>>987
(引用開始)
>成分を、環Rにとった場合には
>”零因子行列は、行列式が0(ゼロ)又は零因子になり、逆行列が存在せず、非正則と呼ばれる”
>とでもすればいいかな?
ダメだね
成分が、可換環Rの場合
「行列式が0もしくは零因子でなくても、単元でない場合には
 逆行列が存在せず非正則と呼ばれる」
(引用終り)

やれやれ
・抽象代数学壊滅の君に、下記の「行列環」という言葉を教えてあげるよw
・いま、ある可換環Rを成分とする 正方行列n×n 全体を考えると
 下記にあるように、環を成す
・その「行列環」における零因子を考えればいいだけのこと(それが零因子行列だ)
>>904の話は、「行列環」という専門用語を知っていれば、それで終わりの話だよw ;p)

https://ja.wikipedia.org/wiki/%E8%A1%8C%E5%88%97%E7%92%B0
行列環
抽象代数学において、行列環 (matrix ring) は、行列の加法(英語版)および行列の乗法のもとで環をなす、行列の任意の集まりである。別の環を成分に持つ n×n 行列全体の集合や無限次行列環 (infinite matrix ring) をなす無限次行列のある部分集合は行列環である。これらの行列環の任意の部分環もまた行列環である。
R が可換環のとき、行列環 Mn(R) は行列多元環 (matrix algebra) と呼ばれる結合多元環である。この状況において、M が行列で r が R の元であれば、行列 Mr は行列 M の各成分に r をかけたものである。

行列環は単位元をもたない環上作ることができるが、終始 R は単位元 1 ≠ 0 をもつ結合的環であると仮定する。


・任意の環 R 上のすべての n×n 行列からなる集合。 Mn(R) あるいは Matn(R) や Rn×n と表記される。これは通常「n 次全行列環」(full ring of n by n matrices) と呼ばれる。これらの行列は自由加群 Rn の自己準同型を表す。
・環上のすべての上(あるいは下)三角行列のなす集合。