X



トップページ数学
1002コメント488KB
分からない問題はここに書いてね458
■ このスレッドは過去ログ倉庫に格納されています
0667132人目の素数さん
垢版 |
2020/03/15(日) 22:52:12.35ID:cOtagSUy
>>661
怖くなってきたので煩雑ですが一応証明を書いておきます。

「nは偶数,k∈{1,2,...,n}とする。
1<√(n+1),√(n-1)(n+1)<n<√{n(n+1)}<n+1より、区間[0,1)∪[n,n+1)には√{k(n+1)}が一つ含まれる.

i,j∈{1,2,...,n-1}とする。
(i+1)^2-i^2=2i+1<2(n+1)より区間[i,i+1)に含まれるような√{k(n+1)}は高々2個。

[i,i+1)に√{k(n+1)}が2個含まれる
⇔i<√{j(n+1)},√{(j+1)(n+1)}<i+1
⇔i^2<(n+1)j,(n+1)(j+1)<(i+1)^2
⇒(n-i)^2>(n+1)(n+1-2i)+(n+1)(j+1)>(n+1)(n-2i+j)
(n-i+1)^2<(n+1)(n+1-2i)+(n+1)j=(n+1)(n-2i+j+1)
⇔√{(n-2i+j)(n+1)}<n-i,n-i+1<√{(n+1)(n-2i+j+1)}
⇔[n-i,n-i+1)に√{k(n+1)}が0個含まれる

[i,i+1)に√{k(n+1)}が0個含まれる
√{j(n+1)}<i,i+1<√{(j+1)(n+1)}
⇔j(n+1)<i^2,(i+1)^2<(j+1)(n+1)
⇒(n-i)^2<(n+1)^2-2(n+1)(i+1)+(n+1)(j+1)=(n+1)(n-2i+j)
(n-i+1)^2>(n+1)^2-2(n+1)i+j(n+1)=(n+1)(n-2i+j+1)
⇒√{(n+1)(n-2i+j)}<n-i,n-i+1<√{(n+1)(n-2i+j+1)}
⇔[n-i,n-i+1)に√{k(n+1)}が2個含まれる

[i,i+1)に1個含まれる
√{(j-1)(n+1)}<i≦√{j(n+1)}<i+1<√{(j+1)(n+1)}
⇔(j-1)(n+1)<i^2≦j(n+1)<(i+1)^2<(j+1)(n+1)
⇒√{(n+1)(n-2i+j-1)}<n-i<√{(n+1)(n-2i+j)}<n-i+1≦√{(n+1)(n-2i+j+1)}
⇔[n-i,n-i+1)に√{k(n+1)}が1個含まれる

よって,i≠n/2,ならば[i,i+1)∪[n-i,n-i+1)には√{k(n+1)}が2個含まれ、
i=n/2ならば[i,i+1)には√{k(n+1)}が1個含まれる。
n≡0,2(mod 4)で場合分けして考えると、題意の成立がわかる。」

上の証明が合っていれば似たような解法でおそらくN{k:a(k)=pd±i}+N{k:a(k)=n-pd∓i}=2(複合同順)が示せて、>>658の一般化も示せそうなのですが、間違っていたら元も子もないですね。
0668132人目の素数さん
垢版 |
2020/03/15(日) 22:53:51.82ID:OTl1KJku
>>661
いや、等しくなったけど。

> sim <- function(m){
+ n=2*m+1
+ i=1:(n-1)
+ a=sqrt(i*n)
+ b=floor(a)
+ cat(sum(b%%2==0),sum(b%%2==1),'\n') # 偶数の数、奇数の数
+ sum(b%%2==0)==sum(b%%2==1) # mean(floor(a)%%2==0)==0.5でも同じ
+ }
> sim((46343-1)/2) # n=2*23171+1=46343
23171 23171
[1] TRUE
> sim(46343)
46343 46343
[1] TRUE
0669132人目の素数さん
垢版 |
2020/03/15(日) 22:58:58.55ID:8d8gCNj7
x,yは正の実数とする。
x^(2x) - 2(x^y)(y^x) + y^(2y) ≧ 0,

(略証)
log は単調増加だから
 (x-y){log(x)-log(y)} ≧ 0
 (x/y)^(x-y) ≧ 1,
 (x^x)(y^y) ≧ (x^y)(y^x),
よって
(左辺) ≧ x^(2x) -2(x^x)(y^y) + y^(2y)
 = (x^x - y^y)^2
 ≧ 0,
0670132人目の素数さん
垢版 |
2020/03/15(日) 23:21:08.82ID:OTl1KJku
10万*2+1までは成立することを確認。

> sim <- function(m,print=FALSE){
+ n=2*m+1
+ i=1:(n-1)
+ a=sqrt(i*n)
+ b=floor(a)
+ if(print) cat(sum(b%%2==0),sum(b%%2==1),'\n') # 偶数の数、奇数の数
+ mean(floor(a)%%2==0)==0.5 # sum(b%%2==0)==sum(b%%2==1) と同じ
+ }
> sim=Vectorize(sim)
> flg=sim(1)
> i=1
> k=1e5
> while(flg & i < k){
+ i=i+1
+ flg=sim(i)
+ }
> i
[1] 1e+05
0671132人目の素数さん
垢版 |
2020/03/16(月) 10:50:51.55ID:xw7qN3/R
>>666
>0.5×2+2.5×7+4.5×13+6.5×9+8.5×6+10.5+1=197
0.5とか2.5とかってなに?最後+1とは?
0672イナ ◆/7jUdUKiSM
垢版 |
2020/03/16(月) 11:23:55.08ID:thhgKhx4
(1・2+3・7+5・13+7・9+9・6+11)/38=217/38=5.71……≒5.7(冊)
((-_-)‖  ‖>>665
(っ⌒⌒゙  。‖╂─╂
■`(_)_)ц~ ‖╂─╂
\■υυ■_∩∩、\\\
\\\\⊂(_ _))`⌒つ`
\\\\\\\`υ、\\\\\\\\\\\\\\\\\`前>>589
0673132人目の素数さん
垢版 |
2020/03/16(月) 16:37:18.30ID:xt+nxb6a
正六角形ABCDEFの辺AB上に点Gをとり、また正六角形の内部に点Hを△CGHが正三角形となるようにとる。
このとき、Gのとり方によらず、Hはある直線上にあることを示せ。
0675132人目の素数さん
垢版 |
2020/03/16(月) 17:25:45.37ID:P4igaTJG
>>672
ありがとう、解決しました
>>671
0以上2未満だから0以上1以下読んだ人が二人いるので0.5冊×2人と考えました
+1は×1の間違えです
0676132人目の素数さん
垢版 |
2020/03/16(月) 17:32:12.22ID:Q3fVY21r
>>674
とりあえず誘導はともかくとして
ΣIn
=∫[0,π]sin^2(nt)/(t^2+π^2)dt
=1/2∫[0,π](1-cos(2nt)/(t^2+π^2)dt
→1/2∫[0,π]1/(t^2+π^2)dt
=1/8
だな。
0677132人目の素数さん
垢版 |
2020/03/16(月) 18:19:33.71ID:4LLVPoPK
>>673
複素平面上で考える。
O=0, A=1, B=e^(iπ/3), C=e^(i2π/3) = B - 1, ... , E= -B, ...
G = A + AB*t = 1 + (e^(iπ/3)-1)*t = 1 + C*t   ( t ∈ [0,1] )
と置くと
H = G + GC * e^(iπ/3) = (1 + e^(i2π/3)*t) + (e^(i2π/3) - 1 - e^(i2π/3)*t) * e^(iπ/3)
= (e^(i2π/3) + 1)*t - e^(iπ/3)
= B*(t - 1) = t*O + (1-t)*E
∴ HはOE線分上にのる。
0678132人目の素数さん
垢版 |
2020/03/16(月) 19:16:34.40ID:8zVl3xLP
>>651を書いたものです

>>658
b_i(k)の定義がよくわからないです…。
a(k)は√の整数部分ですよね。b_i(k)はa(k)をiで割った余り?
だとすると0≦b_i(k)≦i-1か1≦b_i(k)≦iのどちらかのような気がするんですが
j=0のときはb_i(k)=0とb_i(k)=iを両方考えるんですか?

あと、>>651ではnは偶数でも奇数でもOKである、という予想です。
0679132人目の素数さん
垢版 |
2020/03/16(月) 19:18:36.76ID:8zVl3xLP
>>667
後半、typoや議論の重複があるので、少し丁寧めにまとめるとこうなるかな?

(補題1) (□には <、≦、>、≧ のうちどれか1つが入る)
i □ √{j(n+1)}
⇔i^2 □ (n+1)j
⇔(n-i+1)^2=(n+1-i)^2=(n+1)(n+1-2i)+i^2 □ (n+1)(n+1-2i)+(n+1)j=(n+1)(n-2i+j+1)
⇔(n-i+1)^2 □ (n+1)(n-2i+j+1)
⇔n-i+1 □ √(n-2i+j+1)(n+1)

(補題2) 補題1でiにi+1とかjにj-1やj+1を入れたものを含めると、次の4つがわかる
i □ √{(j-1)(n+1)}⇔n-i+1 □ √(n-2i+j)(n+1)
i □ √{j(n+1)}⇔n-i+1 □ √(n-2i+j+1)(n+1)
i+1 □ √{j(n+1)}⇔n-i □ √(n-2i+j-1)(n+1)
i+1 □ √{(j+1)(n+1)}⇔n-i □ √(n-2i+j)(n+1)

この補題2の4つを使うと、次の3つのことがいえる

[i,i+1)に√{k(n+1)}の形が2個含まれる
⇔あるjが存在し, i≦√{j(n+1)},√{(j+1)(n+1)}<i+1
⇔あるjが存在し, √{(n-2i+j)(n+1)}<n-i,n-i+1≦√{(n+1)(n-2i+j+1)}
⇒[n-i,n-i+1)に√{k(n+1)}の形は0個含まれる

[i,i+1)に√{k(n+1)}の形が1個のみ含まれる
⇔あるjが存在し, √{(j-1)(n+1)}<i≦√{j(n+1)}<i+1≦√{(j+1)(n+1)}
⇔あるjが存在し, √(n-2i+j-1)(n+1)<n-i≦√(n-2i+j)(n+1)<n-i+1≦√(n-2i+j+1)(n+1)
⇒[n-i,n-i+1)に√{k(n+1)}の形は1個含まれる

[i,i+1)に√{k(n+1)}の形が0個含まれる
⇔あるj(0かnかもしれない)が存在し, √{j(n+1)}<i,i+1≦√{(j+1)(n+1)}
⇔あるj(0かnかもしれない)が存在し, n-i≦√{(n-2i+j)(n+1)},√{(n+1)(n-2i+j+1)}<n-i+1
⇒[n-i,n-i+1)に√{k(n+1)}の形は2個含まれる
0680132人目の素数さん
垢版 |
2020/03/16(月) 20:09:56.52ID:bNeBdUF1
>>674
nを正の整数とし、
 I_n = ∫[0,nπ] n (sin x)^2 /{x^2 + (nπ)^2} dx
とする。

(i) kを正の整数とするとき、不等式
  ∫[(k-1)π,kπ] (sin x)^2 /{x^2 + (nπ)^2} dx ≦ 1/{2π[(k-1)^2 + n^2]},
が成り立つことを示せ。

(ii) lim[n→∞] I_n を求めよ。
0681132人目の素数さん
垢版 |
2020/03/16(月) 20:13:24.31ID:8zVl3xLP
>>678への自己レス。
もしj=0のときは条件「b_i(k)=i」は単に「b_i(k)=0」と同じ条件と考える、のだったら、
>>658はあってそうです。

>>667の最後の段落について。
いや、前段までの論法で既に、整数部分がn/2より大のエリアと
整数部分がn/2より小のエリアでの、[i,i+1)∪[n-i,n-i+1)に必ず整数部分が2個含まれるという"対称性"は示されているから、
より大エリアでの余りがjなら、より小エリアでの余りは-jなわけで、
全体をトータルで考えて和をとれば2倍カウントすることになるわけで、「ほぼ」証明終わってませんか?

しかし、Excel眺めてるだけではこの"2個対称性"は気付かなかったな…
いわれてみれば確かにそうなのですが、すごい
0682132人目の素数さん
垢版 |
2020/03/16(月) 20:14:46.73ID:cD1W8NBe
>>677
ありがとうございます
平面図形で「同一直線上⇔∠OGE=180°」を使うよりも、複素数平面の方が解きやすいのでしょうか
0683132人目の素数さん
垢版 |
2020/03/16(月) 20:32:41.94ID:bNeBdUF1
>>674 (i)
たぶん
 1/{2π(k^2 + n^2)} < ∫[(k-1)π,kπ] (sin x)^2 /{x^2 + (nπ)^2} dx < 1/{2π[(k-1)^2 + n^2]},
だろうね。
0684132人目の素数さん
垢版 |
2020/03/16(月) 21:27:59.56ID:4LLVPoPK
>>682 各自やりやすいと思う方法で解けばいいと思います。
逆に私は
> 平面図形で「同一直線上⇔∠OGE=180°」を使う
こちらの方法が分からないので教えて欲しいです。
( ∠OGE=180° は別の何かの書き間違いだと思いますが )
0685132人目の素数さん
垢版 |
2020/03/17(火) 02:28:50.82ID:jkHV1VNx
>>675
解決してどうする
これは0.5*2が正しい
数学検定馬鹿問題だな
0686132人目の素数さん
垢版 |
2020/03/17(火) 02:46:21.89ID:wiT2shNR
aを正の定数とする。n=1,2,...に対して関数f_n(x)を、
f_1(x)=ax(x-1)
f_n+1(x)=f(f_n(x))
により順次定めていく。

(1)0<α<1かつ0<f_1(α)<1となるようなαの範囲をaで表せ。

(2)0<β<1とする。すべての自然数kに対して0<f_k(β)<1となるようなβの範囲をaで表せ。

(3)(2)においてβが取りうる値の範囲をs<β<tと表すとき、極限値lim[a→∞](t-s)を求めよ。
0687132人目の素数さん
垢版 |
2020/03/17(火) 03:07:25.07ID:CmDsCyUw
>>683
分子は x=(k-1/2)π に関して左右対称、を利用すれば
 ∫[(k-1)π,kπ] (sin x)^2 /{x^2 + (nπ)^2} dx = 1/{2π[(k-1/2)^2 + c + n^2]},
ただし 0 < c < 1/4,
0688132人目の素数さん
垢版 |
2020/03/17(火) 03:30:15.69ID:CmDsCyUw
>>665
[3]
 下の度数分布表は、車さくらさんのクラスの
生徒38人の1学期に読んだ本の冊数を調べ
てまとめたものです。 これについて、次の問
いに答えなさい。ただし、相対度数は小数第
3位を四捨五入して、小数第2位まで表わして
います。          (統計技能)
(5) x,yにあてはまる数をそれぞれ求めなさい。
(6) 1学期に読んだ本の冊数の平均は何冊です
 か。答えは小数第2位を四捨五入して、小数
 第1位まで求めなさい。

     読んだ本の冊数
 −−−−−−−−−−−−−−−−−
 階級(冊)    度数(人) 相対度数
 −−−−−−−−−−−−−−−−−
 0以上 〜 2未満  2     0.05
 2  〜 4    7     0.18  
 4  〜 6    13     x
 6  〜 8    9     0.24
 8  〜 10    6     y
 10  〜 12    1     0.03
 −−−−−−−−−−−−−−−−−
  合 計     38     1.00
0689132人目の素数さん
垢版 |
2020/03/17(火) 03:43:20.76ID:CmDsCyUw
延べ冊数       178 〜 216 (冊)
1人あたりの平均冊数  4.68421 〜 5.68421 (冊/人)
答え         4.7 〜 5.7 (冊/人)
0690132人目の素数さん
垢版 |
2020/03/17(火) 04:13:41.25ID:CmDsCyUw
延べ冊数nの分布は二項分布
 P_n = C[38, n-178] / 2^38,   (178≦n≦216)
とするが、便宜のため正規分布 N(197, σ^2) で近似してもよい。
σ^2 = n/4 = 19/2.
0691132人目の素数さん
垢版 |
2020/03/17(火) 08:41:55.31ID:6f3JLIW1
1秒間に30回に取得できる数列
1539538600、3079077200、4618615800......

1秒間に60回取得できる配列
769769300、1539538600、2309307900......

この数値が何を示しているか分かりますか?
0692132人目の素数さん
垢版 |
2020/03/17(火) 10:17:20.19ID:Vd0UZ98W
次の条件を満たす1より大きいrが存在することを示してください:
nを任意の正の整数とするとき
1<n<p<r・n
であるような任意の素数pに対して
Σ[k=0→n] {C(n, k)}^4 はpの倍数
が成立する
0693132人目の素数さん
垢版 |
2020/03/17(火) 10:58:24.14ID:jkHV1VNx
>>688
冊数だから2未満とは1のこと
0〜1の階級値は0.5
同様に
2〜3の階級値は2.5
こんな風になるから正しい答えは>>666
0694132人目の素数さん
垢版 |
2020/03/17(火) 11:18:14.32ID:yOLN43Ea
小数第1位まで出す意味あるんかなあ
有効数字っぽく見えちゃうけどそうではないわけだろ?
世論調査なんかもそうだけどなんかちょっと疑問
0695132人目の素数さん
垢版 |
2020/03/17(火) 11:30:17.48ID:Bo3Qnj57
>>692
二乗和ならr=2で受験レベルだけど四乗和でr=2だとn=3ですでに成立しないしなぁ。
それは自作問題?
ホントに成立するん?
0696132人目の素数さん
垢版 |
2020/03/17(火) 13:04:59.93ID:jkHV1VNx
>>694
>小数第1位まで出す意味あるんかなあ
なんで?
じゃあ0以上2未満の人が3人居たら平均は?
0697132人目の素数さん
垢版 |
2020/03/17(火) 13:37:19.80ID:lZjSmGru
そんな感じなことをやってるわけか
統計嫌い養成にもってこいの問題だな
0698132人目の素数さん
垢版 |
2020/03/17(火) 13:38:30.48ID:fOaacBzf
1≦x1≦<x2≦<........xk≦nの同値変形が
1≦x1<x2-1<........xk-(k-1)≦n-(k-1)となる理由が全く分かりません。申し訳ないのですが、ご教示お願いします。(x1≦<x2はx2-x1≧2を表しています)
0699132人目の素数さん
垢版 |
2020/03/17(火) 13:42:58.28ID:fOaacBzf
698です
すみません。自己解決しました。
勘違いをしていました。お恥ずかしい。すみません。
0700132人目の素数さん
垢版 |
2020/03/17(火) 13:43:02.98ID:7zzuTuCg
すごくわかりにくい俺様記号パス
0701132人目の素数さん
垢版 |
2020/03/17(火) 14:28:49.44ID:LRWp8hDU
「群」「環」「体」を現在の視点から適切な用語に変えるいいアイデアが提案されたことってありますか?
この三つって重要度のわりに名前と内容があまりにかけ離れてますよね?
0702132人目の素数さん
垢版 |
2020/03/17(火) 14:34:47.95ID:jkHV1VNx
>>701
人名でなければ
どうでも良い
0703132人目の素数さん
垢版 |
2020/03/17(火) 14:44:32.33ID:mpeXHzFh
ドイツ語だの英語だのフランス語だので変えてくれないと意味ないじゃん
0704132人目の素数さん
垢版 |
2020/03/17(火) 20:46:50.50ID:KcKgs1Eg
じゃ、たとえば、「軍」「艦」「隊」とかどう?
0705132人目の素数さん
垢版 |
2020/03/17(火) 22:19:48.69ID:v5PJ8Z18
AB=b,AD=dの長方形ABCDの辺AB上に点E、辺AD上に点Fを自由にとる。
また長方形の内部に点Gをとり、△GEFが直角三角形となるようにする。
このようなE,F,Gのとり方は色々あるが、それらの可能なとり方の全てを考えたとき、点Gが動きうる領域の面積を求めよ。
0708132人目の素数さん
垢版 |
2020/03/18(水) 01:37:18.08ID:LbXnfiiv
>>687
 θ = x - (k-1/2)π,  |θ| < π/2,
とおく。

 ( 1/{[(k-1/2)π + θ]^2 + (nπ)^2} + 1/{[(k-1/2)π - θ]^2 + (nπ)^2} )/2
 ≒ (1/[(k-1/2)^2・π^2 + (nπ)^2]) {1- α/[(k-1/2)^2・π^2 + (nπ)^2]・θ^2},

 α(n,k) = [n^2 - 3(k-1/2)^2]/[(k-1/2)^2 + n^2],

 ∫[-π/2,π/2] (cosθ)^2・{1- α/[(k-1/2)^2・π^2 + (nπ)^2]・θ^2} dθ
  = (π/2) {1- (π^2 -6)/(12・[(k-1/2)^2・π^2 + (nπ)^2])・α}
  = (π/2) {1- c/[(k-1/2)^2 + n^2]},

 c(n,k) = (π^2 -6)/(12π^2)・α(n,k) = 0.03267274 α(n,k)
かなり小さい。
0709132人目の素数さん
垢版 |
2020/03/18(水) 02:06:54.17ID:LbXnfiiv
続き

∫[-π/2,π/2] (cosθ)^2 dθ
 = [ (θ - sinθcosθ)/2 ](θ=-π/2,π/2)
 = π/2,

∫[-π/2,π/2] (θ・cosθ)^2 dθ
 = [ (θ^3)/6 + (2θ^2 -3)sin(2θ)/8 + θcos(2θ)/4 ](θ=-π/2,π/2)
 = (π/2)・(π^2 -6)/12,
0710132人目の素数さん
垢版 |
2020/03/18(水) 02:27:29.95ID:LbXnfiiv
>>688
[3]
 下の度数分布表は、さくらももこ さんのクラスの
生徒38人の1学期に読んだ本の冊数を調べ
てまとめたものです。 これについて、次の問
いに・・・・
0711132人目の素数さん
垢版 |
2020/03/18(水) 03:24:57.98ID:LbXnfiiv
>>692
 a(n) = Σ[k=0→n] {C(n,k)}^4
n≦12 では
1       2  2,
2      18  2・3・3,
3      164  2・2・41,
4     1810  2・5・181,
5     21252  2・2・3・7・11・23,
6    263844  2・2・3・3.・3・7・349,
7    3395016  2・2・2・3・3・61・773,
8   44916498  2・3・3・3・11・75617,
9   607041380  2・2・5・11・31・89009,
10  8345319268  2・2・11・13・67・71・3067,
11 116335834056  2・2・2・3・3・13・499・249079,
12 1640651321764  2・2・7・7・13・643897693,

・{(1+x)(1+y)(1+z)(1+w)}^n の対角項 {(xyzw)^k 形の項} の係数和
・{(1+x)(1+y)(1+z)[1+1/(xyz)]}^n の定数項

http://oeis.org/A005260
0714哀れな素人
垢版 |
2020/03/18(水) 10:04:06.51ID:lVJCas+h
>>705
>>706の解答者は理由を書いていないが、
GはEFを直径とする円周上にあると考えると、
EがAからBまで動き、FはAに固定されていると考えると、
GはABを直径とする半円内を動く。

次にEはBに固定されているとし、FがAからDまで動くと、
GはBDを直径とする円に内接する長方形ABCDから、
ABを直径とする半円を除いた部分を動く。

結局Gは長方形ABCD内の全領域を動く。
0715132人目の素数さん
垢版 |
2020/03/18(水) 16:16:48.31ID:cnODbM85
1/(1-x+x^2)と1/(1-x-2x^2)をxのべき級数に展開し、x^nの係数をそれぞれp[n],q[n]とおく。

(1)任意のnに対してp[3n]はnによらない定数であることを示し、その値を求めよ。

(2)3q[n]-p[3n]をnで表せ。
0716132人目の素数さん
垢版 |
2020/03/18(水) 17:03:55.77ID:FKTohgBq
>(1)任意のnに対してp[3n]はnによらない定数であることを示し、その値を求めよ。
p[3] = -1, p[6] = +1 定数になりませんよね? 問題を写し間違えてませんか?
0717132人目の素数さん
垢版 |
2020/03/18(水) 19:47:03.16ID:VrpVs/Q6
回帰分析ででてくる最尤推定は統計学の教科書にのっている最尤推定とは別物ですか?

統計学の本にのっている最尤推定は、確率分布や密度関数のパラメーター付された族を考え、真の分布から独立に得られた確率変数を用いて、尤度関数を最大化してパラメーターを推定するものだと思います。
しかし、例えば線形回帰だと、各xに対しyの値が正規分布に従っているとしても、それぞれ平均が違うので同一分布から独立に得られていません。
0718132人目の素数さん
垢版 |
2020/03/18(水) 20:24:26.05ID:lfw++vLD
>>715-716
たぶん式はあってるけど、「nによらない定数」って日本語が間違ってる。

1つめの有理式は、分母を複素数の範囲で(x-a)(x-b)と因数分解すると
aやbは1の6乗根となる。
そして1/(x-a)と1/(x-b)のべき級数展開を考え、2つのべき級数展開の積
であることからx^3、x^6、x^9の係数を求めてみる。

2つめの有理式の3倍を部分分数分解する。
2つの有理式のべき級数展開を考え、2つのべき級数展開の和から3q[n]を出す。
0719132人目の素数さん
垢版 |
2020/03/18(水) 22:42:44.30ID:GwJqdJPg
>>718
(1)を計算しましたが確かに(-1)^nになってnに依存しないとは言えませんね。ありがとうございます。
(2)の計算、(多項式)×(多項式)からn次の係数をどう出そうか方針が立たないです。分かる方お願いします。

どうやら数学検定1級の計算問題らしいです。
0720132人目の素数さん
垢版 |
2020/03/18(水) 23:22:24.44ID:FKTohgBq
>>719
3/(1-x-2xx) = 3/((1-2x)(1+x)) = 2/(1-2x) + 1/(1+x)
 = 2/(1-(2x)) + 1/(1+(-x)) = 2* (1 + (2x) + (2x)^2 + ... ) + (1 + (-x) + (-x)^2 + ... )
 = ...
>>718 の「部分分数分解」がヒントですね
0721132人目の素数さん
垢版 |
2020/03/18(水) 23:24:06.90ID:FKTohgBq
というか p[3n] も同じようにして (-1)^n を導出したんと違うのですか?
0722132人目の素数さん
垢版 |
2020/03/18(水) 23:40:24.36ID:FKTohgBq
> 2つのべき級数展開の積 であることからx^3、x^6、x^9の係数を求めてみる。
積を求める方針でもできるのですね... って計算難しいような...

部分分数分解なら
1-x+xx = (1+xxx )/(1+x) = (e^{+πi/3} - x) (e^{-πi/3} - x) より
1/(1-x+xx) = (1/(2i*sin(π/3)))*( e^{+πi/3}/(1-e^{+πi/3}x) - e^{-πi/3}/(1 - e^{-πi/3}x) )

x^{3n} の係数
(1/(2i*sin(π/3)))* e^{+πi/3}* (-1)^n - e^{-πi/3}*(-1)^n = (-1)^n
0726132人目の素数さん
垢版 |
2020/03/19(木) 01:15:24.22ID:mXsnD9nM
>>711

a(n) を割り切らない最小の素数p (>n) を b(n) とすれば

n  b(n)  b(n)/n
--------------------------
1  3   3.0000
2  5   2.5000
3  5   1.6667
4  7   1.7500
5  13   2.6000
6  11   1.8333
7  11   1.5714
8  13   1.6250
9  13   1.4444
10  17   1.7000
11  17   1.54545
12  17   1.4167

r < 1.4167  (上限)
0727132人目の素数さん
垢版 |
2020/03/19(木) 04:45:40.82ID:o+4AW6nT
>>719 >>722
>718です。べき級数展開の積でやるのはこんな感じです

まず、 1/(1-x+x^2)=1/{(x-a)(x-b)} と因数分解すると
a=(1+i√3)/2=e^(2πi/6), b=(1-i√3)/2=e^(-2πi/6) である
ここで a^3=-1 と 1/b=a に注意しておく

1/(x-a)=1/(-a) * 1/{1-(x/a)}
=1/(-a)*{1+(x/a)+1+(x/a)^2+1+(x/a)^3+…}

同様に

1/(x-b)=1/(-b) * 1/{1-(x/b)}
=1/(-b)*{1+(x/b)+1+(x/b)^2+1+(x/b)^3+…}
=1/(-b)*{1+(x/b)+1+(x/b)^2+1+(x/b)^3+…}
=(-a)*(1+ax+1+(ax)^2+1+(ax)^3+…)

すると、
1/(x-a) * 1/(x-b)
のx^(3n)の項は、
(x/a)^(3n)*1+(x/a)^(3n-1)*ax+(x/a)^(3n-2)*(ax)^2+ … +(x/a)^2*(ax)^(3n-2)+(x/a)*(ax)^(3n-1)+(ax)^(3n)

よってこの係数は
(1/a)^(3n)+(1/a)^(3n-2)+(1/a)^(3n-4)+ … +a^(3n-4)+a^(3n-2)+a^(3n)
=(1/a)^(3n)*{1+a^2+a^4+ … +a^(6n-4)+a^(6n-2)+a^(6n)}
=(1/a)^(3n)*{1-(a^2)^(3n+1)}/(1-a^2)
=1/(-1)^n *{1-a^(6n)*a^2}/(1-a^2)
=(-1)^n

ある分野ではこんなべき級数展開の積をばんばんやるのですが、
でも、この問題では>723の方がエレガントですね
0728132人目の素数さん
垢版 |
2020/03/19(木) 04:50:14.81ID:o+4AW6nT
>>727
おおう、typo…
前半の計算は、正しくは

1/(x-a)=1/(-a) * 1/{1-(x/a)}
=1/(-a)*{1+(x/a)+(x/a)^2+(x/a)^3+…}

同様に

1/(x-b)=1/(-b) * 1/{1-(x/b)}
=1/(-b)*{1+(x/b)+(x/b)^2+(x/b)^3+…}
=1/(-b)*{1+(x/b)+(x/b)^2+(x/b)^3+…}
=(-a)*(1+ax+(ax)^2+(ax)^3+…)

でしたorz
0730132人目の素数さん
垢版 |
2020/03/19(木) 05:19:43.05ID:a1uvWnRb
国をゆすってどうのこうのと聞こえてきているが、私は現時点で何の利益も得ていないし
何故未解決問題を解決したのに、一か月以上も誹謗中傷の的にならなければならないのか?
何の利益にもならない言動を繰り返す人間がいることに対しては完全に理解不能である。

同業者憎悪だということも聞こえてきているが、こいつらの声は常に子供で
ボイスチェンジャーを使って必死だとしかいいようがない。

こいつらの嫌がらせは四六時中鹿児島県のド田舎で繰り返されているわけだが
それが何時までも放置されているのも不思議なことだ。
0732132人目の素数さん
垢版 |
2020/03/19(木) 15:07:45.84ID:trCTUkSk
(x+y)^2(x-y)^2(x^2+y^2)^2

の答えが

x^8-2x^4y^4+y^8

になるんですが、これは

x^16-2x^4y^4+y^16

ではないでしょうか?
途中式で

(x+y)^2(x-y)^2(x^2+y^2)^2
= {(x+y)(x-y)(x^2+y^2)}^2
= {(x^2-y^2)(x^2+y^2)}^2
= (x^4-y^4)^2

になって最後をを展開すると

(x^4-y^4)(x^4-y^4)



x^16-2x^4y^4+y^16

だと思うのですが・・・
間違ってますか?
0733132人目の素数さん
垢版 |
2020/03/19(木) 15:09:46.68ID:MINdtvdR
数学の問題で存在は証明されているが見つかっていないものってなんかありますか?
0736132人目の素数さん
垢版 |
2020/03/19(木) 16:13:01.25ID:MINdtvdR
>>735
なるほど。。質問の意図は具体例は何一つないけど存在することだけは証明されているものはあるのかな?
っていうことでした。
0741132人目の素数さん
垢版 |
2020/03/19(木) 17:57:01.77ID:EOulK+qH
>>733
アルゴリズム系はそういうの多いんじゃないの?
○○の定理によると計算量の下限はnlognだが構成法は不明、みたいな
0742132人目の素数さん
垢版 |
2020/03/19(木) 18:56:59.50ID:KrhQLEng
>>740
V=L入れればできるって書いてあるやン
0743132人目の素数さん
垢版 |
2020/03/19(木) 19:16:34.36ID:BW7TgbOd
>>742
相対的に無矛盾としか書いてないね
『構成可能であると証明できる』ことと『実際に構成できる』ことは違うでしょ
0744132人目の素数さん
垢版 |
2020/03/19(木) 19:36:28.37ID:KrhQLEng
>>743

> ZFC+V=L ではある特定の論理式が R(実際には任意の集合)を整列順序付けることが従う。
0745132人目の素数さん
垢版 |
2020/03/19(木) 19:55:31.68ID:BW7TgbOd
>>744
その公理を加えてできる公理系ではそういう論理式の存在が証明できるというだけでしょ
そういう論理式の存在が、つけ加える前の公理系(単なるZFCとか)と独立な場合もちゃんと考慮しようよ
0746132人目の素数さん
垢版 |
2020/03/19(木) 22:04:33.79ID:FC13N0bq
L個ある数値について
各項目を四捨五入して合計した値と
合計値を四捨五入して合計した値が
一致しない確率は

1-( (6/(π×L))^(1/2) )

で求まるそうなんです。

問題1 この式の導き方を教えて下さい。
なぜ円周率が・・・?

問題2 
毎年、ある会合にかかった費用を、A,B,C,D,Eの5人で支払うことになってます。
費用は毎年変わるのですが、
5人の支払い比率は、a%、b%、c%、d%、e% (a>b>c>d>e>0)
で毎年一定です。
(例えば32.3%、24.1%、21.6%、16.8%、5.2%)
1円未満は四捨五入しますが、一致しなかった時はAで差額(±1円)を調整します。
つまり、AのN年間の調整額の合計の期待値は約0円です(おそらく)。

20年経ったとき、Aの調整額の合計が+10円になる確率はいくらですか?

N年経ったとき、Aの調整額の合計がM円になる確率はいくらですか?
0747132人目の素数さん
垢版 |
2020/03/20(金) 00:28:49.59ID:vSa3xPGp
>>745
ある特定の論理式
だから実際にそういうものを具体的に作るってことじゃないの?
0748132人目の素数さん
垢版 |
2020/03/20(金) 00:29:17.58ID:p5Mf5Wxl
>>746
L→∞で正規分布が出てくる関係かな?
確率密度関数に1/√(2π)というのがあったような
0749132人目の素数さん
垢版 |
2020/03/20(金) 00:30:07.33ID:vSa3xPGp
>>745
>その公理を加えてできる公理系ではそういう論理式の存在が証明できるというだけでしょ
それはZFCでできるでしょ
具体的では無いが
0750132人目の素数さん
垢版 |
2020/03/20(金) 01:23:50.19ID:vKiJI24B
1枚の硬貨をn回投げ、表が出た時は1、裏が出た時は0を割り当てることで得られる数の列をx1,x2,…xnとする。同じ試行により、新たに得られる数の列をy1,y2…ynとする時、
x1y1+x2y2……xnynが偶数になる確率をPnと置くと、2項定理により、
2Pn=(3/4+1/4)^n+(3/4-1/4)^nとなる。
と解答に書いてあるのですが、2Pn=(3/4+1/4)^n+(3/4-1/4)^nがどこから出てきたのかわからないです。
よろしくお願いします。
0751132人目の素数さん
垢版 |
2020/03/20(金) 01:41:42.67ID:xh3ZxbS/
f:R-{0}->R に対し, lim[x->0](f(x)+f(2x))=a (有限確定値)のとき, lim[x->0]f(x)=a/2

これって正しい?
0753132人目の素数さん
垢版 |
2020/03/20(金) 03:36:59.33ID:1YkioBb1
>>751
f(x) = 1  x∈(1/2,1]
f(x) = 0  x∈(1/2^2,1/2]
f(x) = 1  x∈(1/2^3,1/2^2]
.. . .
f(x) = 1 x∈(1/2^{2k+1}, 1/2^{2k} ]
f(x) = 0 x∈(1/2^{2k+2}, 1/2^{2k+1}]
(マイナス側も同様に定義)

lim[x->0](f(x)+f(2x))=1 (有限確定)
lim[x->0] f(x) (不確定)
0754132人目の素数さん
垢版 |
2020/03/20(金) 03:52:29.56ID:1YkioBb1
>>750
x1y1+x2y2……xnynが偶数(=2m) になるパターンは
(x,y)=(1,1)のペアが 2m個、他のペア(n-2m 個)は (0,0)(0,1)(1,0) のどれかの組み合わせ

Pn = Σ[0≦2m≦n] C{n,2m} 3^(n-2m) /(2^n * 2^n)
 = Σ[0≦k≦n] C{n,k} 3^(n-k) (1 + (-1)^k)/2 /4^n
二項定理より
2 Pn = (3+1)^n /4^n + (3-1)^n /4^n
 = (3/4 + 1/4)^n + (3/4 - 1/4)^n
0755132人目の素数さん
垢版 |
2020/03/20(金) 04:35:00.55ID:lC3HBZ24
>>753
 f(x) = [ 1 + sin(π・log(x)/log(2)) ]
でござるか。
それにしても 27.66秒で整数化されたとは、驚きでござる。
0756132人目の素数さん
垢版 |
2020/03/20(金) 07:30:26.64ID:u6fG/32K
>>749
『整列可能性』と『整列順序を定義する論理式の存在』は違わない?そもそも
>しかし、ZFC や、一般連続体仮説を加えた体系 ZFC+GCH においては、R 上の整列順序を定義する論理式は存在しない[1]。
とあるけど何を根拠に?
0757132人目の素数さん
垢版 |
2020/03/20(金) 07:51:30.64ID:p5Mf5Wxl
>>746
L個の実数を一様分布で抽出して2〜50でシミュレーションしてみた。
https://i.imgur.com/ppslW60.png

Lが大きくなると1-( (6/(π×L))^(1/2) )に一致するようです。
数理は賢者にお任せ。

rm(list=ls())

f45 <- function(a) { # 四捨五入
x=a-floor(a) # floor(a):aを超えない整数ガウス記号[x]と同じ,x:小数部分をxに入れる
floor(a)+ (x>=0.5) # xが0.5以上なら1をそうでないなら0を加える
}
f45(1.5) ; f45(2.5)
round(1.5) ; round(2.5)

sim <- function(n=3,k=1e4){
sub <- function(n){
x=runif(n) # 一様分布乱数(実数)n個の配列 roundならrunif(n,0,2)
y=numeric(n) # y:四捨五入での整数を入れる配列
for(i in 1:n) y[i]=f45(x[i]) # xの各実数を四捨五入してyに入れる
f45(sum(x))!=sum(y) # xの総和の四捨五入数とyの総和が異なればTRUEを返す
}
r=mean(replicate(k,sub(n))) # k個のシミュレーションでのTRUEの頻度を返す
p=1-( sqrt(6/(pi*n)) ) # 理論値?
return(c(r,p))
}
L=2:50
plot(L,sapply(L,function(x) 1-( sqrt(6/(pi*x)))),bty='l',type='l')
re=t(sapply(L,function(x) sim(x)))
plot(re,bty='l',pch=19,asp=1,xlab='実験値',ylab='理論値',type='l')
abline(a=0,b=1,lty=3)
0758132人目の素数さん
垢版 |
2020/03/20(金) 08:09:31.37ID:ULA/5c7b
>>746
それちょっと前に面白い問題スレにでてたやつじゃないの?
答え違ってなかったっけ?
0759132人目の素数さん
垢版 |
2020/03/20(金) 09:46:50.78ID:1YkioBb1
>>746
ランダム整数: x[i] {なんらかの範囲の一様分布}
ランダム偏差: α[i] ∈ [-0.5,0.5) {一様分布}
A = Σ[i=1,L] round(x[i]+α[i]) = Σ[i=1,L] x[i]
B = round( Σ[i=1,L](x[i]+α[i]) ) = A + round(Σ[i=1,L]α[i])
A=B ⇔ -0.5 < α[1]+α[2]+...+α[L] < 0.5

s := α[1]+α[2]+...+α[L]
中心極限定理より Lが大の時、
確率分布: f(s) ≒ 1/√(2πσσ) * exp(- s^2/(2σσ) )
標準偏差: σ ≒ (√L)* σ1, ( σ1 := √{ ∫[α=-0.5,+0.5] α^2 dα } = 1/√12 )

1-P = ∫[s=-0.5,+0.5] f(s) ds ≒ 1/√(2πσσ) = √(6/(πL))
0760132人目の素数さん
垢版 |
2020/03/20(金) 09:53:19.40ID:1YkioBb1
訂正
> ランダム整数: x[i] {なんらかの範囲の一様分布}
こちらはランダムである必要はなかった
0761132人目の素数さん
垢版 |
2020/03/20(金) 11:02:16.64ID:1tt2YkMa
>>752-753
ありがとうございます
つぎはぎ関数で反例ができて、連続なら正しいようなダメなような?と思っていたのですが
全然ダメですね
0763132人目の素数さん
垢版 |
2020/03/20(金) 15:02:55.42ID:vKiJI24B
>>754
回答ありがとうございます。
= Σ[0≦k≦n] C{n,k} 3^(n-k) (1 + (-1)^k)/2 /4^nの
(1 + (-1)^k)/2はどうやって出てきたのでしょうか?
すみません。よろしくお願いします。
0764132人目の素数さん
垢版 |
2020/03/20(金) 15:29:24.36ID:1YkioBb1
kが奇数の時に 0 、偶数の時に 1 となるので
これで偶数項のみ取り出した和 (一つ上の式) と等価になります。
0765132人目の素数さん
垢版 |
2020/03/21(土) 00:24:20.17ID:JeZUUa8W
>>762
四捨五入前の支払額がそういう値になることは無いと思いますが・・・
きのせい?
0766132人目の素数さん
垢版 |
2020/03/21(土) 06:43:15.16ID:4nSuI7cb
a,bは互いに素な自然数とする。

(1)a+biを極形式の形で表せ。iは虚数単位である。

(2)任意の自然数nに対して、(a+bi)^nは実数でないことを示せ。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況