【数セミ】エレガントな解答をもとむ2【2016.11】 [無断転載禁止]©2ch.net

1132人目の素数さん2016/10/17(月) 20:05:12.65ID:wKo94p2r
過去スレ:
【数セミ】エレガントな解答をもとむ【2011.2】
http://rio2016.2ch.net/test/read.cgi/math/1295154182/

806◆2VB8wsVUoo 2018/04/23(月) 15:56:35.72ID:HBynUzNE

807◆2VB8wsVUoo 2018/04/23(月) 15:57:01.49ID:HBynUzNE

808◆2VB8wsVUoo 2018/04/23(月) 15:57:25.51ID:HBynUzNE

809とあるエレ解常連2018/05/12(土) 00:32:12.74ID:h4NJI8KX
18年5月号の講評です。

■出題1:レベル2〜3(数学好きの高校生正解率85%)

整数係数n次多項式Pの0≦x≦1における最大値Max(|P|)が
1/sqrt(LCM(1,...,2n+1))以上であることを示す問題。

2n+1はどこから出てくるのでしょうか?
このヒントでピンと来なければ超難問、ピンと来れば超易問。
常連ソルバーには物足りないでしょうが、LCMとの意外な繋がりが美しい良問。


■出題2:レベル1〜2(中学受験生正解率50%)

『チェスのナイトが矩形盤のマスを一度ずつ通り元に戻る経路(ナイトツアー)』
が存在しないことを示す問題。

(1)は『ダメなマスの集合Sが存在⇒ナイトツアーが存在しない』を示す問題。
さすがに小学生には無理か??しかし大した論証ではないと思います。
(2)は大した試行錯誤もせず見つかります。

5月号は新入生歓迎号なのは分かりますがさすがに簡単過ぎではないかと。
出題1はともかく出題2は明らかにヒント過多。
"ダメなマスの集合S"の存在をうまく隠せれば良問になっただけに残念です。
Sを使ったエレガントな解法を自分で見つけたかった人は多かったはず。

810132人目の素数さん2018/05/12(土) 02:26:32.31ID:ERQyPxVg
■出題1

 {P(x)}^2 を展開したとき、x^{奇数}の係数は偶数だから
 √(2/L)以上であることを示すのかとオモタ。

■出題2

(2) 4×n は 2列ジグザグのSが作れるので存在しない

6×6,8×8,10×10 には存在するらしい。

http://www.geocities.jp/m_hiroi/puzzle/index.html
→ パズルの解法 → ・チェスのパズル → 騎士の周遊

ワーンスドロフの規則については

秋山 仁・中村義作 共著「ゲームにひそむ数理」森北出版 (1998/Apr) 2376円
の p.72
http://www.morikita.co.jp/books/book/117

811とあるエレ解常連2018/05/12(土) 09:53:53.76ID:h4NJI8KX
>>810
リンク先のページではダメ集合Sへの言及はないですね。
ダメ集合Sの効率的な探索法は?という問いはプログラミング的に面白いかもしれない。

812とあるエレ解常連2018/05/13(日) 01:34:09.74ID:vWLY3HuW
>>810
ナイトツアーは有名問題なんですね

813132人目の素数さん2018/05/13(日) 02:42:55.47ID:dQIRZ6zE
>>810

多項式P(x) の一例

・nが奇数のとき
 P(x) = {x(1-x)}^{(n-1)/2}・(2x-1),
 Max{ |P(x)| } = (1/2)^(n-1) √{(n-1)^(n-1) / (n^n)}, x = 1/2 ± 1/(2√n),

・nが偶数(n≧4)のとき
 P(x) = {x(1-x)}^(n/2 -1)・(2x-1)^2,
 Max{ P(x) }= (1/2)^(n-3) √{(n-2)^(n-2) / (n^n)}, x = 1/2 ± 1/√(2n),

・nが偶数(n≦4)のとき
 P(x) = {x(1-x)}^(n/2),
 Max{ P(x) } = (1/2)^n, x = 1/2,

どれも √(2/L) よりかなり大きい…orz

分かスレ443 - 004

>>812

8×8 (チェス盤)はオイラーの時代からあったらしい…

814とあるエレ解常連2018/05/13(日) 11:07:41.37ID:3y7zv360
>>813
集合Sが探索効率を上げるんですかね
未解決部分があるようですが最近の研究はどうなっているのか

815とあるエレ解常連2018/05/13(日) 11:10:56.05ID:3y7zv360
>>813
多項式の問題すんなりイケました?
実のところそのx(1-x)の形に捕らわれて時間を食いましたわ

816132人目の素数さん2018/05/13(日) 11:25:33.25ID:dQIRZ6zE
>>815
 積分を使ったので粗い評価になったようです。(エレガントかどうか?)

817とあるエレ解常連2018/05/13(日) 11:33:17.09ID:3y7zv360
どうもチェビシェフを使って振れ幅を最小にできるようで
ちゃんと読んでませんけど

818とあるエレ解常連2018/05/13(日) 11:38:39.87ID:3y7zv360
>>816
積分以外の別解法でmax≧1/f≧1/sqrtLCMと押さえられるんでしょうか?
本問のエレガント賞は積分使わなかった人かもw

819132人目の素数さん2018/05/13(日) 20:57:47.74ID:dQIRZ6zE
>>715-719

3月号の出題2

定義
 "number of permutations of n elements with no fixed points"
に基づいて
 d_n = (n-1)(d_{n-1} + d_{n-2}),
を出すのに手間取った。これから
 d_n - n・d_{n-1} = - (d_{n-1} - (n-1)・d_{n-2})
 = ……
 = (-1)^n (d_2 - 2・d_1)
 = (-1)^n,
これを3回使うと「エレガントな漸化式」
 d_n = n(n-1)(n-2) d_{n-3} + (-1)^n (n-1)^2,
が出る。

http://oeis.org/A000166

なお、6月号の締切は 6月8日(消印)

820とあるエレ解常連2018/05/14(月) 23:03:48.51ID:EjCwyYuo
>>819
> なお、6月号の締切は 6月8日(消印)

消印締め切りのおかげで投函時に祈らなくてもよくなりました

821132人目の素数さん2018/05/16(水) 02:49:28.54ID:iriy4b81
>>812

ご老公も大昔に出題されてますね^^

数セミ増刊「数学の問題」第(2)集、日本評論社(1978)
の No. 46

>>814

現在は、6×6の盤でも周遊可能のようです。

822132人目の素数さん2018/05/16(水) 15:20:17.92ID:iriy4b81
>>821

6×6 ナイト周遊の例(4回対称)

1 8 23 16 31 10
22 15 2 9 24 17
7 36 21 30 11 32
14 29 12 3 18 25
35 6 27 20 33 4
28 13 34 5 26 19

823とあるエレ解常連2018/05/16(水) 20:40:24.04ID:peJi7xrg
>>821
なんと過去に出題済みでしたか
昔の出題分かります?
今より難しかったんじゃなかろうか。
時代への迎合度を測りたい。

824132人目の素数さん2018/05/17(木) 01:07:01.50ID:FDCSht5h
>>823

●46
 西洋のチェスのナイト(騎士)は、四方八方に桂馬と
びをします。3×4の長方形の盤の各目に 1〜12の番号
をふります。このときつぎの2命題を証明してください:

(i) 適当な位置から出発して、つぎつ
ぎにナイトを動かしてゆき、すべての目
をただ一度だけ通ることは可能である。

(ii) しかし全部を通過して、最後の目
からふたたびナイトの飛び方で出発点に
戻ることは不可能である。

注意 (ii)はもちろんあらゆる可能性をためせば、証
明にはなりますが、もっと<エレガントな数学的な>不
可能の証明を期待します。

825132人目の素数さん2018/05/17(木) 05:53:49.67ID:FDCSht5h
>>812 >>814
 n×n (nは偶数)の正方形盤について

 n が4で割り切れない偶数 (n≧6) のとき、4回対称な解がある。
 n が4の倍数 (n≧8) のとき、2回対称な解はあるが、4回対称な解は無い。

I. J. Dejter: Ars. Combin. 16, p.285-295 (1983)
 "Equivalent conditions for Euler's problem on Z_4-Hamilton cycles"

例)

I. Parberry: Discrete Applied Mathematics, 73, p.251-260 (1997)
 "An efficient algorithm for the Knight's tour problem"
 http://larc.unt.edu/ian/pubs/algoknight.pdf
 http://larc.unt.edu/ian/research/puzzles/knightstour/

826132人目の素数さん2018/05/17(木) 14:55:49.51ID:FDCSht5h
>>812 >>814

10×10 ナイト周遊の例(4回対称)

1, 92, 87, 6, 3, 74, 69, 66, 61, 76,
86, 5, 2, 97, 88, 65, 60, 75, 80, 67,
91, 100, 93, 4, 7, 70, 73, 68, 77, 62,
94, 85, 98, 89, 96, 59, 64, 79, 72, 81,
99, 90, 95, 84, 33, 8, 71, 82, 63, 78,
28, 13, 32, 21, 58, 83, 34, 45, 40, 49,
31, 22, 29, 14, 9, 46, 39, 48, 35, 44,
12, 27, 18, 23, 20, 57, 54, 43, 50, 41,
17, 30, 25, 10, 15, 38, 47, 52, 55, 36,
26, 11, 16, 19, 24, 53, 56, 37, 42, 51,

これも >>822 と同様、分かりづらい…

827132人目の素数さん2018/05/17(木) 16:14:58.24ID:FDCSht5h
>>822

6×6 ナイト周遊(4回対称) の別解

1, 26, 13, 24, 3, 28,
12, 23, 2, 27, 14, 17,
33, 36, 25, 16, 29, 4,
22, 11, 34, 7, 18, 15,
35, 32, 9, 20, 5, 30,
10, 21, 6, 31, 8, 19,

4つの「結び目」を除いて考えると、外周を3周するだけ…

828132人目の素数さん2018/05/17(木) 17:56:56.89ID:FDCSht5h
>>814

・n×n (正方形盤)
 nが奇数または5以下 → 不可能。
 nが偶数 (n≧6)  → 可能、2回対称な解もある。
 nが4で割り切れない偶数 (n≧6) → 4回対称な解もある。

n    合 計      4回対称  2回対称     非対称
------------------------------------------------------------------
4          0     0      0          0
6        1,245     5     17        1,223
8  1,658,420,855,433     0   608,233  1,658,420,247,200
10    ?        415,902    ?        ?

・3×偶数 (n≦8) → 不可能。
・3×偶数 (n≧10) → 可能。n=12を除き、2回対称な解がある。

n   合 計 2回対称  非対称
------------------------------
8    0    0     0
10    6    4     2
12    44    0    44
14   396    24    372
16   3868    24   3844
18  37078   292   36786
20  362192   176  362016

・3×(4k+2) → 2回対称な解と面対称な解は同数ある。
・4×n → 不可能 … Sainte-Marie (1887)

"Knight's tour notes"
http://www.mayhematics.com/t/t.htm

829とあるエレ解常連2018/05/17(木) 23:53:00.15ID:5HviOqXJ
>>824
> 注意 (ii)はもちろんあらゆる可能性をためせば、証
> 明にはなりますが、もっと<エレガントな数学的な>不
> 可能の証明を期待します。

いいじゃないですか。エレ解らしくて。
エレファント解も用意されているのがgood.
集合S以外の解き方はぱっと浮かばず、考えさせられます

対して先月の問題はぜんぜん面白くない。
『問題文に提示されたエレガントな解答の"説明"をもとむ』という名のコーナーじゃないんだが
エレガントな"解答"を求まれたい。

>>809
> 出題1はともかく出題2は明らかにヒント過多。
> "ダメなマスの集合S"の存在をうまく隠せれば良問になっただけに残念です。
> Sを使ったエレガントな解法を自分で見つけたかった人は多かったはず。

830132人目の素数さん2018/05/18(金) 03:17:36.06ID:539vwTx6
>>822 >>827

6×6 4回対称解 の続き

(L)
  1, 26, 13, 16,  3, 28,
 12, 15,  2, 27,  6, 17,
 25, 36, 23, 14, 29,  4,
 22, 11, 32,  5, 18,  7,
 35, 24,  9, 20, 33, 30,
 10, 21, 34, 31,  8, 19,

これは (g) >>827 とよく似ている。

(a)
  1, 26, 13, 16,  3, 28,
 12, 15,  2, 27,  6, 17,
 25, 36, 23, 14, 29,  4,
 22, 11, 32,  5, 18,  7,
 35, 24,  9, 20, 33, 30,
 10, 21, 34, 31,  8, 19,

形は似ているが「結び目」でUターンするので、結局外周を1回りするだけ。

(i)
  1,  8, 31, 16,  3, 10,
 30, 23,  2,  9, 32, 17,
  7, 36, 15, 24, 11,  4,
 22, 29,  6, 33, 18, 25,
 35, 14, 27, 20,  5, 12,
 28, 21, 34, 13, 26, 19,

これは反転を含んでいる(4回)点で (e) >>822 に似ている。

以上が 6x6 の4回対称解 (a,e,g,i,L)

2回対称解は17種もあるらしい。

831132人目の素数さん2018/05/18(金) 03:32:54.15ID:539vwTx6
>>830
訂正スマソ

(a)
  1, 14, 35,  6,  3, 28,
 12,  7,  2, 27, 34,  5,
 15, 36, 13,  4, 29, 26,
  8, 11, 22, 31, 18, 33,
 23, 16,  9, 20, 25, 30,
 10, 21, 24, 17, 32, 19,

832とあるエレ解常連2018/05/19(土) 10:41:11.33ID:Q9nxl5kt
>>828
> "Knight's tour notes"
> http://www.mayhematics.com/t/t.htm

マニアックだなこりゃw
芸術にも見えてくるから不思議。
ナイトツアー閉路アート

833132人目の素数さん2018/05/20(日) 02:23:00.20ID:1IiDnvUy
3×10 ナイト周遊

・ 2回対称解 (Bergholt) 2つ
"NSI"
4, 7, 10, 19, 16, 1, 14, 23, 28, 25,
9, 18, 5, 2, 11, 20, 29, 26, 13, 22,
6, 3, 8, 17, 30, 15, 12, 21, 24, 27,

"NSU”
6, 3, 8, 19, 16, 1, 14, 21, 24, 27,
9, 18, 5, 2, 11, 20, 29, 26, 13, 22,
4, 7, 10, 17, 30, 15, 12, 23, 28, 25,

・ 鏡面対称解 (Sulian) 2つ
"NSI"
4, 7, 10, 29, 16, 1, 14, 25, 22, 19,
9, 28, 5, 2, 11, 26, 17, 20, 13, 24,
6, 3, 8, 27, 30, 15, 12, 23, 18, 21,

"NSU"
6, 3, 8, 29, 16, 1, 14, 23, 18, 21,
9, 28, 5, 2, 11, 26, 17, 20, 13, 24,
4, 7, 10, 27, 30, 15, 12, 25, 22, 19,

(中央で180°ひねったような…)

・非対称解  2つ

>>828 の下表では 対称解(2回対称または鏡面対称) とすべきでござった。

834132人目の素数さん2018/06/08(金) 18:44:52.96ID:volchZbj
今月6月号の解答よろぴく

835132人目の素数さん2018/06/10(日) 13:11:19.65ID:8kKQJipm
解答はよ

836とあるエレ解常連2018/06/10(日) 15:40:19.27ID:bMSWQOiS
幾何解いた人のコメントもとむ

837とあるエレ解常連2018/06/10(日) 17:19:58.88ID:Oq6PatgL
18年6月号の講評です:

■出題1:レベル7〜?(常連正解率50%以下)

三角形ABCの3辺を両方向に等距離延長し、各頂点から伸びた2点を結んでできる3直線の交点をA'B'C'とする。
このときAA',BB',CC'が1点に交わることを示す問題。

幾何センスを問われる良難問。
数オリが得意な若い頭脳には簡単なことでしょう。
何度メネラウスを計算したことか。
明けても暮れてもメネラウス。
もう当分のあいだ三角形と直線のなす比は考えたくありません。
締め切り日に気付いたことは相似形とメネラウスだけではダメということです。
延長距離ゼロなら内心で交わることに気付いたPCの前のキミ!
それが何かの役に立ちましたか?


■出題2:レベル7(常連正解率50%)

a_i+b_j=c_{i,j}({a_i},{b_j} i,j=1〜10は0以上の整数列)
が0から99を渡るような{a_i},{b_j}の組を列挙する問題。

本質的な組み合わせが「〜通りに限られる」ことを示すのが難しい。
考えやすいように{a_i},{b_j}に適切な制限を加えることがまず必要。
そのうえで0〜99まで数字がどのように増えていくかを考えると、
題意を満たす数列のパターンはそう多くないことに気付くでしょう。
厳密に示すのはやはり並の高校生レベルでは厳しいといえます。
解くのが難しいのではなく本質を突く補題を自分で設定して解くところが難しい。
本誌エレ解をもとむコーナーの腕の見せ所はこういうところにあります。

838132人目の素数さん2018/06/11(月) 00:19:45.64ID:6eoyO+PA
問1はベクトルで。単純計算で分点比からチェバる。

>延長距離ゼロなら内心で交わることに気付いたPCの前のキミ!
>それが何かの役に立ちましたか?

役に立ちそうで立たなかった

839とあるエレ解常連2018/06/11(月) 00:32:03.74ID:L5NBC2N9
>>838
平面幾何にはベクトルで一刀両断。
エレガンスなんて糞食らえ。同感です。

> 役に立ちそうで立たなかった

ですよね

840132人目の素数さん2018/06/11(月) 12:03:00.02ID:TnGShdQw
>>837

■出題2 は

(ア) A = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
   B = { 0,10,20,30,40,50,60,70,80,90}

(イ) A = { 0, 1,20,21,40,41,60,61,80,81}
   B = { 0, 2, 4, 6, 8,10,12,14,16,18}

(ウ) A = { 0, 1, 2, 3, 4,50,51,52,53,54}
   B = { 0, 5,10,15,20,25,30,35,40,45}

(エ) A = { 0, 1, 4, 5, 8, 9,12,13,16,17}
   B = { 0, 2,20,22,40,42,60,62,80,82}

(オ) A = { 0, 1,10,11,20,21,30,31,40,41}
   B = { 0, 2, 4, 6, 8,50,52,54,56,58}

(カ) A = { 0, 1, 2, 3, 4,10,11,12,13,14}
   B = { 0, 5,20,25,40,45,60,65,80,85}

(キ) A = { 0, 1, 2, 3, 4,25,26,27,28,29}
   B = { 0, 5,10,15,20,50,55,60,65,70}

の7とおり(A,Bを入れ替えれば14とおり)かな。。。

Aの等差部分列A’、Bの等差部分列B’とすると、A’(+)B’は穴のないブロックをなす筈。

841132人目の素数さん2018/06/12(火) 00:38:04.46ID:XI7mPJ/0
おお、問2はどうやら正解っぽい。問1も挑戦したが解けず。垂心かな?と予想したんだけど、とっかかりすらつかめなかった。

842132人目の素数さん2018/06/12(火) 19:01:00.72ID:OOb2Cgfm
今月号の1問目だが、解答者をバカにしたような問題。
間違いなく、ここ数年で一番易しい問題だと思う。

843とあるエレ解常連2018/06/16(土) 18:09:32.14ID:O9aUPn32
>>842
今月は実質1問ですか
二問目はどうですか

844132人目の素数さん2018/06/17(日) 02:30:53.58ID:lI+JiKnS
〔Igarashi の不等式〕
 a,b,c>0 のとき、
 a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb) ≧ (a+b+c)/(ab+bc+ca) ≧ 3/(a+b+c),
 2018年7月号NOTE

(略証)
 a' = bb + bc + cc,
 b' = cc + ca + aa,
 c' = aa + ab + bb,
とおくと
 aa' + bb' + cc' = (a+b+c) (ab+bc+ca),  … これがミソ(?)

(1) コーシーにより
 (左辺) = a/a' + b/b' + c/c' ≧ (a+b+c)^2 /(aa' + bb' + cc') = (a+b+c)/(ab+bc+ca),

(2) f(x) = 1/x は下に凸だから、Jensenにより
 (左辺) = a f(a') + b f(b') + c f(c')
  ≧ (a+b+c) f((aa'+bb'+cc')/(a+b+c))
  = (a+b+c) f(ab+bc+ca)
  = (a+b+c)/(ab+bc+ca),

不等式スレ9 - 620〜623

8458422018/07/09(月) 00:48:44.45ID:QA4ysVPG
締め切り過ぎたし、易しいと書いた手前、7月号の1問目の回答らしきもの書いとくかw

整数mが4の倍数のとき(m=4h) 4h=(h+1)^2 -(h-1)^2
整数mを4で割ったときの余りが1のとき(m=4h+1) 4h+1=(2h+1)^2 -(2h)^2
整数mを4で割ったときの余りが3のとき(m=4h+3) 4h+3=(2h+2)^2 -(2h+1)^2
よって、mを4で割ったときの余りが2ではないとき、mは平方数の差であることが分かる。

したがって、nが奇数のとき、x(n)≡0 (mod 4)、nが偶数のとき、x(n)≡1 (mod 4)が言えれば題意は言える。
x(0)≡x(2)≡1、x(1)≡0 (mod 4)だから、帰納的に
x(2k+1)≡x(2k)+x(2k-1)ーx(2k-2)≡1+0-1≡0 (mod 4)
x(2k+2)≡x(2k+1)+x(2k)ーx(2k-1)≡0+1-0≡1 (mod 4)
がいえるから、題意は言えた。

846132人目の素数さん2018/07/09(月) 13:03:47.51ID:TFGOLUbm
>>845
お見事でござる。

小生はまづ、
特性多項式 t^3 -5t^2 -5t +1 = (t+1)(tt-6t+1) の根が
 α^2,αγ=-1,γ^2 となることに注意する。
(α=1-√2,γ=1+√2)
もし x_n = (y_n)^2 - (z_n)^2 の形に表わせるなら、
{y_n},{z_n} の特性値は α,γと予想されるから、
特性方程式: (t-α)(t-γ) = tt-2t-1,
∴ b_{n+1} = 2b_n +b_{n-1}
 y_n = (γ^n + α^n)/2,
 z_n = (γ^n - α^n)/(2√2),
を求めたのであった。
 y_0 = 1,z_0 = 0,
 y_{n+1} = y_n + 2z_n,
 z_{n+1} = y_n + z_n,
ゆえ、{y_n},{z_n} は自然数である。
なお、これらは「ペル方程式」
 (y_n)^2 - 2(z_n)^2 = (-1)^n
も満たす。

847とあるエレ解常連2018/07/09(月) 19:15:04.10ID:f7BKW3Q1
>>846
一般項を求めたかったんですが自分は諦めました
さすがの一言です

848132人目の素数さん2018/07/13(金) 06:33:33.32ID:JMIiTTdZ
わたくしの解法はこうです。
3以上のnについてx(n)の下2桁が周期的にあるパターンを繰り返すことに着目し、すべてのx(n)が奇数×奇数、または偶数×偶数で表されることを示しました。
これをpq(=x(n))と表すと、a+b=p, a-b=qとおいたとき、a, bはともに整数解をもつことが分かります。したがってx(n)=pq=a^2-b^2と表せるので題意は示された。
なんとなく>>845氏の考え方に似ている気がしましたが、氏の解法のほうが洗練されていていいですね。

849とあるエレ解常連2018/07/14(土) 09:55:08.45ID:tGdUMoW8
2018年7月号の講評です:

■出題1:レベル3(数学好きな高校生正解率60%)

a_{n+3}=5a_{n+2}+5a_{n+1}−a_n
a_0=1, a_1=0,a_2=5
で定まるa_nが平方数の差で表せることを示す問題。

「補題:mod4で2と合同でないなら平方数の差で表せる」
を運悪く知っている人には合同式の初歩的な練習問題でしかない。
>>845は運が悪かった一人ですが、解法は簡潔でエレガントです。
>>848もこれに似た解法)

しかし、合同式で解いたら問題自体に何も面白さが感じられない。
一般項が求められるからこそ面白い。
>>846はさすがエレ解常連という感じ。
(もう一人のとあるエレ解常連はあっさりギブアップw)

いろんな解法があり、簡単過ぎてつまらないとは言い切れない良問でしたが、
もうちょっと難しくても良いかも?
ただ出題2のおかげでバランスは取れていました。


■出題2:レベル8〜10(常連正解率20%以下)


正四面体、正八面体の各面に、隣接する2面が
同じ数字にならないように1,2,3,4の番号を振る。
同じ値が連続しない有限数列a0,a1,...,am∈{1,2,3,4}が与えられ、
その数字の面が下になるように平面状で転がしていくとき、
最後に@位置が最初と同じ、A向きが最初と同じ
になる数列の条件を求める問題

山田修司先生の良難問。
エレガントな解法は不明(コメント求む)

正四面体の場合、展開図を平面上に1通りで敷き詰めることができる。
結果的に平面上の各正三角形にはひとつの数字が対応するため
条件@、Aを見つけ出すのはそれほど苦労しない。
(論証はそれなりに面倒。レベル6〜7)

正八面体の場合、平面上の1つの正三角形は複数の数字をとりうる。
正四面体の場合と違い平面から規則性を見出すアプローチは採りづらい。
予想はなんとなくできるが、有限列と対応させて論証するのは難しい。

正八面体で詰まってしまい正十二面体には手を伸ばせなかった人が多いと予想。

850とあるエレ解常連2018/07/14(土) 10:00:58.31ID:tGdUMoW8
>>849
> その数字の面が下になるように平面状で転がしていくとき、

平面上で転がして です

微妙に日本語として意味が通ってしまうので修正

851とあるエレ解常連2018/07/14(土) 10:13:25.11ID:tGdUMoW8
>>809
> 18年5月号の講評です。
>
> ■出題1:レベル2〜3(数学好きの高校生正解率85%)
>
> 整数係数n次多項式Pの0≦x≦1における最大値Max(|P|)が
> 1/sqrt(LCM(1,...,2n+1))以上であることを示す問題。
>
> 2n+1はどこから出てくるのでしょうか?
> このヒントでピンと来なければ超難問、ピンと来れば超易問。
> 常連ソルバーには物足りないでしょうが、LCMとの意外な繋がりが美しい良問。


本誌8月号を見ましたが、意外に正解者が少ないです
正解率だけで言えばレベル6〜7(常連正解率60%)くらい。
上に書いたように、解法にピンと来なければまず解けない問題です
こういう問題はレベル付けが難しい

私も実は気付くまでに時間がかかりました
2n+1だから気付けましたが、これが2n+1ではない数で
緩く抑えられていたら絶対に解けなかったと思います。


> ■出題2:レベル1〜2(中学受験生正解率50%)

鳩ノ巣原理の練習問題ですが、なんと10代の応募がゼロでした
編集部としてはものすごく残念だったことでしょう

852とあるエレ解常連2018/07/14(土) 13:14:26.79ID:tGdUMoW8
そろそろ夏休み。一足先に自由研究をば。

[数セミの適正な読者数に関する一考察]

数セミがメディアで紹介され、さらにAIブームに乗じて購読者数が一桁増えたとしよう。
解答にB5 2枚を要するレベル6程度の問題に対して、
これまで数十人の投稿者だったのが数百人になる計算。
果たして出題者はすべての答案にきちんと目を通せるだろうか?
いくら聡明な数学者と言えど心無い汚い文字を読むのに苦労し、
スジが明快でないアマチュアの記述を読むのにまた苦労し、
すべて読み終えるのに軽く丸3日はかかりそうである。
10万程度の謝礼だったらお断りしたいレベル。
よって投稿者が高々数十に収まるよう難問はより難化するのである。

仮に易問を出したとしよう。
100を超えていた投稿者数が一桁増により1000のオーダーに達する計算。
こうなると「最終的な結論が合っているならOK」という問題に限定しておかないと
答案を見る時間はいくらあっても足りず、出題者は悲惨なことになる。
思いもよらない解法が出てくるのは本コーナーの醍醐味であるが、
そんなのがあったら大変であり、出題者は気を抜くことができない。
よって一目で正誤が判定できる問題に限定され、易問はより易化するのである。

よって問題を難しくしても簡単にしても読者はエレ解から離れ、ひいては数セミから離れていくのである。

ところで購読者が一桁減ったとすると、もはや豊島区大塚の駅近に事務所を構えるのは無理であり、
「数セミ?エレ解?何それトレンド」は加速し、エレ解常連が多けれ少なかれ感じてきた
わずかながらの功名心も失われ、コア層を失う危機がいよいよ到来、雑誌存続は不可となる。

以上を総合すると、現在の読者数は多くも少なくもなく、良い平衡状態にあると言えるのではなかろうか・・・
編集者の給料が上がらないのはとても残念なことだが・・・

853132人目の素数さん2018/07/14(土) 14:37:14.37ID:fIrZynJm
5月号■出題1の解説より

lim[n→∞] (Max|P|)^(1/n) = C とおくと 1/e < C < 1/√5,

文献によれば
 0.4213 < C < 0.4232
らしい。
I.E.Pritsker: J. d'Analyse Math.,96,p.151-190 (2005)
 "Small polynomials with integer coefficients"

854132人目の素数さん2018/07/17(火) 11:38:35.92ID:8KpvafnI
先生、今月1(2)でn/nとか(n+n)/nとかを使うのは有りですか?

855132人目の素数さん2018/07/20(金) 02:19:16.65ID:7hgTxb0I
なしです。

856132人目の素数さん2018/07/20(金) 15:20:54.76ID:xlgI7shU
えー

新着レスの表示
レスを投稿する