>>977 >>979
>「可換環R上の行列が、可逆であるときそのときに限り、零因子でない」という嘘発言

・君はバカだね。いま、このスレの全発言に対して、キーワード”可逆であるとき”
 の検索をしたら、それ一つしかヒットなしだよ。つまり、他には発言無しで君の妄想か捏造だったねw

>体の場合はもちろん
>detA∈Rxでない⇒Aが零因子
>detA∈Rxでない⇒det(A)=0
>がなりたつ
>なぜなら、体では零元以外は可逆元だから
>でも、体でない任意の可換環では、零元でないというだけでは可逆元とはいえない

やれやれ
・だから、”零因子の定義”を確認しろよ(下記だよw)
・「環の零因子でない元は正則である(regular)または非零因子(non-zero-divisor)と呼ばれる。0でない零因子は0でない零因子(nonzero zero divisor)または非自明な零因子(nontrivial zero divisor)と呼ばれる」
 そして、下記零因子の引用冒頭「環の零因子(英: zero divisor)とは、環の乗法において、零以外の元と掛けたのに零となるような積が、少なくとも一つ存在するような元のことである。 これは環の乗法における因子の特別な場合である」
 ってこと
・だから>>951での”正方行列は二つに分けられる 零因子行列と非零因子行列とに そして、非零因子行列は逆行列が存在し、正則と呼ばれる”
 ここまではいいだろ?
・次の”零因子行列は、行列式が0(ゼロ)で、逆行列が存在せず、正則と呼ばれる”で、行列式が0(ゼロ)の部分を突っ込みたかったのかい?w
 普通は、行列の成分は実又は複素数だけど(デフォルトだね)、
 成分を、環Rにとった場合には
 ”零因子行列は、行列式が0(ゼロ)又は零因子になり、逆行列が存在せず、正則と呼ばれる”とでもすれがいいかな?w

君が、何年か前の>>904のときよりも
少し進歩したことは認めてあげるよ。うれしいだろう?w ;p)

https://ja.wikipedia.org/wiki/%E9%9B%B6%E5%9B%A0%E5%AD%90
零因子
環の零因子(英: zero divisor)とは、環の乗法において、
零以外の元と掛けたのに零となるような積が、少なくとも一つ存在する
ような元のことである。 これは環の乗法における因子の特別な場合である。

定義
環 R の元 a は、ax=0 となる
x≠ 0 が存在するとき、すなわち
∃x∈R∖{0}:ax=0
を満たすときに左零因子(英: left zero divisor)と呼ばれる。
この定義では非零元の存在を要求するから、自明な環における0は零因子ではないが、自明な環以外では、0は必ず零因子となる。

同様に、環の元 a が右零因子とは、ある y ≠ 0 が存在して ya = 0 となることである。
左または右零因子である元は単に零因子と呼ばれる[2]。左かつ右零因子である元 a は両側零因子(two-sided zero divisor)と呼ばれる(ax = 0 となる零でない x は ya = 0 となる零でない y とは異なるかもしれない)。環が可換であれば左零因子と右零因子は同じである。

環の零因子でない元は正則である(regular)または非零因子(non-zero-divisor)と呼ばれる。0でない零因子は0でない零因子(nonzero zero divisor)または非自明な零因子(nontrivial zero divisor)と呼ばれる。