X



トップページ数学
1002コメント350KB
フェルマー最終定理について
レス数が1000を超えています。これ以上書き込みはできません。
0001ID:1lEWVa2s
垢版 |
2019/10/02(水) 16:05:45.79ID:GlwbQM5q
一つの整数を二つの平方数の差で表すのスレ主です。
まあ、書きましょう。
名前は梅田悠祐で
(31104)’3+(1292966)’3=(1292972)’3
です。
0953日高
垢版 |
2020/07/18(土) 21:05:55.58ID:+buAyBh6
>951
> 「x=sw,y=tw,z=uw が x^p+y^p=(x+p^(1/(p-1)))^p の解である」
> の仮定をしても、
> 「x=s,y=t,z=u が x^p+y^p=(x+p^(1/(p-1)))^pの解である」
> は導けない
のですよね?

はい。
0955日高
垢版 |
2020/07/18(土) 21:08:32.87ID:+buAyBh6
>952
大丈夫?

どういう意味でしょうか?
0956132人目の素数さん
垢版 |
2020/07/18(土) 21:20:28.05ID:yBPjSixo
>>955
あなたは正常か?という意味です

>>947の解説部分を飛ばして質問しているから
同じ解説をする意味があるのか知りたいのです
0957132人目の素数さん
垢版 |
2020/07/18(土) 21:49:58.78ID:zCzVR+TU
>>941

> rが無理数の時、整数比となる解があるならば、有理数解があります。

あなたは、5/4,12/4,13/4と同じ比で、(3)を満たす、「5/4,12/4,13/4以外の」数の組 をあげることができなかったので、これはウソです。

s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})と同じ比で(3)を満たす、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})以外の数の組は、ありません。
0958132人目の素数さん
垢版 |
2020/07/18(土) 22:10:51.63ID:yBPjSixo
x^2+y^2=z^2=(x+r)^2でr=√2(無理数)に固定した場合に3:4:5の整数比
になる解(x,y,z)を探す

このような問題設定でまず考えたとして

日高が大丈夫なら>>947の前半部分からでも次のことが容易に理解できるでしょう

x^2+y^2=z^2=(x+r)^2でr=√2のときにyが有理数であると限定すると
3:4:5の比になる解(x,y={有理数},z)は存在しない
0959日高
垢版 |
2020/07/19(日) 06:53:25.78ID:e1tuQoUD
>956
>>947の解説部分を飛ばして質問しているから
同じ解説をする意味があるのか知りたいのです

どういう意味かわからないので、解説を、お願いします。
0960日高
垢版 |
2020/07/19(日) 07:24:03.15ID:e1tuQoUD
>952
> rが無理数の時、整数比となる解があるならば、有理数解があります。


x^2+y^2=(x+√2)^2
x=3√2/2、y=4√2/2、z=5√2/2
x^2+y^2=z^2
x=3、y=4、z=5

(3)には、同じ比の解は1組しかありません。
0961日高
垢版 |
2020/07/19(日) 07:28:07.44ID:e1tuQoUD
>958
x^2+y^2=z^2=(x+r)^2でr=√2のときにyが有理数であると限定すると
3:4:5の比になる解(x,y={有理数},z)は存在しない

そうですね。
0962日高
垢版 |
2020/07/19(日) 08:08:28.26ID:e1tuQoUD
【定理】p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
【証明】x^2+y^2=z^2を、z=x+rとおいてx^2+y^2=(x+r)^2…(1)とする。
(1)の両辺を積の形にすると、r{(y/r)^2-1}=2x…(2)となる。
(2)はr=2のとき、x^2+y^2=(x+2)^2…(3)となる。
(3)はrが有理数なので、yが有理数のとき、x,y,zは整数比となる。
(2)はr{(y/r)^2-1}=a2x(1/a)…(4)となる。
(4)はr=a2のとき、x^2+y^2=(x+a2)^2…(5)となる。
(5)の解は(3)の解のa倍となるので、rが有理数のときの解は、整数比となる。
∴p=2のとき、x^p+y^p=z^pは、整数比の解を持つ。
0963日高
垢版 |
2020/07/19(日) 08:09:36.30ID:e1tuQoUD
【定理】pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺を積の形にすると、r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、yが有理数のとき、x,y,zは整数比とならない。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}(1/a)…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は(3)の解のa^{1/(p-1)}倍となるので、rが有理数のときの解は整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
0964132人目の素数さん
垢版 |
2020/07/19(日) 08:46:12.17ID:dCEmvF6E
>>961
> そうですね。

だったら>>963に書いてあるように
> rが無理数なので、yが有理数のとき、x,y,zは整数比とならない。
から
> rが有理数のときの解は整数比とならない
を導けば

x^2+y^2=(x+2)^2の解はx^2+y^2=(x+√2)^2の解の
√2倍となるのでr=2(有理数)のときの解は整数比とならない
となるのは分かりますよね?

あなたが用いている論理では上の間違った結果を導くから
間違っているのです


r=√2(無理数)のときにyが有理数であると限定すると
3:4:5の比になる解(x,y={有理数},z)は存在しない

rを√2(無理数)倍したときに得られる正しい結論は

√2(無理数)倍してr=2(有理数)のときにyが無理数であると限定すると
3:4:5の比になる解(x,y={無理数},z)は存在しない

だから>>963から導かれる結論
> ∴pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
は正しくない
0965132人目の素数さん
垢版 |
2020/07/19(日) 08:55:44.77ID:toDp7JwQ
>>964の補足

>>963から導かれる結論
> ∴pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
は正しくない

正しくないのは>>963の論理がという意味なので

>>963では
> ∴pが奇素数のとき、x^p+y^p=z^pは、整数比の解を持たない。
を証明できない

と書いた方が良いですね
0966日高
垢版 |
2020/07/19(日) 09:59:02.04ID:e1tuQoUD
>964
x^2+y^2=(x+2)^2の解はx^2+y^2=(x+√2)^2の解の
√2倍となるのでr=2(有理数)のときの解は整数比とならない
となるのは分かりますよね?

わかりません。説明していただけないでしょうか。
0967132人目の素数さん
垢版 |
2020/07/19(日) 10:51:30.38ID:AHI2BywA
>>966

>>963
> rが無理数なので、yが有理数のとき、x,y,zは整数比とならない
から
> rが有理数のときの解は整数比とならない
を具体的な整数比で書き換えれば

rが無理数なのでyが有理数のときx,y,zは3:4:5の比にならない (***)
から
rが有理数のときの解は3:4:5の比とならない

r=√2のときにyが有理数であると限定すると
3:4:5の比になる解(x,y={有理数},z)は存在しない

において√2は無理数だから(***)を満たす

よってr=2(有理数)のときの解は3:4:5の比にならない
という結論が導かれる
0968日高
垢版 |
2020/07/19(日) 11:44:35.28ID:e1tuQoUD
>967
よってr=2(有理数)のときの解は3:4:5の比にならない
という結論が導かれる

これは、p=2のとき、の話でしょうか?
それとも、pが奇素数のとき、の話でしょうか?
0969132人目の素数さん
垢版 |
2020/07/19(日) 12:28:52.98ID:uYqdRirt
>>968
今挙げている具体例ではp=2のときなんだけれど
それは具体例(3:4:5の比)を簡単に示せるからであって

rが無理数のときにyが有理数であると限定することがポイント
だからpの値に依存しないですよ

>>963の方針だと
pに2を含めてもx^p+y^p=z^pは3:4:5の比となる解をもたない
も証明できちゃうことになるでしょ


rが無理数のときにyが有理数であると限定することがポイント
だからpの値に依存しないですよ
に少し付け加えると

p=2のときでもpが奇素数のときのどちらでも
r={無理数}を有理数にするにはrがどんな無理数でも無理数倍する
しかないでしょ
するとこのとき有理数に限定されているy={有理数}も
無理数倍するんだから必ず無理数になる
0971日高
垢版 |
2020/07/19(日) 12:50:13.94ID:e1tuQoUD
>969
>rが無理数のときにyが有理数であると限定することがポイント
だからpの値に依存しないですよ

例をあげてもらえないでしょうか?
0973日高
垢版 |
2020/07/19(日) 13:50:06.98ID:e1tuQoUD
>972
> p=2のときでもpが奇素数のときのどちらでも
以降に書いてあるでしょ

x^2+y^2=(x+√2)^2の場合
yを有理数とすると、解は、整数比となりませんが?

要領が、わかりません。
0974132人目の素数さん
垢版 |
2020/07/19(日) 14:31:34.29ID:XcWTAEWR
>>973
> x^2+y^2=(x+√2)^2の場合
> yを有理数とすると、解は、整数比となりませんが?

それで√2倍すると
r'=√2r=2となってy'=√2yは必ず無理数になるでしょ
yは有理数限定なのだから
そうするとr'=2 (x',y'={無理数},z')は整数比には決してならない

p=2のときでもpが奇素数のときのどちらでも
整数比となる可能性があるのは
r'={有理数} (x',y'={有理数},z')の場合か
r'={無理数} (x',y'={無理数},z')であるけれども
>>963では一切使用されていないので
整数比の解を持たないことを示すことはできない

あんたの間違った主張は>>963で整数比の解を持たないことが示される
ということだけど同じ間違った主張
> rが有理数のときの解は整数比とならない
を用いればp=2でも整数比の解を持たないことが示される
もちろんこれは誤った答えである
0975日高
垢版 |
2020/07/19(日) 15:09:44.02ID:e1tuQoUD
>974
r'={有理数} (x',y'={有理数},z')の場合か
r'={無理数} (x',y'={無理数},z')であるけれども

この意味がわかりません。
0976132人目の素数さん
垢版 |
2020/07/19(日) 15:39:30.39ID:3TNV/YqZ
>>975
r'={有理数} (x',y'={有理数},z')の場合
解(x',y',z')においてr'=z'-x'が有理数
y'が有理数

r'={無理数} (x',y'={無理数},z')の場合
解(x',y',z')においてr'=z'-x'が無理数
y'が無理数


整数比の解をs,t,uが0以外の整数であるとして
(x,y,z)=(s,t,u)とするとr=u-sは整数でy=tも整数

有理数倍するとr'={有理数} (x',y'={有理数},z')にしかならないし
無理数倍するとr'={無理数} (x',y'={無理数},z')にしかならない

よって整数比の解が存在するかどうかは
この2つの場合のみを調べれば良い

r'={有理数} (x',y'={無理数},z')の場合や
r'={無理数} (x',y'={有理数},z')の場合には
(x,y,z)=(s,t,u)を有理数倍したものあるいは無理数倍したもの
どちらも含まれることはない
0977日高
垢版 |
2020/07/19(日) 16:01:56.43ID:e1tuQoUD
>976
r'={有理数} (x',y'={有理数},z')の場合
解(x',y',z')においてr'=z'-x'が有理数
y'が有理数

どういう意味でしょうか?
0978132人目の素数さん
垢版 |
2020/07/19(日) 18:40:14.67ID:CCx++I/Y
>>957が無視されたようなので、書き直します。

> rが無理数の時、整数比となる解があるならば、有理数解があります。

嘘です。でたらめです。

(3)の解である5/4,12/4,13/4と同じ比で(3)の解になる数の組は、ほかにありません。

(3)の解であるs/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})と同じ比で(3)の解になる数の組は、ほかにありません
0979132人目の素数さん
垢版 |
2020/07/19(日) 20:03:48.08ID:3pNy2OWR
>>977
> どういう意味でしょうか?

>>975
> r'={有理数} (x',y'={有理数},z')の場合
> この意味がわかりません。

に対する答えで見たままだよ

> r'={有理数} (x',y'={有理数},z')の場合
> 解(x',y',z')においてr'=z'-x'が有理数
> y'が有理数

「r'={有理数}」の意味するところは「解(x',y',z')においてr'=z'-x'が有理数」
「(x',y'={有理数},z')」の意味するところは「y'が有理数」
0980日高
垢版 |
2020/07/19(日) 20:10:22.85ID:e1tuQoUD
>978
>(3)の解である5/4,12/4,13/4と同じ比で(3)の解になる数の組は、ほかにありません。

r=2のとき、これは、正しいです。

>(3)の解であるs/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})と同じ比で(3)の解になる数の組は、ほかにありません

pが奇素数のときは、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は、
(3)の解となりません。
p=2のときは、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は、
(3)の解となります。
0981日高
垢版 |
2020/07/19(日) 20:18:54.89ID:e1tuQoUD
>979
「r'={有理数}」の意味するところは「解(x',y',z')においてr'=z'-x'が有理数」
「(x',y'={有理数},z')」の意味するところは「y'が有理数」

これは、p=2のとき、でしょうか?
pが奇素数のときでしょうか?

これの元となる式は、どのような式でしょうか?
0982132人目の素数さん
垢版 |
2020/07/19(日) 20:25:11.84ID:CCx++I/Y
>>980

pが奇素数のときは、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は、
(3)の解となりません。

なんでわかるんです?
だれかが、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は(3)の解とならないと証明したんですか?
0983132人目の素数さん
垢版 |
2020/07/19(日) 20:35:29.46ID:3pNy2OWR
>>981
> これは、p=2のとき、でしょうか?
> pが奇素数のときでしょうか?

あのねえ
今の話の流れは>>974からの続きなんだよ

> p=2のときでもpが奇素数のときのどちらでも
> 整数比となる可能性があるのは
> r'={有理数} (x',y'={有理数},z')の場合か
> r'={無理数} (x',y'={無理数},z')であるけれども

> これの元となる式は、どのような式でしょうか?

式は関係ないですよ
>>976
> 整数比の解をs,t,uが0以外の整数であるとして
以降を読みなさい
0984132人目の素数さん
垢版 |
2020/07/19(日) 20:36:35.09ID:CCx++I/Y
>>980
逆の証明ならできますよ。

s^p+t^p=u^pが成り立つ有理数s,t,uが存在するとき、
(u-s)^(p-1)=apが成り立つようにaを定義することが必ずできて、
s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})を(3)に代入すると
s^p+t^p=u^pとなるので、(3)が成り立つ。
つまり、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は(3)の解です。

よって、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})と同じ比で、(3)を満たす、数の組は、ほかにありません。
0985132人目の素数さん
垢版 |
2020/07/19(日) 20:47:21.24ID:CCx++I/Y
s^p+t^p=u^pが成り立つとしたら、
同じ比の(3)の解はs/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})以外ありません。

s^p+t^p=u^pが成り立つとしたら、同じ比の(3)のyは絶対に有理数になりません。

s^p+t^p=u^pが成り立つとしたら、同じ比の(3)の解は絶対に無理数で整数比です。

>>963に無理数で整数比の(3)の解があるかないか書かない限り、>>963は絶対に正しくなりません。
0986日高
垢版 |
2020/07/19(日) 21:11:25.01ID:e1tuQoUD
>982
pが奇素数のときは、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は、
(3)の解となりません。

なんでわかるんです?
だれかが、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は(3)の解とならないと証明したんですか?

s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})は整数比だからです。よって、(3)の解には、なりません。
0987日高
垢版 |
2020/07/19(日) 21:13:33.75ID:e1tuQoUD
>983
> r'={有理数} (x',y'={有理数},z')の場合か
> r'={無理数} (x',y'={無理数},z')であるけれども

これは、どのように、読めばよいのでしょうか?
0988日高
垢版 |
2020/07/19(日) 21:16:02.98ID:e1tuQoUD
>984
よって、s/(a^{1/(p-1)}),t/(a^{1/(p-1)}),u/(a^{1/(p-1)})と同じ比で、(3)を満たす、数の組は、ほかにありません。

そうですね。
0989日高
垢版 |
2020/07/19(日) 21:23:42.54ID:e1tuQoUD
>985
>>963に無理数で整数比の(3)の解があるかないか書かない限り、>>963は絶対に正しくなりません。

963に無理数で整数比の解があるならば、有理数で整数比の解があります。
0990132人目の素数さん
垢版 |
2020/07/19(日) 21:28:57.04ID:CCx++I/Y
>>989

r^(p-1)=pのとき、rは無理数です。
無理数と整数比になる数は、無理数です。
無理数と整数比になる有理数はないので、yが有理数の時なんて考えるだけ無駄です。
無理数で整数比の(3)の解の数の組は、>>963で探していません。

r^(p-1)=pでないとき、r^(p-1)=apが成り立つようにaを定義することが必ずできます。
(5)の解は(3)の解のa^{1/(p-1)}倍となるので、(5)の解の数の組が有理数の時、(3)の解の数の組は無理数で整数比です。
無理数で整数比の(3)の解の数の組は、>>963で探していません。

>>963のなかで無理数で整数比の(3)の解の数の組があるかないかを書かない限り、>>963は絶対に間違いです。
0991132人目の素数さん
垢版 |
2020/07/19(日) 21:34:57.26ID:CCx++I/Y
>>989

> 963に無理数で整数比の解があるならば、有理数で整数比の解があります。

解、とは、どの式を満たす数のことですか?
r^(p-1)=pですか?
r^(p-1)=apですか
(3)ですか?
(5)ですか?

何度も書いていますが、(3)の解と同じ比の(3)の解は他にはありません。1つだけです。
(5)の解と同じ比の(5)の解は他にはありません。1つだけです。
0993132人目の素数さん
垢版 |
2020/07/19(日) 21:36:52.25ID:CCx++I/Y
>>991追記
>>989には、「解」という言葉が2回出てきているので、どちらも答えてくださいね。

1つ目の「解」とは、どの式を満たす数のことですか?
r^(p-1)=pですか?
r^(p-1)=apですか
(3)ですか?
(5)ですか?

2つ目の「解」とは、どの式を満たす数のことですか?
r^(p-1)=pですか?
r^(p-1)=apですか
(3)ですか?
(5)ですか?
0994日高
垢版 |
2020/07/20(月) 06:48:37.09ID:/WKeu5tg
>990
無理数で整数比の(3)の解の数の組は、>>963で探していません。

無理数で整数比の解を、共通の無理数で割ると、有理数となります。
0995日高
垢版 |
2020/07/20(月) 06:53:27.97ID:/WKeu5tg
>991
> 963に無理数で整数比の解があるならば、有理数で整数比の解があります。

解、とは、どの式を満たす数のことですか?

x^p+y^p=z^pを満たす数のことです。
0996日高
垢版 |
2020/07/20(月) 07:02:38.61ID:/WKeu5tg
>993
1つ目の「解」とは、どの式を満たす数のことですか?
r^(p-1)=pですか?
r^(p-1)=apですか
(3)ですか?
(5)ですか?

(3)の解で、無理数で、整数比となる自明な解はあります。
0997132人目の素数さん
垢版 |
2020/07/20(月) 07:13:48.17ID:h0FobE7Z
質問には絶対まともに答えないんだな。
見てるだけでも気分が悪いくなる。
0999132人目の素数さん
垢版 |
2020/07/20(月) 14:20:18.08ID:0GDGPa+3
>>963 日高
これだけ疑問点を出されているんだからきちんと補ったものを載せるべきじゃないか?
1000日高
垢版 |
2020/07/20(月) 14:36:41.23ID:/WKeu5tg
>990
>>963のなかで無理数で整数比の(3)の解の数の組があるかないかを書かない限り、>>963は絶対に間違いです。

x^p+y^p=(x+p^{1/(p-1)})^p…(3)
x=sw、y=twとおく。(s,tは有理数、wは無理数)
(3)に代入すると、
(sw)^p+(tw)^p=(sw+p^{1/(p-1)})^pとなる。
両辺をw^pでわると、
s^p+t^p=(s+(p^{1/(p-1)})/w)^pとなる。
(p^{1/(p-1)})/wが有理数のときは、(5)となる。
(5)の解は(3)の解の、定数倍となるので、(5)のx,yは共に有理数とならない。
よって、s,tは共に有理数とならない。
10011001
垢版 |
Over 1000Thread
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 291日 22時間 30分 56秒
10021002
垢版 |
Over 1000Thread
5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。


───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────

会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。

▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/

▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php
レス数が1000を超えています。これ以上書き込みはできません。

ニューススポーツなんでも実況