

http://www.tokyo-tosho.co.jp/books/ISBN978-4-489-02053-7.html
【2009年9月刊行】東京図書株式会社
math stories 数学は言葉
上野健爾・新井紀子監修/新井紀子 著

https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E5%8F%B2
数学史

21世紀
21世紀初期、多くの教育者が新たな貧困層の数学的・科学的無教養に関する心配を述べている[44]。一方で、数学、科学、工学、および科学技術が相互に知識、情報を作り上げ、古代哲学者が夢にも見なかった繁栄がもたらされている。

2003年に、グリゴリー・ペレルマンがミレニアム懸賞問題の一つであるポアンカレ予想を証明した。

2007年3月中旬に、北米と欧州中の研究者チームがコンピュータネットワークを使用して、E8 (E?) (248次元の例外型単純リー環)の指標表を決定した[45]。この E8 の理解がどのように応用できるかはまだ正確に知られていないが、この発見は現代数学のチームワークと計算機科学双方の大きな業績である。

2009年 、 ゴ・バオ・チャウにより、ラングランズ・プログラムの基本補題に数学的証明が与えられた[46]。

2013年、テレンス・タオが素数が極端に偏ることなく分布することに関する素数の新定理発見[47][48][49]。

https://ja.wikipedia.org/wiki/%E6%95%B0%E5%AD%A6%E3%81%AE%E6%9C%AA%E6%9D%A5
数学の未来
0306132人目の素数さん
垢版 |
2022/09/19(月) 11:09:28.75ID:aLiBZfCJ
https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%B3%E3%82%BC%E3%83%AB%E3%81%AE%E8%A3%9C%E9%A1%8C
ヘンゼルの補題

ヘンゼルの補題(ヘンゼルのほだい、英: Hensel's lemma)とは、1変数多項式が素数 p を法として単根(英語版)を持つならば、その根は p の任意の冪乗を法とする根に一意的に持ち上げられるという、合同算術における補題である。この補題は、多項式が法 p で2つの互いに素な多項式(英語版)に因数分解できるならば、その因数分解は p の任意の冪乗を法とする因数分解に持ち上げることができるという補題に一般化できる。因数分解に現れる多項式の次数が1の場合が根の場合に相当する。ヘンゼルの持ち上げ補題(英: Hensel's lifting lemma)とも呼ばれる。名称はクルト・ヘンゼルに因む。

p の冪指数を無限に大きくしていったときの(射影極限の意味での)極限を取ることにより、法 p での根(または因数分解)を p 進整数上での根(または因数分解)に持ち上げることができる。

還元と持ち上げ
R を可換環、I を R のイデアルとする。R の元を標準写像 R\→ R/I による像で置き換えることを、I を法とする還元、または法 I での還元と呼ぶ。
持ち上げとは還元の逆の操作である。つまり、R/I の元を使って表されている対象があったとき、持ち上げとは対象の性質を保ったまま還元するとこの対象に等しくなるように R(もしくはある k > 1 に対する R/I^{k}の元に置き換えることをいう。

https://ja.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E6%A5%B5%E9%99%90
射影極限
逆極限(ぎゃくきょくげん、英: inverse limit)あるいは射影極限(しゃえいきょくげん、英: projective limit)は、正確な言い方ではないが、いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。逆極限は任意の圏において考えることができる。
厳密な定義
代数系の射影極限

完備化への持ち上げ
全ての正の整数 n に対して R/{m}^{n} に持ち上げることができるので、n を限りなく大きくしていったときの"極限"を考えたくなる。これが p 進整数が考案された主な理由の1つである。
0307132人目の素数さん
垢版 |
2022/09/19(月) 11:09:56.37ID:aLiBZfCJ
https://ja.wikipedia.org/wiki/%E5%AE%8C%E5%82%99%E5%8C%96_(%E7%92%B0%E8%AB%96)
完備化 (環論)
抽象代数学において、完備化(かんびか、英: completion)とは、環や加群上の関手であって、完備な位相環や加群になるような任意のものである。完備化は局所化と類似しており、これらは可換環を解析する最も基本的な手法である。完備可換環は一般の環よりも単純な構造をもっており、ヘンゼルの補題が適用される。

また特に環Rが非アルキメデス距離について距離空間であるときは、距離空間としての完備化と環としての完備化は一致する。

https://en.wikipedia.org/wiki/Completion_of_a_ring
Completion of a ring

Power series
Main article: Formal power series
Power series generalize the choice of exponent in a different direction by allowing infinitely many nonzero terms. This requires various hypotheses on the monoid N used for the exponents, to ensure that the sums in the Cauchy product are finite sums. Alternatively, a topology can be placed on the ring, and then one restricts to convergent infinite sums. For the standard choice of N, the non-negative integers, there is no trouble, and the ring of formal power series is defined as the set of functions from N to a ring R with addition component-wise, and multiplication given by the Cauchy product. The ring of power series can also be seen as the ring completion of the polynomial ring with respect to the ideal generated by x.

https://en.wikipedia.org/wiki/Polynomial_ring
Polynomial ring

https://en.wikipedia.org/wiki/Formal_power_series
Formal power series
Rings of formal power series are complete local rings, and this allows using calculus-like methods in the purely algebraic framework of algebraic geometry and commutative algebra. They are analogous in many ways to p-adic integers, which can be defined as formal series of the powers of p.
0309132人目の素数さん
垢版 |
2022/10/10(月) 09:57:18.04ID:EBzEjr+/
メモ
https://ac-net.org/tjst/
辻下 研究室 立命館大学
https://www.ac-net.org/altmath/info.php
サイト資料
http://ac-net.org/tjst/04/altmath.html
辻下 徹「有限の中の無限」
http://ac-net.org/tjst/archives/05710-tjst-kyouritsu.pdf
有限の中の無限
辻下 徹
立命館大学 理工学部
2005.7.10
註:早稲田大学複雑系高等学術研究所編「複雑系叢書 7 複雑さへの関心」(共
立出版 2006)p55-108「有限の中の無限」の校正前草稿
0310132人目の素数さん
垢版 |
2022/10/13(木) 18:24:46.25ID:q/R61KJF
メモ

https://miz-ar.info/
∂ぽっぽ
https://miz-ar.info/math/
数学ネタ
https://miz-ar.info/math/transfinite-induction-20210725.pdf
超限帰納法
@mod_poppo
2021 年 7 月 25 日
P1
命題 7. 整礎集合には無限降下列は存在しない.
逆に,選択公理の下では,無限降下列が存在しない集合は整礎集合である.
Proof. 集合 X に無限降下列 ・ ・ ・ ? xi+1 ? xi ? ・ ・ ・ ? x0 が存在したとする.A = {xi} とおけば,これは X
の空でない部分集合であるが,極小元を持たない.よって X は整礎集合ではない.
X が整礎集合でないと仮定して,無限降下列の存在を導く.X から極小元の存在しない非空部分集合を一
つ取って,A とする.A の元 a について,A(a) = {x ∈ A | x ? a} とおく.極小元が存在しないという仮定
より,各 A(a) は空ではない.そこで,選択公理により,A(・) の選択関数 f を取る.つまり f(a) ∈ A(a) とす
る.A の元を一つ取って a0 とおき,ai+1 = f(ai) とおく.この {ai} は X の無限降下列となっている.

https://ja.wikipedia.org/wiki/%E6%95%B4%E7%A4%8E%E9%96%A2%E4%BF%82
整礎関係
X が集合であるとき、従属選択公理(英語版)(これは選択公理よりも真に弱く可算選択公理よりも真に強い)を仮定すれば、同値な定義として、関係が整礎であることを可算無限降下列が存在しないこととして定められる[3]。つまり、X の元の無限列 x0, x1, x2, ... で、どんな n についても xn+1 R xn となるようなものはとれない。
0311132人目の素数さん
垢版 |
2022/10/14(金) 07:00:14.87ID:vJZfsUiI
>>306 補足

https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%B3%E3%82%BC%E3%83%AB%E3%81%AE%E8%A3%9C%E9%A1%8C
ヘンゼルの補題

ヘンゼルの補題は、解析的整数論の一分野である p 進解析学の基礎である。

ヘンゼルの補題の証明は構成的(英語版)であり、証明からヘンゼル持ち上げの効率的なアルゴリズムが得られる。これは多項式の因数分解のアルゴリズムの基礎である。また有理数体上の線型代数学についての最も効率の良いアルゴリズムが得られる[要検証 ? ノート]。

ヘンゼルの補題は、ヘンゼルよりも早く1846年にテオドル・シェーネマン(英語版)によって証明されていた[1]。また、「存在」についての主張だけならシェーネマンよりも早くカール・フリードリヒ・ガウスによっても知られていた[2]。
0312132人目の素数さん
垢版 |
2022/11/03(木) 11:21:10.03ID:fNTesdKc
http://mathweb.sc.niigata-u.ac.jp/~hoshi/
Akinari Hoshi
Chair, Department of Mathematics
Professor of Niigata University
http://mathweb.sc.niigata-u.ac.jp/~hoshi/lab-j.html#lab
修士論文 (主指導)
三浦 正道「ガウスの2次形式論とクロネッカー・ウェーバーの定理についての考察」2016年3月 新潟大学
修士論文(PDF) / 修論発表会のスライド(PDF) /
三浦 正道 * (MIURA, Masamichi) (H26学部卒,H28修士修了,博士課程へ)
http://mathweb.sc.niigata-u.ac.jp/~hoshi/MiuraNiigataMasterThesis2016.pdf
ガウスの2次形式論とクロネッカー・ウェーバーの定理についての考察
三浦 正道
新潟大学大学院自然科学研究科博士前期課程
数理物質科学専攻
0316132人目の素数さん
垢版 |
2022/12/17(土) 13:05:28.57ID:EhW0UvWQ
https://www.math.okayama-u.ac.jp/~mi/
Masao Ishikawa 岡山大
https://www.math.okayama-u.ac.jp/~mi/lecture/
2016 年度前期講義資料
2016 年度 第 1,2 クォータ 「代数学」 (PDF ファイル)
「代数学」 講義ノート未完成版 (2016/07/22)
https://www.math.okayama-u.ac.jp/~mi/lecture/pdf/galois.pdf
代数学講義ノート (体とガロア理論)
作成者 : 石川雅雄
平成 28 年 7 月 22 日

https://researchmap.jp/7000003296
石川 雅雄
イシカワ マサオ (Masao Ishikawa)
学歴
1988年4月 - 1992年3月東京大学 大学院理学系研究科博士課程 数学専攻
1986年4月 - 1988年3月東京大学 大学院理学系研究科修士課程 数学専攻
0318132人目の素数さん
垢版 |
2023/01/02(月) 21:58:23.95ID:qZFMMNjk
https://www.s.u-tokyo.ac.jp/ja/story/newsletter/keywords/list11_20.html
理学のキーワード 第14回
https://www.s.u-tokyo.ac.jp/ja/story/newsletter/keywords/14/01.html
フォン・ノイマン環 河東泰之(数理科学研究科)
フォン・ノイマンの名前を聞いたことがない人はいないであろう。コンピュータのフォン・ノイマン・アーキテクチャーや,ゲーム理論の創始,著書「量子力学の数学的基礎」,原爆開発への参加など,きわめて多方面で活躍した20世紀最高の科学者の一人である。純粋に数学的な方面においても多数の偉大な業績があるが,その中の主要なひとつが,彼の名前を冠するフォン・ノイマン環の理論である

フォン・ノイマン環とは作用素環とよばれるものの一種で,だいたいのところは,足し算や掛け算のできるような作用素の集合である。作用素は物理学では演算子と訳されており,無限次元行列と言ってもよい。物理量は数ではなく,作用素で表されるというのが量子力学の教えるところである。数と同じように,作用素も足したり掛けたりすることができる。このとき,行列で知っているようにAB=BAとは限らないということが重要なポイントになる

フォン・ノイマンは,純粋に数学的な理由と,量子力学からの要請の両方に基づき,この理論を創始した。量子力学,さらには量子場の理論への応用は当初は急速には進展しなかったが,長い年月を掛けた進歩があり,とくに近年,量子場の理論のひとつである共形場理論のもたらす多くの数学的問題の研究に関連して,めざましい成果が得られている。共形場理論はきわめて多くの分野の数学と関係しているため,数学的な立場からも重要であるが,私自身もこの分野の数学的研究を行っている

いっぽう,純粋に数学的側面からは,群,およびそのエルゴード作用からフォン・ノイマン環を構成する,フォン・ノイマン自身による方法が重要である。このようにして得られるフォン・ノイマン環を互いに区別するための分類理論はきわめて困難であり,長い間,進展が少なかった。現在は非可換幾何で有名なA. コンヌ(Alain Connes)のフィールズ賞の対象となった業績は,この種の分類理論であるが,最近,S. ポパ(Sorin Popa) の革命的な一連の業績により,さらに進展がもたらされた。本研究科の小沢登高准教授はこの進展の中心的な研究者の一人であり,これからの発展が一段と期待されている
0319132人目の素数さん
垢版 |
2023/01/11(水) 21:01:54.70ID:AmYdnay+
フィールズ賞2022 語ろうや
https://rio2016.5ch.net/test/read.cgi/math/1657025711/626-630

https://webcache.googleusercontent.com/search?q=cache:h0YF7HLfossJ:https://twitter.com/noeasywalk/status/1597221018040668160&cd=1&hl=ja&ct=clnk&gl=jp
佐伯 佳祐
@noeasywalk
友人が数学者をやっている。30歳にして旧帝大の教員。たぶん、いや間違いなく凄いことだろう。昨日、彼の結婚式に出席した。乾杯挨拶が東大数学科教授。「彼は博士課程の時、部分的にさえ明らかになっていなかった分野の未解決問題を解きました。世界が驚きました。」衝撃的な乾杯挨拶だった。
Translate Tweet
1:29 PM ・ Nov 28, 2022
https://twitter.com/5chan_nel (5ch newer account)
0322132人目の素数さん
垢版 |
2023/02/08(水) 21:27:54.03ID:IfFd6N6h
ガウスDAの英PDFを探したが、良いファイルが見つからなかったが
記録を残す

検索:Disquisitiones Arithmeticae Gauss english


https://www.pdfdrive.com/disquisitiones-arithmeticae-e34204097.html
https://www.pdfdrive.com/the-shaping-of-arithmetic-after-cf-gausss-disquisitiones-arithmeticae-d185449279.html
The Shaping of Arithmetic after C.F. Gauss's Disquisitiones Arithmeticae
0324132人目の素数さん
垢版 |
2023/02/15(水) 08:14:30.97ID:IikyRbGC
>>441
ありがとう
東大数学科なの?
日銀の次期総裁・植田和男氏と知り合いかい?

「枯れ木と太陽の歌」か
知らなかったね

歌詞の”枯れ木は一人で歌う”>>443
私にぴったりだね

(参考)
https://西南シャントゥール/略
PDF
1993年(平成5年)'93定期演奏会.pdf - 西南シャントゥール
内海敬三
今回の「枯木と太陽の歌」 は、 「月光とピエロ」 「アイヌのウポポ」 とともに、男声合. 唱の3大組曲といわれ、 いやしくも男声合唱団であるならば、 邦人作品で必ずとりあげるべき古典的名曲である。

つづく
0325132人目の素数さん
垢版 |
2023/02/15(水) 08:14:59.49ID:IikyRbGC
>>324
つづき

https://ja.wikipedia.org/wiki/%E6%9E%AF%E6%9C%A8%E3%81%A8%E5%A4%AA%E9%99%BD%E3%81%AE%E6%AD%8C
枯木と太陽の歌
概説
1956年(昭和31年)、東京男声合唱団の委嘱により作曲された。中田浩一郎(のちの芸術現代社社長・中曽根松衛)の書き下ろしの詩に作曲した。曲の成立について、石井は「この作品は、孤独なる人間の、人生におけるつきつめた哀歓といった、だれにでも通ずるであろう内容に基づいて一貫したイメージを持って、あらかじめ作曲し、それを私の心の友である中田君と、曲を訂正し、あるいは詩を訂正しながら作り上げて行ったもので、ある意味では、音楽と詩が同時に生れてきた、とさえ言えると思っています。」[1]とし、中田は「詩を私が書き、石井先生が曲を書く。ほんとに寝食を共にするというか、彼のうちに泊り、寝たり起きたり、作曲をしたり詩を書いたり、そういう形でできましたね。」[2]とし、両名とも真に「一身同体で作った」[2]ことを強調する。石井と中田のコンビは多くの作品を生み出しているが、その最初期の作品である。

(動画)
https://www.youtube.com/watch?v=H3rMzMI5s4E
函館男声合唱団第11回定期演奏会 第2ステージ「枯れ木と太陽の歌」 作詞:中田浩一郎 作曲:石井 歓
kamueku
2021/01/20
以上
0343132人目の素数さん
垢版 |
2023/08/12(土) 16:14:59.49ID:fmL7VjG2
age
0347sage
垢版 |
2023/11/06(月) 13:05:39.50ID:LZcqYXGa
sage
0353132人目の素数さん
垢版 |
2024/04/20(土) 08:31:35.18ID:b3gJjkjy
https://rio2016.5ch.net/test/read.cgi/math/1701399491/840-
(参考)
ja.wikipedia.org/
宇宙際タイヒミュラー理論
「一点抜き楕円曲線付き数体」の「数論的タイヒミューラー変形」を遠アーベル幾何等を用いて「計算」する数論幾何学の理論である。

www.kurims.kyoto-u.ac.jp
IUT I: CONSTRUCTION OF HODGE THEATERS
Shinichi Mochizuki May 2020
Abstract.
This data determines various hyperbolic orbicurves that are related via finite ´etale coverings to the once-punctured elliptic curve XF determined by EF.

https://researchmap.jp/Hiroaki_NAKAMURA/
中村 博昭
On Arithmetic Monodromy Representations of Eisenstein Type in Fundamental Groups of Once Punctured Elliptic Curves
Hiroaki Nakamura
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES 49(3) 413-496 2013年9月 査読有り

https://www.math.sci.hokudai.ac.jp/~wakate/mcyr/2019/pdf/00900_sarashina_akira.pdf
1 点抜き楕円曲線の同型類の幾何的基本群による復元
京都大学大学院理学研究科数学・数理解析専攻数理解析系更科明(Akira SARASHINA)
概要
1980 年代、Grothendieck により素体の有限次拡大体上の双曲的曲線の幾何が (ある意味で)´ etale 基本群から復元されるという予想が提唱された。
この予想は中村博昭氏、玉川安騎男氏の部分的な結果を経て望月新一氏によって肯定的に解決された。
本稿では正標数代数閉体上の曲線に対しても´etale 基本群が多くの情報を持つ事、また特別な場合に元の曲線の同型類が復元できる事を紹介する。

GrothendieckによりU が遠アーベル多様体であるときU の幾何は(ある意味で)上記の完全列から復元されるという、今日ではGrothendieck予想とも呼ばれる予想が提唱された。
Grothendieckは遠アーベル多様体の定義を残していないためこの予想は厳密に定式化されたものではないが、一次元の場合は遠アーベルと双曲的が同値であると予想した。
この曲線に対する予想は中村博昭氏、玉川安騎男氏の部分的な結果を経て望月新一氏によって肯定的に解決された。
(引用終り)
0354132人目の素数さん
垢版 |
2024/04/20(土) 09:13:31.06ID:0huTH1S0
>>1
閲覧注意
>1は数学の線形代数|・|≠0を理解できない
トンデモ 

0426 132人目の素数さん
2023/10/29(日) 14:22:15.63

IUTは、ガリレオ天動説です
だんだん、理解され受け入れられてきたよ
0355132人目の素数さん
垢版 |
2024/04/20(土) 09:18:28.12ID:b3gJjkjy
これいいね
http://www4.math.sci.osaka-u.ac.jp/~nakamura/
大阪大学 理学研究科 数学教室
中村博昭

http://www4.math.sci.osaka-u.ac.jp/~nakamura/MSRI99/msri99plan.html
研究分野紹介
ガロア群と基本群
この研究領域では、数学的な対称性に関わる2つの分野 --- ガロア理論における代数的な対称性、 基本群の理論における幾何学的な対称性 --- をひとつの共通の場に持ち込む。 この2つのいずれの分野においても、数学的対象はそれぞれの対称性 が取る形態を調べることで研究することができるが、 ここでの中心的な主題は、この両分野がお互いに相互作用をおよぼし、 代数は幾何の影響のもとで応用され、また幾何は代数の恩恵のもとで 構築されることではじめて取り扱うことができるような問題 を研究することである。

基本群は、被覆の対称性としてだけでなく、空間に描かれたループ を考えることでも理解することが出来る。 位相幾何的な曲面の場合には、曲面をより理解しやすい小片に分割する ことが有用である。 このアプローチは、与えられた位相曲面の基本群だけでなく、 付随する「モジュライ空間」(これは、ある空間が連続的に変形していく 族を束ねている空間である)の基本群を研究するときにも用いられる。

幾何学とくに位相幾何学における基本群の理論は、被覆空間の概念と関係している。 例としては、渦巻き階段の形をしたヘリックス曲線とよばれるものがある。 ヘリックス曲線の各点は、固定されたひとつの円の下方から上方にかけて 渦巻きのように配置してあり、 ヘリックス曲線全体は各点を一周り上の点にもっていく操作に対応する対称性をもつ。 このとき、すべての対称性のなす群は整数の全体と対応し、例えば整数5は 5回転分だけ上に移動することに対応している。 こうした状況を、ヘリックス曲線は円の被覆空間であり、整数全体(のなす 加法群)は円の「基本群」であるという。 空間は、その基本群によって研究することができる。--- 例えば、 もし2つの空間が異なる基本群を持つことが示されれば、 それらの空間は違うということがわかる。 さらに、空間の間の写像(例えばヘリックスから円への写像)も 付随する対称性の群を用いて研究することができる。

被覆空間たちは、かなり複雑であり、区別するのも容易でない。 ある特別な状況で、そのために助けとなるのが
「デッサン・ド・アンファン」("dessin d'enfant" 子供の絵)
とよばれる概念である。 上の2つの例は、よく似ているが異なる被覆をあらわす デッサンをあらわす。

つづく
0356132人目の素数さん
垢版 |
2024/04/20(土) 09:18:42.63ID:b3gJjkjy
つづき

ガロア理論における対称性と、基本群と被覆空間の理論における対称性との 間には強い類似性が認められる -- 例えば、どちらも対称性と対象物とを 正確に関係づける 「基本定理」を満たす。この根拠としては、被覆空間が代数方程式系で与えられる という事実があり、それらの方程式はガロア理論の研究対象である。 そのとき方程式系の対称性は、被覆空間の対称性と対応する。 この類似性を用いることにより、代数的な問題のいくつかを幾何学的な手法に より解くことができる。代表的な例としては、 整数の代わりに複素数を係数として考えた場合 (つまり、複素数体上の有理関数の体の上で考えた場合)に、 任意の対称性をあらわす群が 適切な方程式に対するガロア理論として実現される、 という事実を証明することができる。 不思議なことに、伝統的な有理数体上のガロア理論の状況で、これに 対応する主張はまだ証明されていない。ガロアの逆問題といわれる未解決問題 である。

この二つの研究領域の間には第二の関連がある。 それは被覆空間に対する方程式系が、(√2のような)代数的数と関わっている ところに由来している。すなわち、代数的数がそれ自身代数方程式の解である ため、ガロア理論により研究される範疇にはいるのである。 このことから、数論と代数と幾何が交錯する「被覆空間の算術性」の研究 に導かれる。この研究分野には、幾何学的に表現された様々な被覆の方程式に どのようなタイプの代数的数が現れるか、といった未解決の深い問題群が いくつも残されている。整数論に対するさらなる関連は、より一般的な空間、 例えば与えられた素数の倍数だけ座標がずれている2点を同等とみなす標数 p の世界、 などを考えることによりさらなる広がりをみせる。 この方向では、与えられた空間の上にどのような種類の対称性が存在し得るか、 あるいは空間が基本群によってどの程度決定されるか、を理解する問題 に限っても、最近において多大な進展が起こって来ている。

このページは 1999 年8月〜12月にカリフォルニア大学・バークレーの 数理科学研究所 (MSRI)
で行われた
Program on Galois Groups and Fundamental Groups
Organizers:
Eva Bayer, Michael Fried, David Harbater, Yasutaka Ihara,
B. Heinrich Matzat, Michel Raynaud, John Thompson
の紹介ページ http://msri.org/activities/programs/9900/galois/ の日本語訳をもとに
中村が加工を施して作成したものです。(2000/10/1)
(引用終り)
0357132人目の素数さん
垢版 |
2024/04/20(土) 09:27:43.10ID:b3gJjkjy
これいいね
http://www4.math.sci.osaka-u.ac.jp/~nakamura/selection.html
Several articles of H.Nakamura

Articles on Anabelian Geometry
H.Nakamura, A.Tamagawa, S.Mochizuki:
``The Grothendieck Conjecture on the Fundamental Groups of Algebraic Curves''
Copyright 1999 American Mathematical Society
``Sugaku Expositions'' (AMS), Volume 14 (2001), 31--53
English translation (by S.Mochizuki) from ``Sugaku'' 50(2), 1998, pp. 113-129 (Japanese).
pdf http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/rhino/NTM300.pdf

H.Nakamura:
"On Galois rigidity of fundamental groups of algebraic curves"
in "Nonabelian Fundamental Groups and Iwasawa Theory"
(J.Coates, M.Kim, F.Pop, M.Saidi, P.Schneider eds.)
London Math. Soc. Lecture Note Series, 393 (2012), 56--71 (Cambridge UP).
pdf http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/monkey/02nakamura.pdf
This is a translation into English of an old Japanese article published in
"Report Collection of the 35th Algebra Symposium held at Hokkaido University in 1989"
+ 8 complementary notes newly added in English.

Galois-Teichmueller theory:
H.Nakamura :
``Limits of Galois representations in fundamental groups along maximal degeneration of marked curves II''
Proc. Symp. Pure Math., 70 (2002), 43--78
ps / pdf http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/anteater/naka-lim.pdf

H.Nakamura, H.Tsunogai, S.Yasuda:
"Harmonic and equianharmonic equations in the Grothendieck-Teichmueller group, III"
Journal Inst. Math. Jussieu 9 (2010), 431-448.
NTY2010jimj.pdf (Copyright: Cambridge University Press) http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/squirrel/NTY2010jimj.pdf
available from Cambridge Journals Online
0358132人目の素数さん
垢版 |
2024/04/20(土) 09:29:09.81ID:0huTH1S0
閲覧注意
>1は数学の線形代数|・|≠0を理解できない
トンデモ 

0426 132人目の素数さん
2023/10/29(日) 14:22:15.63

IUTは、ガリレオ天動説です
だんだん、理解され受け入れられてきたよ
0359132人目の素数さん
垢版 |
2024/04/20(土) 09:35:55.20ID:JoipkNiz
inter universe がだめだとどれだけいわれたらこの能無しは理解できるんだろう?
0361132人目の素数さん
垢版 |
2024/04/20(土) 18:19:50.83ID:b3gJjkjy
これいいね

https://rio2016.5ch.net/test/read.cgi/math/1712989377/65-66
0065132人目の素数さん
2024/04/20(土) 12:39:54.74ID:cvhHH4p1
>>0056

>問題は、スキームの基本群を分解し無限の異質な宇宙を群論的に構成するという点
>これを大域的な「加群」で考えると、図式が同型になるから無意味だと言われてる
>望月らはそうじゃない、違う宇宙なんだと反論している

Joshiの例で、局所を単に加えた(積分)では素点p、無限素点のときにギャップがでることは明らか。

但し下記リンクの頁10で、”素点の連動”の法則は、”積の公式の法則”があり、”近似を局所的なあるを満たすように用意し”、積分による大域的な式で、”積公式はそうして入手した緒々の局所的な情報を「貼り合わせる」役割を果たす”とある。。

反論ではない。最初からIUT理論に書かれたコアのコンセプトなのだから良く理論を読め、だろう。
大域的な単なる「加群」でなく、同型で無意味にならなくした、宇宙際(宇宙と宇宙をつなぐ)の工夫が、数学で斬新となるアイデアなのだろ w

>まぁ inter universe が入ってれば全部アウトやな
アイデアのコアを、無下に否定するのはどうかと思うが。ここまで論議が続けられてきたし、そのうち画期的な方法となるのでは。
0066132人目の素数さん
2024/04/20(土) 12:40:50.50ID:cvhHH4p1
>>0065
のリンク先
https://www.kurims.kyoto-u.ac.jp/~motizuki/Takoushiki%20no%20kai%20no%20kinji%20ga%20torimotsu%20suuron%20to%20kika%20no%20kankei.pdf

https://www.kurims.kyoto-u.ac.jp/~motizuki/papers-japanese.html
望月 論文
和文雑誌の論文
[6] 多項式の解の近似がとりもつ数論と幾何の関係 (1), (2), (3), (4). PDF
0362132人目の素数さん
垢版 |
2024/04/20(土) 19:49:19.23ID:b3gJjkjy
これいいね

https://en.wikipedia.org/wiki/Teichm%C3%BCller_space
Teichmüller space

In mathematics, the Teichmüller space
T(S) of a (real) topological (or differential) surface
S is a space that parametrizes complex structures on
S up to the action of homeomorphisms that are isotopic to the identity homeomorphism. Teichmüller spaces are named after Oswald Teichmüller.

History
Moduli spaces for Riemann surfaces and related Fuchsian groups have been studied since the work of Bernhard Riemann (1826-1866), who knew that
6g-6 parameters were needed to describe the variations of complex structures on a surface of genus
g ≥ 2.
The early study of Teichmüller space, in the late nineteenth–early twentieth century, was geometric and founded on the interpretation of Riemann surfaces as hyperbolic surfaces. Among the main contributors were Felix Klein, Henri Poincaré, Paul Koebe, Jakob Nielsen, Robert Fricke and Werner Fenchel.

The main contribution of Teichmüller to the study of moduli was the introduction of quasiconformal mappings to the subject. They allow us to give much more depth to the study of moduli spaces by endowing them with additional features that were not present in the previous, more elementary works. After World War II the subject was developed further in this analytic vein, in particular by Lars Ahlfors and Lipman Bers. The theory continues to be active, with numerous studies of the complex structure of Teichmüller space (introduced by Bers).

The geometric vein in the study of Teichmüller space was revived following the work of William Thurston in the late 1970s, who introduced a geometric compactification which he used in his study of the mapping class group of a surface. Other more combinatorial objects associated to this group (in particular the curve complex) have also been related to Teichmüller space, and this is a very active subject of research in geometric group theory.
0363132人目の素数さん
垢版 |
2024/04/20(土) 20:04:46.96ID:b3gJjkjy
これいいね
https://www.youtube.com/playlist?list=PL04QVxpjcnjj-7bMIZG1smxVh_6gvHbki
https://www.youtube.com/watch?v=X1cAVLSMz0g&list=PL04QVxpjcnjj-7bMIZG1smxVh_6gvHbki&index=1
A History and Survey of the Subject by Pierre Lochak
International Centre for Theoretical Sciences 2024/02/26
DISCUSSION MEETING : GROTHENDIECK TEICHMÜLLER THEORY

ORGANIZERS : Pierre Lochak (CNRS and IMJ-PRG, Paris, France) and Devendra Tiwari (Bhaskaracharya Pratishthana, Pune, India)
DATE : 26 February 2024 to 01 March 2024
VENUE : Madhava Lecture Hall, ICTS Bengaluru and Online
Beyond “dessins d’enfant”, the theory nowadays referred to as Grothendieck-Teichmüller theory (Galois-Teichmüller in Grothendieck’s manuscripts) may well represent the main new theme in the Esquisse d'un Programme, as confirmed in the Promenade à travers une œuvre (which is part of Récoltes et semailles). Simplifying a great deal one may say that Grothendieck’s main ideas were taken up especially by Y. Ihara, V. Drinfeld and P. Deligne in the mid and late eighties.They derive in large part from the elementary remark that the fundamental group remains the only invariant in classical algebraic topology which is not a priori abelian .Making this remark fruitful probably required the genius of Alexandre Grothendieck . The fact is that out of it Grothendieck-Teichmüller theory (on which we will concentrate) and Anabelian Geometry (including the so-called “section conjecture”) were born.

In Grothendieck’s Esquisse, he is dealing with the full étale fundamental group, which is profinite almost by definition, or say by a form of the GAGA principle. It leads to the original version of the Grothendieck-Teichmüller group which again by definition (or by functoriality) and using the famous Belyi theorem, contains the absolute Galois group Gal(Q) of the field Q (the prime field in charateristic zero, as Grothendieck likes to put it).

つづく
0364132人目の素数さん
垢版 |
2024/04/20(土) 20:05:07.85ID:b3gJjkjy
つづき

A significant bifurcation occurred in Deligne’s 1989 paper on Le groupe fondamental de la droite projective moins trois points,in which the author brings in the rich toolbox of rational homotopy theory and motives (at least what we nowadays call mixed Tate motives),at the expense of using the prounipotent (not profinite) fundamental group. The ensuing version of the Grothendieck-Teichmüller group of course does not contain the Galois group anymore but this linearized version of the theory lends itself more easily to computations (e.g. those involving Multiple Zeta Values) and has become largely prevalent (including lately in deformation theory).

In this week long meeting we will discuss both versions (which could also be termed “linear” and “nonlinear”), including in particular an introduction to the profinite (nonlinear) version of the theory, which seems much closer to what Grothendieck initially had in mind and has been hitherto much less publicized. There will be mini-courses by subject experts of introductory nature for younger researchers, who were not exposed to these topics before.There will also be a few research talks by active researchers to explain the current state of the art in the subject of the meeting.

Accommodation will be provided for outstation participants at our on campus guest house.
ICTS is committed to building an environment that is inclusive, non discriminatory and welcoming of diverse individuals. We especially encourage the participation of women and other under-represented groups.
Eligibility Criteria: Senior Ph.D. students, postdocs, and faculties working on topics related to the theme of the meeting.
(引用終り)
0365132人目の素数さん
垢版 |
2024/04/20(土) 20:09:47.99ID:lgVZM1FC
This multi-volume set deals with Teichmüller theory in the broadest sense, namely, as the study of moduli space of geometric structures on surfaces, with methods inspired or adapted from those of classical Teichmüller theory. The aim is to give a complete panorama of this generalized Teichmüller theory and of its applications in various fields of mathematics.

The volumes consist of chapters, each of which is dedicated to a specific topic. The present volume has 19 chapters and is divided into four parts:

The metric and the analytic theory (uniformization, Weil–Petersson geometry, holomorphic families of Riemann surfaces, infinite-dimensional Teichmüller spaces, cohomology of moduli space, and the intersection theory of moduli space).
The group theory (quasi-homomorphisms of mapping class groups, measurable rigidity of mapping class groups, applications to Lefschetz fibrations, affine groups of flat surfaces, braid groups, and Artin groups).
Representation spaces and geometric structures (trace coordinates, invariant theory, complex projective structures, circle packings, and moduli spaces of Lorentz manifolds homeomorphic to the product of a surface with the real line).
The Grothendieck–Teichmüller theory (dessins d'enfants, Grothendieck's reconstruction principle, and the Teichmüller theory of the soleniod).
This handbook is an essential reference for graduate students and researchers interested in Teichmüller theory and its ramifications, in particular for mathematicians working in topology, geometry, algebraic geometry, dynamical systems and complex analysis.

The authors are leading experts in the field.
0366132人目の素数さん
垢版 |
2024/04/20(土) 20:11:57.70ID:b3gJjkjy
P.Lochakは、中村先生のホームページに3カ所出てくる

(参考)
http://www4.math.sci.osaka-u.ac.jp/~nakamura/selection.html
Articles on Anabelian Geometry

Y.Ihara, H.Nakamura:
``Some illustrative examples for anabelian geometry in high dimensions''
in `Geometric Galois Actions I' (L.Schneps, P.Lochak eds.)
London Math. Soc. Lect. Note Series 242 (1997), pp. 127--138.
http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/lion/INanabel.pdf

H.Nakamura:
``Galois representations in the profinite Teichmueller modular groups''
in `Geometric Galois Actions I' (L.Schneps, P.Lochak eds.)
London Math. Soc. Lect. Note Series 242 (1997), pp. 159--173.
http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/lion/Gaction.pdf

Galois-Teichmueller theory:
P.Lochak, H.Nakamura, L.Schneps:
"Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmueller group"
Math. J. Okayama Univ. 46 (2004), 39--75.
http://www4.math.sci.osaka-u.ac.jp/~nakamura/zoo/deer/_09_Lochak-Nakamura-Schneps.pdf
0367132人目の素数さん
垢版 |
2024/04/20(土) 20:32:56.24ID:lgVZM1FC
The Teichmüller space of a surface was introduced by O. Teichmüller in the 1930s. It is a basic tool in the study of Riemann's moduli spaces and the mapping class groups. These objects are fundamental in several fields of mathematics, including algebraic geometry, number theory, topology, geometry, and dynamics.

The original setting of Teichmüller theory is complex analysis. The work of Thurston in the 1970s brought techniques of hyperbolic geometry to the study of Teichmüller space and its asymptotic geometry. Teichmüller spaces are also studied from the point of view of the representation theory of the fundamental group of the surface in a Lie group
0368132人目の素数さん
垢版 |
2024/04/20(土) 22:59:53.93ID:b3gJjkjy
>>367
ありがとうございます
こういう重要ポイントをさらっとコピーできるのは、御大かな

さて、下記の動画がよさげです
(宇宙の説明は、間違った説明ですが、それ以外は)

https://www.youtube.com/watch?v=BC2zezyqIwA
宇宙際タイヒミューラー理論 JPアクチュアリーコンサルティング(JPAC)株式会社
JPアクチュアリーコンサルティング株式会社
2020/04/16

@user-sx2zr3rs4q
2 年前
いま宇宙際タイヒミラー理論呼んでいるところです。この動画の解説はよくわかります。有難うございます。IVを読み終わて、山下剛氏のABC予想のレポートを3分の一ぐらい読み、1を9割ぐらい読みIIを3分の1位読みIIIを半分弱読んでいます。この段階で星氏の解説や望月氏のレクチャーを読むと少しは納得いきます。私は頭が悪く数学者でもなく素人ですが若いころベーユやグロタンデークやセールの論文を仲間と読んだ経験しかありません。宇宙際タイヒミラー理論は、グロタンデーク宇宙を無限に格子状に並べて垂直方向はlog矢印で固定してるが水平方向は宇宙にかかわりのある矢印で結んでいて、何かに依存して振動しているみたいですね。ABC]予想を証明するためには、無限格子を4枚用意しているみたいですね。
0369132人目の素数さん
垢版 |
2024/04/20(土) 23:25:03.78ID:b3gJjkjy
>>368 補足
>宇宙際タイヒミラー理論は、グロタンデーク宇宙を無限に格子状に並べて垂直方向はlog矢印で固定してるが水平方向は宇宙にかかわりのある矢印で結んでいて

ここ、完全に望月さんのミスリードに乗せられています
・IUT最新文書は、下記2024年03月24日付けのものです
・なお、補足下記Mathlogで「前節で述べた通り本稿で考察する対象であるGrothendieck宇宙は,圏論を含む現代数学の多くを展開するにたる大きさを持つ集合である」
 ということです。なお正確には
 「Grothendieck宇宙は,圏論を含む現代数学の多くを展開するにたる大きさを持つ宇宙(集合とクラスのあつまり)である」でしょうね
 ”大きさを持つ集合”というと、パラドックスを誘導するのでまずいですね

<IUT最新文書>
https://www.kurims.kyoto-u.ac.jp/~motizuki/news-japanese.html
2024年03月24日 望月新一
 ・(過去と現在の研究)2024年4月に開催予定のIUGCの研究集会での講演の
  スライドを公開。https://www.kurims.kyoto-u.ac.jp/~motizuki/IUT%20as%20an%20Anabelian%20Gateway%20(IUGC2024%20version).pdf
P8
In this context, it is important to remember that, just like SGA,
IUT is formulated entirely in the framework of
“ZFCG”
(i.e., ZFC + Grothendieck’s axiom on the existence of universes),
especially when considering various set-theoretic/foundational
subtleties (?) of “gluing” operations in IUT (cf. [EssLgc],
§1.5,§3.8,§3.9, as well as [EssLgc],§3.10, especially the discussion of “log-shift adjustment” in (Stp 7)):
(引用終り)

https://ja.wikipedia.org/wiki/%E3%82%B0%E3%83%AD%E3%82%BF%E3%83%B3%E3%83%87%E3%82%A3%E3%83%BC%E3%82%AF%E5%AE%87%E5%AE%99
グロタンディーク宇宙
宇宙のアイデアは、アレクサンドル・グロタンディークが代数幾何において真のクラスを回避する方法として導入したことに起因する。
グロタンディーク宇宙は、すべての数学が実行可能な集合を与える(実際には、集合論のためのモデルを与える)。

https://mathlog.info/articles/130
Mathlog
サクラ
大学数学基礎
解説
Grothendieck宇宙のーと
Grothendieck宇宙の導入の意義:圏のサイズの問題
現代数学の基礎概念の一つに圏がある.この圏は次のように定義することができる.

Grothendieck宇宙の定義と基本性質
前節で述べた通り本稿で考察する対象であるGrothendieck宇宙は,圏論を含む現代数学の多くを展開するにたる大きさを持つ集合である.
0370132人目の素数さん
垢版 |
2024/04/21(日) 09:25:54.83ID:+2zd27AU
これいいね
四半世紀前だが、ここまで戻らないと、理解がついていかない
中村博昭先生の話は、分かり易い
”集中講義の機会をお世話くださった田口雄一郎氏”とありますが
田口雄一郎先生は、このころから遠アーベルのワールドの住人だったのですね(当時は北大か)

http://www4.math.sci.osaka-u.ac.jp/~nakamura/hokudai99/hokudai99.pdf
1999年度北大集中講義
レクチャーノート
ガロア・タイヒミュラー群の理論
中村博昭述
北海道大学数学講究録 No.65 2000

はしがき
このノートは、1999年6月7日〜6月11日に北海道大学で集中講義した内容に若干加筆してまとめたものである。
この講義の主なねらいは、代数曲線のモジュライ空間の基本群タイヒミュラーモジュラー群たちが、リーマン面の退化を通じて、多重な仕方で積み重なっている様子を、有理数体の絶対ガロア群の表現の言葉で記述することであった。
特に、代数曲線のモジュライ空間に関係する種々の副有限基本群におけるガロア表現が、その最も基本的な場合である射影直線マイナス3点の場合をうまく組み合わせることで具体的に記述できる、ということを説明した。
この一環としてタイヒミュラー幾何学のような位相幾何と代数幾何が交錯する世界の一面を、ガロア理論を通じて群論的な平易な言葉で描写することを試みた。
初日の談話会(§1)において、本講義の主題であるガロア・タイヒミュラー群を素朴な立場から説明するとともに、ここにおけるガロア表現を記述するために最近L.Schnepsとの共同研究において導入したリーマン面のキルト分解 のなす extended Hatcher およびグロタンディーク・タイヒミュラー群GTの精密化について紹介した。
そのあと、連続講義では一旦基礎的な話題に立ち戻り、次のような内容を論じた。
§2.射影直線マイナス3点の基本群における外ガロア表現とBelyiの定理とその意義。
§3.基本亜群とtangential base point概念の導入。またGrothendiek-Teichmuller群の定義と基本事項の紹介。
§4.極大退化曲線の形式近傍の具体的な構成とガロア表現のvan Kampen的貼り合わせについて。
§5.代数曲線のモジュライ空間の基本群とその位相幾何的な生成元(Dehn twist)へのガロア作用について、種数1の特別な場合に限定して例示。
 末尾に、講義で十分に立ち入ることの出来なかった詳細などを補うために、簡単な文献案内を追加した。
例外的なものを除き、出版されているものに限った。
もとより完全な文献リストを意図したものではなく、読者諸氏の参考の一助にとの思いから供するものに過ぎない。
集中講義の機会をお世話くださった田口雄一郎氏をはじめ、筆者の拙い講義に辛抱強く出席してくださった学生の皆さん、特にTeXで記録を作成して下さった大溪幸子、長谷部寛之、林真也、山上敦士の諸氏のお力添えがなければ、このノートは決して完成いたしませんでした。
心より感謝申し上げます。平成12年5月中村博昭都立大・理
0371132人目の素数さん
垢版 |
2024/04/21(日) 09:52:51.70ID:+2zd27AU
>末尾に、講義で十分に立ち入ることの出来なかった詳細などを補うために、簡単な文献案内を追加した。

文献案内がいい
岩澤健吉先生から始るのか!
伊原康隆先生や
P.Lochak先生も出てきます

http://www4.math.sci.osaka-u.ac.jp/~nakamura/hokudai99/hokudai99.pdf
参考文献
本文中に引用した、基本群とガロア群に関する次の教科書は、基礎的な事項から正確に学べる大変有用な書物です。
[岩澤]岩澤健吉,『代数函数論増補版』 岩波書店1952

数論的基本群の組織的研究は、Grothendiek,Deligneそしてわが国の伊原康隆先生により、独立の観点から進められてきました。
組紐群の導入により、俄然トポロジーとの接近が急速になった契機としては、次のDrinfeldによる論文が重要でした。

その後、世界中の研究者の注目を集めるようになった数論的基本群について、Grothendiekに近い立場からL.Schneps,P.Lochakが中心となり国際研究集会が催されるようになりました。次の報告集は今では基本的な文献となっています。
0372132人目の素数さん
垢版 |
2024/04/21(日) 10:50:09.47ID:+2zd27AU
用語 宇宙(universe)
に対する混乱は、2002年8月頃の下記文書でも見られる
しかし、用語 宇宙(universe)の混乱はあっても、それはIUTの数学としての成否に直結しない
むしろ、アイデアの飛翔をうながしたかもしれない

(参考)
https://www.kurims.kyoto-u.ac.jp/~motizuki/papers-japanese.html
望月新一論文
講演のアブストラクト・レクチャーノート
[4] Anabelioidの幾何学とTeichmuller理論. PDF
https://www.kurims.kyoto-u.ac.jp/~motizuki/Anabelioid%20no%20kikagaku%20to%20Teichmuller%20riron%20(Muroran%202002-08).pdf
Anabelioidの幾何学とIbichmiiller理論
望月新一(京都大学数理解析研究所)
2002年8月

§1 P進双曲曲線を他宇宙から見る
我々が通常使用している、スキームなどのような集合論的な数学的対象は、実
は、磯論を開始した際に採用された「集合論」、つまり、あるGrothendieck宇宙の
選択に本質的に依存しているのである。この「1つの集合論」の採用は、もっと具体
的にいうと、
「あるラベル(=議論に登場する集合やその元の名前)のリストの選択」
と見ることもできる。すると、次のような問い掛けが生じる:
問:スキームのような集合論的幾何的対象を別の集合論的宇宙から見たら、
つまり、たまたま採用したラベルたちを取り上げてみたら、その幾何的対
象はどのように見えるか?

このように、宇宙を取り替えたりするような作業を行なう際、別の宇宙にも通じる
数学的対象を扱うようにしないと、議論は意味を成さなくなるが、(本稿では省略す
るが)様々な理由によって、園は、そのような性質を満たす。一般に、違う宇宙にも
通じるものをintcr-universalと呼ぶことにするが、「圏」というものは、最も基本的か
つ原始的なinter-universalな数学的対象ということになる。
さて、スキームを他宇宙から見たらどんな風に見えるか、という問いに答える
ためには、スキームを、inter-universalに表現する必要がある。これには様々な手法
があるが、本稿では、次のものを取り上げる(別の手頃な例については、IMzk7]を
参照):

ここでは、B(G)を、1つの幾何的対象とみなし、anabelioidと呼ぶことにする。
実は、B( G)は、「連結なanabelioid」になるが、一般には、複数の連結成分をもつ
anabelioidを扱うこともある(詳しくは、[Mzk8]を参照) 。

つづく
0373132人目の素数さん
垢版 |
2024/04/21(日) 10:50:38.53ID:+2zd27AU
つづき

https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99_(%E6%95%B0%E5%AD%A6)
宇宙 (数学)
数学、とりわけ集合論や数学基礎論における宇宙とは、特定の状況において考察される実体のすべてを元として含むような類のことである。このアイデアにはいくつものバージョンがあるため、項目を分けて説明する。

ある特定の文脈において
おそらく最も単純なバージョンは、研究対象が特定の集合で閉じている限り、任意の集合が宇宙であるというものである。 もし研究対象が実数として形式化されていれば、実数の集合である実数直線 R は考察下において宇宙になりうる。 これは1870年代から1880年代にかけてゲオルク・カントールが実解析の応用として、初の現代的な集合論と濃度の開発に用いた宇宙である。 カントールが当時興味を持っていた集合は、R の部分集合だった。

この宇宙の概念はベン図の使用に反映されている。 ベン図において、作用は伝統的に宇宙 U を表す大きな四角形の内部に生じる。 一般的に集合が U の部分集合であれば、それは円によって表現される。集合 A の補集合は A の円の外側の四角形の部分によって与えられている。

通常の数学
与えられた X (カントールの場合には、 X = R) の部分集合を考えれば、宇宙は X の部分集合の集合の存在を要請する。 (例えば、X の位相は X の部分集合の集合である。) X の様々な部分集合の集合は、それ自体は X の部分集合にならないが、代わりに X の冪集合 PX の要素はX の部分集合になる。 これに続き、研究対象は宇宙が P(PX) になるような場合における X の部分集合の集合などを構成する。

集合論
SNは通常の数学の宇宙であるという主張に正確な意味を与えることは可能である。すなわち、それはツェルメロ集合論のモデルである。
Vi のすべての和集合は次のようにフォン・ノイマン宇宙 V となる
これらの和集合 V は真の類である。 置換公理と同時期にZFにを加られた正則性公理は、すべての 集合が V に属することを主張している。

クルト・ゲーデルの構成可能集合 L と構成可能公理
到達不能基数は ZF のモデルと加法性公理を生じ、さらにグロタンディーク宇宙の集合の存在と等価である。

圏論
圏論に歴史的につながる宇宙への別のアプローチの方法がある。これはグロタンディーク宇宙と呼ばれる。大まかに言えば、グロタンディーク宇宙とは集合論の通常実行されるすべての操作を内部にもつ集合である。
(引用終り)
以上
0374132人目の素数さん
垢版 |
2024/04/21(日) 12:40:47.40ID:+2zd27AU
グロタンディークのガロア理論
むずいが、この程度は「常識だ!」と言えないと、IUTは分らない
むずいが勉強中です

https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E5%9C%8F
ガロア圏
ガロア圏(ガロアけん、Galois category)とは古典ガロア理論が展開される、いくつかの公理を満たす圏である。
元来古典ガロア理論および位相幾何学における基本群の理論の類似点が指摘されていたが、アレクサンドル・グロタンディークがガロア理論の成り立つ公理系を明言し、一般的なガロア圏の理論を構成した。古典ガロア理論および基本群の理論はこの理論の基本的な例になる。この理論はグロタンディークのガロア理論と呼ばれることもある。

ガロア圏成立の経緯
グロタンディークのガロア理論、ガロア圏は、体のガロア理論の抽象的なアプローチであり、1960年頃に開発され、代数幾何学の設定おいて代数トポロジー(algebraic topology)の基本群の研究方法をもたらした。体論の古典的設定の中で、1930年代頃から標準的となっている線型代数を基礎としたエミール・アルティン(Emil Artin)の理論に代わる見方をもたらした。

アレクサンドル・グロタンディーク(Alexander Grothendieck)のアプローチは、固定された射有限群 G に対して有限 G-集合の圏を特徴付ける圏論的性質に関係している。例えば、G として ˆZ と表記される群が考えられる。この群は巡回加法群 Z/nZ の逆極限である。あるいは同じことであるが、有限指数の部分群の位相に対する無限巡回群の完備化である。すると、有限 G-集合は G が商有限巡回群を通して作用している有限集合 X であり、X の置換を与えると特定することができる。

上の例では、古典的なガロア理論との関係は、
ˆZ を任意の有限体 F 上の代数的閉包 F の射有限ガロア群 Gal(F/F) と見なすことである。すなわち、F を固定する F の自己同型は、 F 上の大きな有限分解体をとるように、逆極限により記述される。幾何学との関係は、原点を取り除いた複素平面内の単位円板の被覆空間として見なすことができる。複素変数 z と考えると、円板の zn 写像により実現される有限被覆は、穴あき円板の基本群の部分群 n.Z に対応する。

SGA1[1]で出版されたグロタンディークの理論は、どのようにして G-集合の圏をファイバー函手(fibre functor) Φ から再構成するかが示されている。ファイバー函手は、幾何学的な設定では、(集合として)固定されたベースポイント上の被覆のファイバーを持つ。実際、タイプ
G ≅ Aut(Φ)
として証明された同型が存在する。右辺は、Φ の自己同型群(自己自然変換)である。集合の圏への函手をもつ圏の抽象的な分類は、射有限な G に対する G-集合の圏を認識することによって与えられる。

どのようにしてこれを体の場合に適用するかを知るには、体のテンソル積を研究する必要がある。
トポスの理論の中の体のテンソル積は、原子的トポス(atomic topos)の理論の全体となる。
0375132人目の素数さん
垢版 |
2024/04/21(日) 13:14:40.98ID:+2zd27AU
これいいね
この程度が私には合っているかも

https://www.kurims.kyoto-u.ac.jp/~kenkyubu/kokai-koza/H18-tamagawa.pdf
成18年度(第28回)数学入門公開講座テキスト(京都大学数理解析研究所,平成18年7月31日〜8月3日開催)
ガロア理論とその発展
玉川安騎男

§0. はじめに
ガロア理論とは、Evariste Galois (1811-1832) によって創始された、代数方程式の解の置換に関する理論です。その基本定理は「体」と「群」という代数学の基本概念を用いて述べることができ、現在でも整数論の研究の中で最も基本的な道具の1つであり続けています。

最後に、遠アーベル幾何など、現代の整数論・数論幾何におけるガロア理論の展開についても紹介したいと思います。

5.1. 無限次ガロア理論
5.2. 絶対ガロア群
任意の体Kに対して、Kの最大ガロア拡大体Ksepが(K上の同型をのぞいて一意的に)存在し、任意のガロア拡大L/Kは、Ksep/Kの中間拡大とみなすことができます。KsepはKの「分離閉包」(あるいは「分離的代数閉包」)として定義され、Kが完全体のとき(例えばKが有理数体Qの拡大体のとき)には、KsepはKの「代数閉包」Kと一致します。GK =Gal(Ksep/K)をK の絶対ガロア群と言います。これは、体Kから決まる重要な群で、Kのさまざまな情報を含んでおり、今日の整数論・数論幾何学における最も基本的な道具の一つとなっています。特に、有理数体の絶対ガロア群GQは、それ自身が整数論の重要な研究対象です。現代の整数論のかなりの部分は、GQのさまざまな観点からの研究とみなせると思います。

5.3. ノイキルヒ・内田の定理
ガロア理論の基本定理は、ガロア対応により、体の拡大の様子が群の言葉で完全に記述できることを示しています。
しかし、そこに現れる体は、あくまで固定された一つの体の拡大体ばかりです。
遠アーベル幾何の精神は、一種の絶対的なガロア理論であり、ある種の体に対しては、体そのものの様子を群の言葉で完全に記述できるだろうという考えです。
特に、一つの体だけでなく、二つの異なる体の上のガロア群の群論的な比較という問題を含みます。
次のノイキルヒ・内田の定理(の弱形)は、遠アーベル幾何の典型的な例を与えています。
定義. Qの有限次拡大体を代数体と言う。
定理. K1, K2を代数体とする。この時、K1 K2(体として同型)⇐⇒ GK1 GK2(位相群として同型)
通常のQ上の(無限次)ガロア理論の帰結として出るのは、K1 K2 ⇐⇒ GK1とGK2 がGQ内で互いに共役
であり、GK1 ,GK2 はあくまでGQの部分群としてしか見ていません。
その意味で、あくまでQ上の相対的なガロア理論であると言えます。
一方、ノイキルヒ・内田の定理では、GK1 ,GK2 を抽象的な(位相)群として扱っており、GQの部分群として見ているわけではありません。
この意味で、絶対的なガロア理論と言うことができます。

つづく
0376132人目の素数さん
垢版 |
2024/04/21(日) 13:15:07.75ID:+2zd27AU
つづき

5.4. スキームの基本群と遠アーベル幾何
前節で「絶対的ガロア理論」という遠アーベル幾何の精神について、例を挙げて説明しましたが、なぜ「幾何」なのか、なぜ「遠アーベル」なのか、ということについては説明しませんでした。
以下これについて説明して本稿を終わりたいと思います。
体の一般化として、環という概念があります。体の定義の中で、除法(÷)に関する部分(及び1=0という条件)を全て削除したものが環の定義になります。(正確には、これは「可換環」の定義ですが、ここでは可換環を単に環と呼ぶことにします。)つまり、環とは、加法、減法、乗法が自由にできるような集合のことを言います。体のほか、整数環Zや多項式環K[x1,...,xn]、K[x]などが環の例になります。環の典型的な現れ方として、与えられた空間Xの上の(適当な条件を満たす)関数全体のなす環があります。この場合、関数の値の和、差、積を考えることにより、関数の和、差、積を定義します。(1,0は、それぞれ恒等的に値1,0を取る関数として定義します。)
実は、任意の環はこのようにして得られることが知られています。より正確に言うと、与えられた環Rに対し、アフィンスキームと呼ばれるある種の空間Spec(R)が定まり、Rは空間Spec(R) 上の正則関数全体のなす環と自然に同一視されます。

更に、環を考えることとアフィンスキームを考えることは本質的に同等であることが知られています。
一般のスキームは、アフィンスキームをはり合わせることにより定義されます。1950年代後半にグロタンディークによって定義されたこのスキームは、代数多様体(≈多項式で定義される図形)の概念を大きく一般化するもので、現在の代数幾何学・数論幾何学の基礎をなす概念です。グロタンディーク自身により、体のガロア理論は、スキームのガロア理論へと一般化されました。この理論で体の絶対ガロア群に当たるものが、スキームの基本群です。絶対ガロア群は、与えられた体の(有限次分離)拡大体全体を統制する副有限位相群でしたが、基本群は、与えられたスキームの(有限エタール)被覆全体を統制する副有限位相群です。スキームの基本群は、通常の位相幾何(トポロジー)で扱う位相空間の基本群の代数的(ないし代数幾何的)な類似と見ることができます。
1980年代初頭、グロタンディークは、遠アーベル幾何という新しい幾何を提唱しました。その基本的な発想の一つは、遠アーベルスキームと呼ばれるある種のスキームの幾何は、その(アーベル群から程遠い)基本群によって完全に決定されるだろう、というものです。グロタンディークの提唱した形での遠アーベル幾何は、遠アーベルスキームの一般的な定義が見つかっていないなど、理論的にはまだまだ発展途上の状態ですが、既にいくつもの重要な結果が得られています。例えば、ノイキルヒ・内田の定理は、(グロタンディークが遠アーベル幾何を提唱する以前の結果ですが)遠アーベル幾何における一つの基本的な結果となっています。また、近年では、代数曲線やそのモジュライ空間の遠アーベル幾何の研究が、(本研究所を中心に)さまざまな角度から進められ、興味深い結果がいくつも得られています。このように、19世紀前半に生まれたガロア理論は、現代もなお強い生命力を持って進化しています。

(引用終り)
以上
0377132人目の素数さん
垢版 |
2024/04/21(日) 14:46:59.61ID:+2zd27AU
これいいね

https://ja.wikipedia.org/wiki/%E7%B5%B6%E5%AF%BE%E3%82%AC%E3%83%AD%E3%82%A2%E7%BE%A4
絶対ガロア群
体 K の絶対ガロア群 GK(ぜったいガロアぐん、英: absolute Galois group)とは、K の分離閉包 Ksep の K 上のガロア群のことである。これは、K の代数的閉包の自己同型のうちで K を固定するもの全てから成る群と一致する。絶対ガロア群は副有限群であり、内部自己同型による違いを除いて well-defined である。

K が完全体であれば Ksep は K の代数的閉包 Kalg と等しい。K が標数0の場合や、K が有限体の場合がこれにあたる。


・代数的閉体の絶対ガロア群は単位元のみからなる自明な群である。
・実数体の絶対ガロア群は複素共役と恒等写像からなる位数2の巡回群である。これは、複素数体 C が 実数体 R の分離閉包であり、[C:R] = 2 であることから分かる。
・有限体 K の絶対ガロア群は次の群
 𝑍^=lim ←𝑍/𝑛𝑍
と同型である(記号については射影極限参照)。フロベニウス自己同型 Fr は GK の標準的な位相的生成元である。
Fr は、q を K の元の数とすると、Fr(x) = x^q (x は K^alg の元)で定義される写像である。
複素数体上の有理関数体の絶対ガロア群は自由副有限群である。
これはリーマンの存在定理に起源を持つ定理で、アドリアン・ドゥアディ(英語版)により証明された[1]。
・より一般に、任意の代数的閉体 C に対して、有理関数体 K = C(x) の絶対ガロア群は自由でその階数は C の濃度に等しいことが知られている。これはデイヴィッド・ハーバター(英語版)[訳語疑問点]とフロリアン・ポップにより証明され、のちにダン・ハラン(英語版)[訳語疑問点]とモシェ・ジャーデン(英語版)[訳語疑問点]により代数的な方法で別証明が与えられた[2][3][4]。
・K を p 進数体 Qp の有限次拡大とする。p ≠ 2 であれば、この体の絶対ガロア群は [K:Qp] + 3 個の元で生成され、またその生成元と関係式も完全に知られている。これはウーヴェ・ヤンセン(英語版)とケイ・ヴィンベルグ(英語版)[訳語疑問点]による結果である[5][6]。p = 2 の場合にもいくつかの結果があるが、Q2 に対してはその構造は知られていない[7]。
・総実な代数的数全ての体の絶対ガロア群が決定されている[8]。
未解決問題
・有理数体の絶対ガロア群を直接的に記述する方法が知られていない。有理数体の絶対ガロア群の元で他の元と区別できるよう名前が付けられているのは単位元と複素共役だけである[9]。ベールイの定理によりこの絶対ガロア群はグロタンディークの子供のデッサン(曲面上の地図)に忠実に作用するので、代数体のガロア理論を"見る"ことはできる。
・有理数体の最大アーベル拡大 K の絶対ガロア群は自由副有限群であろうと予想されている(シャファレヴィッチの予想)[10]。

https://en.wikipedia.org/wiki/Absolute_Galois_group
Absolute Galois group
0378132人目の素数さん
垢版 |
2024/04/21(日) 16:00:20.51ID:+2zd27AU
これいいね
Florian Pop先生、さすがですね

https://swc-math.github.io/aws/2005/notes.html
Arizona Winter School 2005
Florian Pop: “Anabelian phenomena in arithmetic and geometry”
Course description
Course notes
Video:
Lecture 1: video
Lecture 2: video
Lecture 3: video
Lecture 4: audio
Course notes https://swc-math.github.io/aws/2005/05PopNotes.pdf

PART I: Introduction and motivation The term “anabelian” was invented by Grothendieck, and a possible translation of it might be “beyond Abelian”.
The corresponding mathematical notion of “anabelian Geometry” is vague as well, and roughly means that under certain “anabelian hypotheses” one has:
∗ ∗ ∗Arithmetic and Geometry are encoded in Galois Theory ∗ ∗ ∗
It is our aim to try to explain the above assertion by presenting/explaining some results in this direction.
For Grothendieck’s writings concerning this the reader should have a look at [G1], [G2].

PART II: Grothendieck’s Anabelian Geometry The natural context in which the above result appears as a first prominent example is Grothendieck’s anabelian geometry, see [G1], [G2]. We will formulate Grothendieck’s anabelian conjectures in a more general context later, after having presented the basic facts about ´etale fundamental groups. But it is easy and appropriate to formulate here the so called birational anabelian Conjectures, which involve only the usual absolute Galois group.

P22
The result above by Mochizuki is the precursor of his much stronger result concerning hyperbolic curves over sub-p-adic fields as explained below.

PART III: Beyond Grothendieck’s anabelian Geometry

References
Ihara, Y., On beta and gamma functions associated with the Grothendieck-Teichmller group II, J. reine angew. Math. 527 (2000), 1–11.
Mochizuki, Sh., The profinite Grothendieck Conjecture for closed hyperbolic curves over number fields, J. Math. Sci. Univ Tokyo 3 (1966), 571–627.
Mochizuki, The absolute anabelian geometry of hyperbolic curves, Galois theory and modular forms, 77–122, Dev. Math., 11, Kluwer Acad. Publ., Boston, MA, 2004.
Nagata, M., A theorem on valuation rings and its applications, Nagoya Math. J. 29 (1967), 85–91.
Nakamura, H., Galois rigidity of the ´ etale fundamental groups of punctured projective lines, J. reine angew. Math. 411 (1990) 205–216.
0379132人目の素数さん
垢版 |
2024/04/21(日) 19:40:26.47ID:+2zd27AU
ホッジシアター(ホッジ劇場)とは

https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99%E9%9A%9B%E3%82%BF%E3%82%A4%E3%83%92%E3%83%9F%E3%83%A5%E3%83%A9%E3%83%BC%E7%90%86%E8%AB%96
宇宙際タイヒミュラー理論

理論の範囲
遠アーベル的な復元、変形手順のインフラストラクチャは、Θリンクやlogリンクなど、いわゆるホッジ劇場間の特定のリンクによってデコードされる[66]。
これらのホッジ劇場は、IUTの2つの主要な対称性を使用する。乗法演算と加法幾何学である。ホッジ劇場は、アデールやイデールなどの古典的オブジェクトをグローバル要素に関連して一般化し、一方で、望月のホッジ・アラケロフ理論に登場する特定の構造を一般化する。劇場間のリンクは、環またはスキーム構造と互換性がなく、従来の数論幾何学の外部で実行される。 ただし、それらは特定の群構造と互換性があり、絶対ガロア群や特定のタイプの位相群はIUTで基本的な役割を果たす。関数性の一般化である多重放射性の考慮事項は、3つの穏やかな不確定性を導入する必要があることを意味している[66]。

https://ja.ユアペディア.org/wiki/%E5%AE%87%E5%AE%99%E9%9A%9B%E3%82%BF%E3%82%A4%E3%83%92%E3%83%9F%E3%83%A5%E3%83%A9%E3%83%BC%E7%90%86%E8%AB%96
宇宙際タイヒミュラー理論
ホッジ舞台[編集]
まず、初期テータ情報が与えられる。
初期テータ情報とは、
・数体Fの代数的閉包をFで割った剰余体
・F上の楕円曲線X_F
・5以上の素数L
・K上の双曲線
・楕円曲線X_Fのモジュライの体における付値の集合V_mod
・わるい還元をもつ楕円曲線における付値の集合V_mod^bad
の組のことである。
ことなる素数Lや体Fごとに初期テータ情報は無数に存在し、 特殊な添え字の理論によってラベルがつけられる。 テータ橋梁がこのラベルを参考にことなる初期テータ情報の関連付けを行う。 テータ橋梁が関連付けるのはテータ情報から出現する素数ストリップのいくつかの組で、 この射の集まりのことをホッジ舞台とよぶ。
0380132人目の素数さん
垢版 |
2024/04/21(日) 19:59:39.99ID:+2zd27AU
ホッジシアター(ホッジ劇場)とは (2)
https://www.kurims.kyoto-u.ac.jp/~yuichiro/introduction_to_inter-universal_teichmuller_theory.pdf
宇宙際Teichm¨uller 理論入門(Introduction to Inter-universal Teichm¨uller Theory)
By星裕一郎(Yuichiro Hoshi)

謝辞
本稿のからまでの部分は年月に京都大学数理解析研究所で行われた研究集会宇宙際タイヒミューラー理論の検証と更なる発展での筆者による講演数体の単遠アーベル的復元の内容の一部をまとめて更に説明を付け加えたものでありそして本稿のからまでの内容をもとに年月に九州大学の数論幾何学セミナーにおいて宇宙際理論入門という題目の講演を行いましたこれら講演の機会を与えてくださった望月新一先生田口雄一郎先生にお礼申し上げます

§20.加法的Hodge劇場
§23.θHodge劇場
§25.乗法的Hodge劇場
§26.Hodge劇場と対数リンク

P3
・§13から§20:テータ関数に関わる局所理論やその大域化の説明、特に、加法的/幾何学的な対称性が重要な役割を果たす加法的Hodge劇場の構成の説明
・§21から§25:数体の復元に関わる理論の説明、特に、乗法的/数論的な対称性が重要な役割を果たす乗法的Hodge劇場の構成の説明
・§26:最終的なHodge劇場の構成の説明
0381132人目の素数さん
垢版 |
2024/04/21(日) 20:15:49.50ID:+2zd27AU
ホッジシアター(ホッジ劇場)とは (3)
https://www.kurims.kyoto-u.ac.jp/~yuichiro/introduction_to_inter-universal_teichmuller_theory_continued.pdf
続・宇宙際Teichm¨uller 理論入門(Introduction to Inter-universal Teichm¨uller Theory, Continued)
By星裕一郎(Yuichiro Hoshi)

謝辞
本稿のそれぞれ§2と§3,§7と§16と§17と§18,§1と§4と§5は
2015年12月に京都大学数理解析研究所で行われた研究集会
"代数的整数論とその周辺2015”
での筆者による連続講演宇宙際理論入門の
第1講演,第2講演,第3講演
の内容の一部をまとめて更に説明を付け加えたものです
この連続講演の機会を与えてくださったプログラム委員の高橋浩樹先生大野泰生先生津嶋貴弘先生にお礼申し上げます

目次
§1.初期θデータとHodge劇場
§4.Hodge劇場の加法的対称性
§5.Hodge劇場の乗法的対称性
0382132人目の素数さん
垢版 |
2024/04/26(金) 15:48:16.07ID:em70EpiX
再録
https://rio2016.5ch.net/test/read.cgi/math/1712989377/190-195
山下剛のオモチャのたとえでフーリエ変換と同じ発想でいくのだろ。
https://www.kurims.kyoto-u.ac.jp/~motizuki/Uchuusai%20ni%20tsuite%20no%20FAQ.pdf
入れものにいれたぼやけた像でも、NMRなどではフーリエ変換の積算回数で、ぼやけのS/N比をクリアにしていく。

>入れものにいれたぼやけた像でも、NMRなどではフーリエ変換の積算回数で、ぼやけのS/N比をクリアにしていく。

あ、そのフーリエ変換の例えは分かり易い
同意です
フーリエ変換を、宇宙と宇宙の変換とは言わない
普通の関数の世界をフーリエ変換で別の世界に写すようなこと(またその逆変換)だと思う
0383132人目の素数さん
垢版 |
2024/04/26(金) 15:51:30.07ID:em70EpiX
再録
https://rio2016.5ch.net/test/read.cgi/math/1712989377/196-197
問題なのはその“ぼやけた数論”とは何か、どう定義するんかって話

>問題なのはその“ぼやけた数論”とは何か、どう定義するんかって話

まさにまさに
下記”blurring”(ぼやけ)がSS文書の論点です
望月氏の”blurring”(ぼやけ)については、SCHOLZE氏は「訳わからん説明だ」みたいな扱い
(わざと、”blurring”を強調したとしか思えない書き方です)

ところで、”blurring”はおそらく 星氏の 宇宙際Teichm¨uller 理論入門(下記)
§10. 軽微な不定性 P113 (Ind1),(Ind2), (Ind3)と関連していると思われます
(ですが、ここから先は私にはさっぱりですので、各自におまかせします)

(参考)
https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf
Whyabc is still a conjecture PETER SCHOLZE AND JAKOB STIX Date: July 16, 2018.

P10
The conclusion of this discussion is that with consistent identifications of copies of real numbers, one must in (1.5) omit the scalars j^2 that appear, which leads to an empty inequality.
We voiced these concerns in this form at the end of the fourth day of discussions.
On the fifth and final day,

Mochizuki tried to explain to us why this is not a problem after all.
In particular, he claimed that up to the “blurring” given by certain indeterminacies the diagram does commute;
it seems to us that this statement means that the blurring must be by a factor of at least O(l^2) rendering the inequality thus obtained useless.
(google訳)
望月氏は、結局のところ、なぜこれが問題にならないのかを説明しようとしました。
特に、特定の不確定性によって与えられる「ぼやけ」までは、図は可換であると彼は主張した。
このステートメントは、ぼかしは少なくとも O(l^2) 倍でなければならず、こうして得られた不等式を役に立たなくすることを意味しているように私たちには思えます。

https://eow.alc.co.jp/search?q=blurring
英辞郎 - アルク
blurring の意味・使い方・読み方
名 〔輪郭などの〕ぼけ
形 〔輪郭などが〕ぼやけた、にじんだ

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244783/1/B76-02.pdf
RIMS Kˆokyˆuroku Bessatsu B76 (2019), 79–183
宇宙際Teichm¨uller 理論入門 星裕一郎
§10. 軽微な不定性
この“ある軽微な不定性”は3つの部分(Ind1),(Ind2), (Ind3) からなり,
§3 の後半で導入した用語を用いますと,
(Ind1) は単解的なエタール輸送不定性,
(Ind2) は単解的なKummer 離脱不定性,
(Ind3) は正則的な Kummer 離脱不定性です.
0384132人目の素数さん
垢版 |
2024/04/26(金) 16:23:23.95ID:em70EpiX
(Ind 1,2,3)について:SCHOLZE氏は
下記では まじめに取り上げていないようです

(参考)
https://www.math.uni-bonn.de/people/scholze/WhyABCisStillaConjecture.pdf
Whyabc is still a conjecture PETER SCHOLZE AND JAKOB STIX Date: July 16, 2018.

P9
2.2. Proof of [IUTT-3, Corollary 3.12].
As we indicated earlier, there is no clear distinction between abstract and concrete pilot objects in Mochizuki’s work,
so it is argued in [IUTT-3, Corollary 3.12] that the multiradial algorithm [IUTT-3, Theorem 3.11]*12 implies that up to certain indeterminacies, e.g. (Ind 1,2,3) (without which the conclusion would be obviously false),
this becomes an identification of concrete Θ-pilot objects and concrete q-pilot objects (encoded via their action on processions of tensor packets of log-shells), and then the inequality follows directly.
注)
*12
We pause to observe that with the simplifications outlined above, such as identifying identical copies of objects along the identity, the critical [IUTT-3, Theorem 3.11] does not become false, but trivial.

(google訳(一部手直し))
したがって、マルチラジアル アルゴリズム [IUTT-3、定理 3.11]*12 は、特定の不確定性 即ち (Ind 1,2,3) (これがなければ 結論は明らかに間違っています)があり、[IUTT-3、系 3.12] で 議論されています。
これは、具体的な Θ パイロット オブジェクトと具体的な q パイロット オブジェクト (ログ シェルのテンソル パケットの行列に対するアクションを介してエンコードされる) の識別となり、不等式が直接従います。
注)
*12
私たちは、ここで立ち止まって、アイデンティティに沿ってオブジェクトの同一のコピーを識別するなど、上で概説した単純化によって、重要な [IUTT-3、定理 3.11] が誤りではないが、trivialなものになることを観察します。
0385132人目の素数さん
垢版 |
2024/04/26(金) 16:32:44.91ID:em70EpiX
(Ind 1,2,3)について:原文は下記です

https://www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20III.pdf
望月新一
[3] Inter-universal Teichmuller Theory III: Canonical Splittings of the Log-theta-lattice. PDF NEW !! (2020-05-18)

P154
for the collection of data (a), (b), (c) regarded up to indeterminacies of the following two types:

(Ind1) the indeterminacies induced by the automorphisms of the procession of D-prime-strips Prc(n,◦DT);

(Ind2) for each vQ ∈ Vnon Q (respectively, vQ ∈ Varc Q ), the indeterminacies induced by the action of independent copies of Ism [cf. Proposition 1.2, (vi)] (respectively, copies of each of the automorphisms of order 2 whose orbit constitutes the poly-automorphism discussed in Proposition 1.2, (vii)) on each of the direct summands of the j+1 factors appearing in the tensor product used to define IQ(S± j+1;n,◦DvQ ) [cf. (a) above; Proposition 3.2, (ii)] —where we recall that the cardinality of the collection of direct summands is equal to the cardinality of the set of v ∈ V that lie over vQ.

(Ind3) as one varies m ∈ Z, the isomorphisms of (a) are “upper semicompatible”, relative to the log-links of the n-th column of the LGPGaussian log-theta-lattice under consideration, in a sense that involves certain natural inclusions “⊆” at vQ ∈ Vnon Q and certain natural surjections “↠” at vQ ∈ Varc Q —cf. Proposition 3.5, (ii), (a), (b), for more details.
0386132人目の素数さん
垢版 |
2024/04/26(金) 19:29:43.96ID:CEPjIAQZ
>>383

・星裕一郎 IUTT入門
>本稿には, 説明のための不正確な記述が多数存在します.
また, 当 然のことですが, 何か物事を説明する際, その説明の方法は一意的ではなく,
そして, “最 善なもの” というものも通常は存在しないと思います.
本稿で行われている解説は, あく まで, “ある時点での筆者が選択した方法” に
よる 1 つの解説に過ぎません. 別の方が本稿 のような解説を行えば,
まったく別の方法による解説が得られるでしょう.
あるいは, 筆 者が数年後に再びこの理論の解説を試みれば,
また別の方法による解説が得られるかもし れません.

>宇宙際 Teichmu ̈ller 理論の本格的な理解を目指すならば,
どうしても原論文の精読が不可欠である, という当たり前な事実を,
ここに指摘します.
0387132人目の素数さん
垢版 |
2024/04/26(金) 22:22:00.79ID:A7Cl6sKK
IUT入門 星裕一郎
玉川安騎男先生, 松本眞先生、安田正大先生、田口雄一郎先生、査読者
何人もの人の目を経たIUT入門だということを、理解しましょう!

https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/244783/1/B76-02.pdf
RIMS Kˆokyˆuroku Bessatsu B76 (2019), 79–183
宇宙際Teichm¨uller 理論入門
星裕一郎
P180

謝辞

そのセミナーを共に乗り切りそこでの数々の議論にお付き合いくださった玉川安騎男先生, 松本眞先生に感謝申し上げます. そして, 本稿に対していくつもの有益な指摘をくださった安田正大先生と査読者の方に感謝申し上げます.本稿の§1 から§3までの部分は2015年3月に京都大学数理解析研究所で行われた研究集会“宇宙際タイヒミューラー理論の検証と更なる発展”での筆者による講演“数体の単遠アーベル的復元”の内容の一部をまとめて更に説明を付け加えたものであり,そして, 本稿の§1から§8までの内容をもとに2015年6月に九州大学の数論幾何学セミナーにおいて“宇宙際Teichm¨uller 理論入門” という題目の講演を行いました. これら講演の機会を与えてくださった望月新一先生,田口雄一郎先生にお礼申し上げます.
0388132人目の素数さん
垢版 |
2024/04/27(土) 10:20:51.17ID:ow5Z8f7w
https://www.kurims.kyoto-u.ac.jp/~motizuki/papers-japanese.html
望月新一
講演のアブストラクト・レクチャーノート
[4] Anabelioidの幾何学とTeichmuller理論. PDF 2002年8月
https://www.kurims.kyoto-u.ac.jp/~motizuki/Anabelioid%20no%20kikagaku%20to%20Teichmuller%20riron%20(Muroran%202002-08).pdf
§1 p進双曲曲線を他宇宙から見る
 我々が通常使用している、スキームなどのような集合論的な数学的対象は、実は、艤論を開始した際に採用された「集合論」、つまり、あるGrothendieck宇宙の遷択に本質的に依存しているのである。
この「1つの集合論」の採用は、もっと具体的にいうと、
「あるラベル(=議論に登場する集合やその元の名前)のリストの選択」
と見ることもできる。すると、次のような問い掛けが生じる:
問:スキームのような集合論的幾何的対象を別の集合論的宇宙から見たら、
つまり、たまたま採用したラベルたちを取り上げてみたら、その幾何的対象はどのように見えるか?
このように、宇宙を取り替えたりするような作業を行なう際、別の宇宙にも通じる
数学的対象を扱うようにしないと、議論は意味を成さなくなるが、(本稿では省略す
るが)様々な理由によって、圏は、そのような性質を満たす。
一般に、違う宇宙にも通じるものをinter-universalと呼ぶことにするが、「圏」というものは、最も基本的か
つ原始的なinter-universalな数学的対象ということになる。
さて、スキームを他宇宙から見たらどんな風に見えるか、という問いに答えるためには、
スキームを、inter-universalに表現する必要がある。これには犠々な手法
があるが、本稿では、次のものを取り上げる(別の手頃な例については、[Mzk7]を
参照):
Et(X) =def {xの有限次エタール被覆の圏}
(ただし、xは、連結なネータ・スキームとする。)副有限群Gに対してB(G)を、
Gの連続な作用をもつ有限集合の圏、というふうに定義すると、Et(x)という圏は、
B(π1(X)) (ただし、π1(X)は、xの代数的基本群とする)と同値になる。
ここでは、B(G)を、1つの幾何的対象とみなし、anabelioidと呼ぶことにする。
(引用終り)

1)”スキームなどのような集合論的な数学的対象”とありますが、スキーム(概型)を圏論で扱うところに妙味があるのでは?
2)”艤論を開始した際に採用された「集合論」、つまり、あるGrothendieck宇宙の遷択に本質的に依存しているのである”も、なんか変です

(参考)
https://ja.wikipedia.org/wiki/%E6%A6%82%E5%9E%8B
概型
概型あるいはスキーム (英: scheme) とは、可換環に対して双対的に構成される局所環付き空間である。二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている
スキームを通じて圏論的に定義される様々な概念は、大きな威力を発揮する
0389132人目の素数さん
垢版 |
2024/04/27(土) 10:34:33.12ID:ow5Z8f7w
宇宙とは?

https://ja.wikipedia.org/wiki/%E5%AE%87%E5%AE%99_(%E6%95%B0%E5%AD%A6)
宇宙 (数学)
集合論や数学基礎論における宇宙とは、特定の状況において考察される実体のすべてを元として含むような類のことである。このアイデアにはいくつものバージョンがあるため、項目を分けて説明する。
ある特定の文脈において
おそらく最も単純なバージョンは、研究対象が特定の集合で閉じている限り、任意の集合が宇宙であるというものである。 もし研究対象が実数として形式化されていれば、実数の集合である実数直線 R は考察下において宇宙になりうる。 これは1870年代から1880年代にかけてゲオルク・カントールが実解析の応用として、初の現代的な集合論と濃度の開発に用いた宇宙である。 カントールが当時興味を持っていた集合は、R の部分集合だった。
この宇宙の概念はベン図の使用に反映されている。 ベン図において、作用は伝統的に宇宙 U を表す大きな四角形の内部に生じる
https://en.wikipedia.org/wiki/Universe_(mathematics)
Universe (mathematics)

https://ja.wikipedia.org/wiki/%E3%82%B0%E3%83%AD%E3%82%BF%E3%83%B3%E3%83%87%E3%82%A3%E3%83%BC%E3%82%AF%E5%AE%87%E5%AE%99
グロタンディーク宇宙
宇宙のアイデアは、アレクサンドル・グロタンディークが代数幾何において真のクラスを回避する方法として導入したことに起因する。
グロタンディーク宇宙は、すべての数学が実行可能な集合を与える(実際には、集合論のためのモデルを与える)。
https://en.wikipedia.org/wiki/Grothendieck_universe
Grothendieck universe

https://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A9%E3%83%B3%E3%83%BB%E3%83%8E%E3%82%A4%E3%83%9E%E3%83%B3%E5%AE%87%E5%AE%99
フォン・ノイマン宇宙

https://ja.wikipedia.org/wiki/%E6%A7%8B%E6%88%90%E5%8F%AF%E8%83%BD%E9%9B%86%E5%90%88
ゲーデルの構成可能集合(こうせいかのうしゅうごう、 constructible universe または Gödel's constructible universe)
https://en.wikipedia.org/wiki/Constructible_universe
Constructible universe
0390132人目の素数さん
垢版 |
2024/04/27(土) 10:56:24.81ID:ow5Z8f7w
渕野昌 下記の「グロタンディク宇宙」の説明が
分かり易い
望月先生の(グロタンディク)宇宙は、標準的な用語の使い方からずれている

https://fuchino.ddo.jp/index-j.html
渕野昌
https://fuchino.ddo.jp/misc/category-vers-sets-2020-x.pdf
圏論と集合論 23年1月22日
以下の文章は、現代思想2020年現代思想7月号「特集=圏論」に寄稿した論説の拡張版である。雑誌掲載版では紙数の制限などのために削除した部分も復活させている。また、投稿後/校正後の加筆訂正も含まれる。

4 グロタンディク宇宙 ・・11

「与えられたどんな順序数βよりも大きな順序数αで、Vαが⌜⌜ZFC⌝⌝を満たすようなものが存在する」という公理を集合論に付加して考えると、この体系はZFCより真に強いものとなるが、この体系では、次のようにして、小さい30)圏や、小さい圏からなる大きな圏27)を集合論の対象として捉えなおすことができる

グロタンディク宇宙は、このアイデアでの、「Vα|=⌜⌜ZFC⌝⌝となるVα」の特別な場合で、その存在の主張はこのようなVαの存在の主張よりずっと強くなるが、 反面、もう少し「通常の」数学の言葉で表現できる条件で規定できる集合の概念である。

実際には、大きいカテゴリーの議論を含むカテゴリー論は、ZFCの無矛盾性の強
さを超えずに集合論の中に組み込むことができる
レスを投稿する


ニューススポーツなんでも実況