現代数学の系譜 工学物理雑談 古典ガロア理論も読む54

このスレは、皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。

このスレは、現代数学のもとになった物理・工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで宜しければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^
最近、AIと数学の関係が気になって、その関係の記事を集めています〜(^^
いま、大学数学科卒でコンピュータサイエンスもできる人が、求められていると思うんですよね。

スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。
話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。

スレ46から始まった、病的関数のリプシッツ連続の話は、なかなか面白かったです。
興味のある方は、過去ログを(^^

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
上記は、お断り!
小学生がいますので、18金(禁)よろしくね!(^^

(旧スレが512KBオーバー(又は間近)で、新スレ立てた)

408現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/12(月) 08:03:08.48ID:P6oha7dw
>>398-401

下記は、過去に私が確率論の専門家と呼んだ人の発言だけど
実質これで、数学の議論は尽きているんだ

だが、これでどれだけ自分が納得できるか?
確率過程論を学んだことのない人は、納得できないんだろうなと

そう思うだけです
ご愁傷様です

(引用)
https://rio2016.5ch.net/test/read.cgi/math/1512046472/37
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47
37 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2017/11/30(木) 22:19:02.03 ID:IqNIthYM
20 http://rio2016.2ch.net/test/read.cgi/math/1466279209/535-538

535 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:33:06.50 ID:f9oaWn8A [12/13]
>>534
非可測であることに目をつぶって計算することの意味をあまり感じないな
直感的に1/2とするのは微妙.
むしろ初めの問題にたちもどって,無限列から一個以外を見たとこでその一個は決定できないだろうと考えるのが
直感的にも妥当だろう

538 返信:132人目の素数さん[] 投稿日:2016/07/03(日) 23:54:57.90 ID:f9oaWn8A [13/13]
うーん,正直時枝氏が確率論に対してあまり詳しくないと結論せざるを得ないな

>確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
の認識が少しまずい.
任意有限部分族が独立とは
P(∀i=1,…n,X_i∈A_i)=Π[i=1,n]P(X_i∈A_i)ということだけど
これからP(∀i∈N,X_i∈A_i)=Π[i=1,∞]P(X_i)が成立する(∵n→∞とすればよい)
これがきっと時枝氏のいう無限族が直接独立ということだろう.
ということは(2)から(1)が導かれてしまったので,
「(1)という強い仮定をしたら勝つ戦略なんてあるはずがない」時枝氏の主張ははっきり言ってナンセンス
確率変数の独立性というのは,可算族に対しては(1)も(2)も同値となるので,
”確率変数の無限族の独立性の微妙さ”などと時枝氏は言ってるが,これは全くの的外れ
(引用終り)
以上

409132人目の素数さん2018/11/12(月) 17:51:03.43ID:kxfvxefk
>>408
スレ主は時枝記事の内容が極限の類似になっていることは分からないのですよね?
だったら
> (∵n→∞とすればよい)
の内容も分からないわけですよね

そこでn→∞とすることはどういうことなのか比較してみると

[1] 通常の極限 lim_{n→∞} an = a
An: {a1, a2, ... , an, ... } (これを定義したい)
Bn: {a, a, ... , a, ... } (定数列は構成可能)

Cn = {s1, s2, ... , sm, ε, ε, ... , ε, ... }
Dn = {s1, s2, ... , sm, -ε, -ε, ... , -ε, ... }
という2つの数列は構成できる

AnをDn <= An - Bn <= Cnが成立する数列と定義すれば
lim_{n→∞} an = a となるAnの定義になっている

[2] 時枝記事
An: {a1, a2, ... , an, ... } (これをR^Nの元であると定義したい)
Bn: {b1, b2, ... , bn, ... } (R^Nの代表元)

Cn: {s1, s2, ... , sm, 0, 0, ... , 0, ... }
という数列は[1]と同様に構成できる

AnをAn - Bn = Cnが成立する数列と定義すれば
Bnが得られていればR^Nの元を定義することができる

[3] 箱に入れた確率変数xiの独立性 (>>396 >>408)
An: {x1, x2, ... , xn, ... } (これが全て独立であると定義したい)
Bn: {y1, y2, ... , yn, ... } (しっぽが全て独立である確率変数)

Cn: {s1, s2, ... , sm, 0, 0, ... , 0, ... }
という数列は構成できる

AnをAn - Bn = Cnが成立する数列と定義すれば
Bnが得られていればAnの可算無限個全てが独立であると定義することができる

Cn, Dnの中のsmの添字mが有限であればn→∞の極限は収束する
[1]のAnはaに収束する
[2]の時枝記事では収束すれば代表元としっぽが一致するので数当てが可能
[3]では収束すればしっぽが一致するのでBnの確率変数を選ぶことが可能

410132人目の素数さん2018/11/12(月) 17:52:15.75ID:kxfvxefk
(上の書き込みの内容をふまえて)
>>408
> これからP(∀i∈N,X_i∈A_i)=Π[i=1,∞]P(X_i)が成立する(∵n→∞とすればよい)

n→∞としてもしっぽの可算無限個は独立なんですか?という問には答えられない

n→∞とできる(= 収束する)には時枝記事の代表元の代わりにしっぽが全て独立である
無限数列を用意しておかなくてはならない

n→∞として言えるのはしっぽが全て独立であるような無限数列があれば
しっぽが一致することから全ての可算無限個が独立であると定義できるということ

411現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/12(月) 23:21:57.44ID:P6oha7dw
>>404
関連
https://www.jstage.jst.go.jp/article/sugaku1947/49/2/49_2_144/_article/-char/ja/
岡潔先生の数学
不定域イデアルの誕生
西野 利雄
数学 / 49 巻 (1997) 2 号 / 書誌
https://www.jstage.jst.go.jp/article/sugaku1947/49/2/49_2_144/_pdf/

https://www.jstage.jst.go.jp/article/emath1996/1996/1996/1996_1996_55/_article/-char/ja/
日本数学会 総合講演・企画特別講演アブストラクト / 1996 巻 (1996) 1996 号 / 書誌
岡潔先生の数学 -不定域イデアルの誕生-
西野 利雄
https://www.jstage.jst.go.jp/article/emath1996/1996/1996/1996_1996_55/_pdf

412現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/12(月) 23:26:29.96ID:P6oha7dw
>>409-410
レスありがとう
新しい人かな?

何度も聞いているが
Q1.時枝記事の原文(雑誌)を読みましたか?

YesかNoか
まず、この問いに答えて欲しい
全てはそれから

413132人目の素数さん2018/11/12(月) 23:46:17.93ID:32V4as12
>>412
レスありがとう
スレ主かな?

何度も聞いているが
Q1.大学一年生用の教科書を読みましたか?

YesかNoか
まず、この問いに答えて欲しい
全てはそれから

414132人目の素数さん2018/11/13(火) 01:06:09.47ID:EcMbIY5N
>>412
Yes
>>405
Q2.については>>409
Q3.についてはNo (>>409)

これで質問は締め切ります

>>407
> 選択公理をどう考えているの?
別に否定していませんよ
R^Nの代表元を得るのに使います (>>409の[2]のBn)

> 普通の数学では、収束しない数列も考えますよ
時枝記事では全て収束する (>>409)
よって余分な設定をつけなくても数当てが成功する

> ”どんな実数を入れるかはまったく自由”、”もちろんでたらめだって構わない”
代表元のしっぽが独立かは関係ない

415132人目の素数さん2018/11/13(火) 01:18:24.43ID:NNsnaw+p
>>407
>回答はYes
時枝記事の原文(雑誌)を読んでいませんね もしくは 読めていませんね

416現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 06:50:24.33ID:zBQY1xmc
>>413-415
コテハンがないから、だれがだれか分らないが
どもありがとう(^^

417現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 06:54:43.72ID:zBQY1xmc
>>414
まずこれから

時枝記事の原文(雑誌)を読んだと

では
「時枝記事では全て収束する (>>409)」

時枝記事の文
”どんな実数を入れるかはまったく自由”、”もちろんでたらめだって構わない”
とは
矛盾します。

∵”どんな実数を入れるかはまったく自由”ですから
収束しない数列を箱に入れることで
「時枝記事では全て収束する (>>409)」の反例構成ができますから

418現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 06:56:37.48ID:zBQY1xmc
>>413
Yes
大学のころに読みました
高校で「大学の教科書」と書いてある本を読みました
以上

419現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 07:16:12.92ID:zBQY1xmc
>>415
どうぞ
解釈はご勝手に

なお、下記スレ28は、まだ生きていますよ
えーと、こうでしたね(下記引用)
ここに、私は参加していません
スレが105番で止まっていますよ

https://rio2016.5ch.net/test/read.cgi/math/1483314290/6-7
現代数学の系譜11 ガロア理論を読む28
(抜粋)
6 名前:132人目の素数さん[sage] 投稿日:2017/01/02(月) 19:55:48.57 ID:VW7bBLUp

このゲームの場合、プレーヤー2が勝つ事象は非可測なので、積分の順序によって積分値が変わってもおかしくありません。

7 名前:132人目の素数さん[sage] 投稿日:2017/01/02(月) 20:02:42.58 ID:0caOih5s

時枝氏の記事、Hart氏の記事の内容に興味がある方はどなたでもご参加ください。
ただし以下の行為は厳に謹んでください:
・他サイトからのコピペでスレを埋め尽くす行為
・デタラメを述べておきながら間違いの指摘は無視する行為
・明らかな間違いにもかかわらず、数学は自由だから何でもありだろ?、と無理やり正当化する行為
・他人の学歴など個人情報を聞き出す行為
・その他、材料工学分野の研究者/エンジニアの名誉を貶める行為
以上
(引用終り)

つづく

420現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 07:17:51.18ID:zBQY1xmc
>>419

つづき

>>408)「非可測であることに目をつぶって計算することの意味をあまり感じない」
に満足できたいない人たちが
非可測集合を扱う確率論を議論しようというスレでしたね

スレ28は、これで終りですか?
尻切れトンボにみえるのですが
だれも、賛同する人が居ないようですね

で、これ、纏めて論文で書かれたらどうですか
「非可測集合を扱う確率論」とか
時枝先生に見て貰ったどうですか、喜ばれると思いますよ

以上

421現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 07:28:55.15ID:zBQY1xmc
>>420 補足

外からは、こう見られています
数学科生は、多くは、確率論と確率過程論を履修するのでしょう
(数学科生に限らず、物理系などもそうでしょうが)

私は、時枝記事の議論は、終わったと
このスレのテンプレ>>13
「ほぼほぼ、時枝は、「ぷふ」さんのおかげで完全終了です! 」と書いた通りです

トンデモさんたち、むりやり「議論しよう」って言ってくる
ってことです
(おそらく確率過程論を学んだ人たちからは、トンデモさんだと)

>>325より再録)
https://rio2016.5ch.net/test/read.cgi/math/1541001291/360
Inter-universal geometry と ABC予想 34
360 名前:132人目の素数さん[sage] 投稿日:2018/11/09(金) 10:21:15.60 ID:O6lq68Fq
トンデモってむりやり「議論しよう」って言ってくるよね。
ガロアスレもそうだけど。
多分議論がされている(ふうに装っている)あいだは間違いと言う烙印を押されない、と思ってるんだろうが、
それはただのネットバトルのルール(?)であってアカデミックな場のルールじゃないから。
(引用終り)

以上

422現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 08:01:27.35ID:zBQY1xmc
>>419-420 補足の補足

1.スレ28を立てた人たちは、時枝記事が、通常の可測集合を扱う確率論から外れていると
  そこまでの認識はあるんだ
2.では、非可測集合を扱う確率論があるのか?
  おそらくは、Noでしょう
 (>>408 「非可測であることに目をつぶって計算することの意味をあまり感じない」ですから)
3.だから、「時枝記事は、まっとうな数学の範囲外」だと
4.だから、スレ28を立てた人たちこそ、東大に限らず、どこでも
  確率論か確率過程論を専門に研究している人を訪ねて、大学へ行かれたらどうですか?
 (おそらく、東大出身者もおられると思いますよ)

以上です

423132人目の素数さん2018/11/13(火) 08:47:25.46ID:NNsnaw+p
あのー御託はいいんで、時枝記事の間違い箇所を具体的に指摘してもらえませんか?
できませんか?

424132人目の素数さん2018/11/13(火) 08:53:28.38ID:NNsnaw+p
これだけは言っておくわ
お前は他人のレスを鵜呑みにして大きな勘違いをしている
当てられっこないという直観に直接間接に味方してくれそうな他者の発言に縋ってる
だけで、お前自身は何もわかってない

425現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 10:29:40.42ID:7skoTD8D
>>423-424
別に「何もわかってない」に縋りたければどうぞだ
が、話は逆と思う

上記(>>422)のごとく
1)時枝記事が非可測集合を扱っている
(これは、時枝記事自身に書いてある
https://rio2016.5ch.net/test/read.cgi/math/1512046472/21
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 の21より
(抜粋)
「R^N/〜 の代表系を選んだ箇所で選択公理を使っている.
その結果R^N →R^N/〜 の切断は非可測になる.
(引用終わり))

2)通常の確率論は、可測集合を扱うので、時枝記事の解法はその範囲外
(同
https://rio2016.5ch.net/test/read.cgi/math/1512046472/21
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 の21より
(抜粋)
現代数学の形式内では確率は測度論によって解釈される
(引用終わり))

3)ここまでは、スレ28を立てた人を含め、時枝記事自身も一致している。それは、私もだが
  (時枝記事に書いてある通りです)

4)では、現代数学の標準的な測度論による確率論の外で、時枝記事が正当化できるかが問題となる

5)ここから先で見解が分かれる
  スレ28を立てた人たち(二人)は、正当化できるという
  私はできないと思うし、
  >>408のID:f9oaWn8Aさんも「非可測であることに目をつぶって計算することの意味をあまり感じない」
  だし
  あと、”ぷふ”さんもそう。
  あと、過去何人か、正当化できないと書いていった

6)で、これ以上やりたいなら、アカデミックな場で議論されたらどうですか
  「非可測集合の確率論として、時枝記事を正当化できる」という持論を
  大学の場でやれば良い

以上

426現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 11:31:30.00ID:7skoTD8D
>>311
PSI/PIM のスペックを詳しく知らないが
石も進化していますね
(メモリー系はもっとか)

https://pc.watch.impress.co.jp/docs/news/1152750.html
最新CPUはPentium D、Core 2 Duoの何倍速いのか? TEXT:石川ひさよし PCWatch 2018年11月12日 11:00
(抜粋)
https://pc.watch.impress.co.jp/img/pcw/docs/1152/750/02_l.png
Pentium D 960 2006年5月発売

それではスコア対決!

とんでもないスコア差が付いている。笑うしかないが、Pentium DのCINEBENCH R15のCPUスコアは56cb。「Core i9-9900KはPentium D 960の36倍速い」と言われてもピンと来ないかもしれないが、Intel CPUは12年でこれだけ進化したわけだ。CPU(シングルコア)は31cbなので、こちらも7倍という結果だった。

発売中のDOS/V POWER REPORT2018年12月号の特集は「CPU、8コア標準時代、到来」。Intelの第9世代Coreシリーズの登場により、2007年から2016年まで長きにわたって4コアが標準だったメインストリームCPUのコア数は、2年余りで一気に2倍の8コアに。本格的なメニーコア時代の到来です。

427132人目の素数さん2018/11/13(火) 18:21:13.08ID:EcMbIY5N
>>417
矛盾していない

スレ主は証明を読む前に意味を考えろという趣旨のことを
以前に書いていたがそれすらしていない

> 時枝記事の文
> ”どんな実数を入れるかはまったく自由”、”もちろんでたらめだって構わない”
これはR^Nの元を自由に選べるということです

> 「時枝記事では全て収束する (>>409)」
これの意味はnが有限の場合のR^nの元の極限(n→∞)は
R^Nの元に全て収束するということ

> 収束しない数列を箱に入れること
これは
(1) R^Nの元で実数aに収束しない数列という意味ならばR^Nの元であるので
nが有限の場合のR^nの元の極限(n→∞)がR^Nの元に全て収束する
ということに矛盾していないので反例になっていない

(2) nが有限の場合のR^nの元の極限(n→∞)がR^Nの元に収束しない数列
という意味ならばR^Nの元を選べないのでR^Nの元を出題するという
時枝記事の前提に反する
これは箱の中に複素数を入れれば数当てができないということと同じ
であるので反例になっていない

428現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 21:02:11.91ID:zBQY1xmc
>>427
では聞く
下記の会田茂樹の講義資料中P3
「無限回のサイコロ投げ」で、
試行の結果として、1〜6 の数字の無限列が現れる

Q1.この1〜6 の数字の無限列を、時枝記事の箱に入れることは許されるか?
Q2.この1〜6 の数字の無限列は、収束する数列か?

https://www.ms.u-tokyo.ac.jp/~aida/index-j.html
会田茂樹
東京大学大学院数理科学研究科
https://www.ms.u-tokyo.ac.jp/~aida/lecture/log.html
平成15年度ー29年度 講義
https://www.ms.u-tokyo.ac.jp/~aida/lecture/22/lecture.pdf
講義資料 H24年度 数理統計学 会田茂樹
(抜粋)
P3
(3) 無限回のサイコロ投げ
有限回だけサイコロを振る場合や根元事象の数が有限個のとき, (1), (2) で見たようにラプラス流の確率
で間に合う(根元事象の確率がすべて等しい場合も考えるというふうに一般化していますが). 何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1〜6 の数字の無限列が現れる. この無限列一
つ一つが根元事象とみなせる. すなわちΩはΩ= f{(a1, a2,・・・, an,・・・) | ai = 1,・・・, 6}.
F とP の定義は簡単ではないが、うまく定義することができる.
説明すると長くなるので、省略するがこのような無限回の試行を考えるとラプラス流の確率の定義では収まらず、
Kolmogorov 流の確率空間の定義を採用しなければならないのである.
(引用終り)
以上

429現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/13(火) 21:05:15.63ID:zBQY1xmc
>>428 補足

くどいが、サイコロを1回振って、出た目の数を、一つの箱に入れていく意味な

なお、名古屋大 中島 誠 先生は、コイン投げの無限試行を例示している
(下記PDF)
http://www.math.nagoya-u.ac.jp/~nakamako/
Makoto Nakashima 中島 誠
Graduate School of Mathematics, Nagoya University
http://www.math.nagoya-u.ac.jp/~nakamako/teaching.html
Teaching(講義・演習)
http://www.math.nagoya-u.ac.jp/~nakamako/probability.html
確率論・確率論概論 Since 2016 October.
http://www.math.nagoya-u.ac.jp/~nakamako/Resources/Probability(1002).pdf
確率論講義ノート 中島 誠 2017/9/29 版

430132人目の素数さん2018/11/13(火) 21:43:40.74ID:NNsnaw+p

431132人目の素数さん2018/11/14(水) 02:10:59.38ID:fYd7wf6p
>>428-429
> Q1.この1〜6 の数字の無限列を、時枝記事の箱に入れることは許されるか?
> Q2.この1〜6 の数字の無限列は、収束する数列か?

> くどいが、サイコロを1回振って、出た目の数を、一つの箱に入れていく意味な

Q1. 全ての数字が決まった特定の無限数列であれば許される

箱の中身をサイコロ(数字が書かれた六面体)に対応させると
箱の中身は六面体の各面にそれぞれ1から6が書かれたサイコロ{1, 2, 3, 4, 5, 6}
でなくて六面体の全ての面に同じ数字が書かれたサイコロ{a}(aは1から6のどれか)に対応する

Q2. 全ての数字を決めるには(時枝記事の内容の意味での)収束しないと当然困ります

432現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 07:14:10.01ID:WJ7ga7rS

433現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 07:23:13.10ID:WJ7ga7rS
>>431
"> Q1.この1〜6 の数字の無限列を、時枝記事の箱に入れることは許されるか?
> Q2.この1〜6 の数字の無限列は、収束する数列か?
くどいが、サイコロを1回振って、出た目の数を、一つの箱に入れていく意味な
Q1. 全ての数字が決まった特定の無限数列であれば許される
箱の中身をサイコロ(数字が書かれた六面体)に対応させると
箱の中身は六面体の各面にそれぞれ1から6が書かれたサイコロ{1, 2, 3, 4, 5, 6}
でなくて六面体の全ての面に同じ数字が書かれたサイコロ{a}(aは1から6のどれか)に対応する”
(引用終り)

それって
サイコロ試行の場合で
数列のしっぽが、
・・・,a ,a ,a ,a ,(以下a がつづく)
具体的には例えば
・・・,3 ,3 ,3 ,3 ,(以下3 がつづく)
ってこと?

それだと、サイコロを振るという(>>428 会田茂樹先生の講義資料にもある)
確率論頻出の試行さえ適用外?

時枝記事の原文(>>407より)
”どんな実数を入れるかはまったく自由”、”もちろんでたらめだって構わない”
ですから、
時枝記事の原文通り読めば
確率論頻出のサイコロ試行を否定することはできませんよ

問題の改変は、試験の場では、御法度です。
研究の場では、研究対象に制限を加えて、有意な結果を導くという手法はありです
あるいは、一般の場合でなく、ある特定の場合に限定した解を求めるとかもありですが

なので、時枝記事の考察として、ある条件を付加して研究することはありですが
しかし、それで時枝記事の一般の場合まで解けたとは、言えませんね。

>Q2. 全ての数字を決めるには(時枝記事の内容の意味での)収束しないと当然困ります

「収束」って、数列のしっぽが、ずっと同じ数になって続いていくってこと?
”当然困ります”って、自分勝手に条件を付加して問題を改変することはダメですよ

以上です

434現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 08:00:46.57ID:WJ7ga7rS
>>404

層の茎(下記)は、茎x=aで、f(a)の周りの微小開集合を含めた関数f(x)の情報を含んでいる
つまり、茎からちょっと芽をだしている植物というイメージなんでしょうね
https://ja.wikipedia.org/wiki/%E8%8C%8E_(%E6%95%B0%E5%AD%A6)
茎 (数学)
(抜粋)
層の茎(けい,くき,英: stalk, ストーク)は,与えられた点のまわりでの層の振る舞いを捉える数学的構成である.

目次
1 動機づけと定義
1.1 別の定義
2 注意
3 例
3.1 定数層
3.2 解析関数の層
3.3 滑らかな関数の層
3.4 準連接層
3.5 摩天楼層
4 茎の性質

動機づけと定義
層は開集合上定義されるが,基礎位相空間 X は点からなる.X の固定された一点 x における層の振る舞いを分離しようとすることは合理的である.概念的に言えば,点の小さい近傍を見ることでこれをする.x の十分小さい近傍を見れば,その小さい近傍上での層 Fの振る舞いはその点での F の振る舞いと同じはずである.
もちろん,1つの近傍だけでは十分小さくはなく,ある種の極限を取らなければならない.

正確な定義は以下のようである: F の x における茎は,通常 F_x と書かれ,

解析関数の層
例えば,解析的多様体(英語版)上の解析関数の層において,点における関数の芽は点の小さい近傍において関数を決定する.
その理由は,芽は関数の冪級数展開を記録し,すべての解析関数は定義によりその冪級数に等しいからである.
解析接続を用いて,点における芽が関数がいたるところ定義できるような任意の連結開集合上関数を決定することが分かる.
(引用終り)
以上

435132人目の素数さん2018/11/14(水) 08:53:26.41ID:eag+icKq
>>432
>>425のどこに時枝記事の間違い箇所が書いてあるの?

436現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 11:18:33.08ID:0gruIbQc
>>435
>>>425のどこに時枝記事の間違い箇所が書いてあるの?

では、上記(>>425)のより
1)時枝記事が非可測集合を扱っている
(これは、時枝記事自身に書いてある)
2)通常の確率論は、可測集合を扱うので、時枝記事の解法はその範囲外
(同)
3)従って、これは時枝記事自身に書いてある。
 が、時枝はぼかしている。具体的には下記
https://rio2016.5ch.net/test/read.cgi/math/1512046472/21
現代数学の系譜 工学物理雑談 古典ガロア理論も読む47 の21より
(抜粋)
”非可測集合を経由したからお手つき, と片付けるのは,面白くないように思う.
現代数学の形式内では確率は測度論によって解釈されるゆえ,測度論は確率の基礎, と数学者は信じがちだ.
だが,測度論的解釈がカノニカル, という証拠はないのだし,そもそも形式すなわち基礎, というのも早計だろう.
確率は数学を越えて広がる生き物なのである(数学に飼いならされた部分が最も御しやすいけれど).”
(引用終わり)

つづく

437現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 11:19:23.37ID:0gruIbQc
つづき

4)さてここで、一般論としては、「確率はコルモゴロフ流の測度論的解釈に限定されない」というのは正しい。
  (過去スレでそういう理論の例をいくつか紹介した。ベイズ確率もその一つだろう)
  だから、時枝の解法を正当化するには、きちんとした「非可測集合の確率論」をもってしなければいけない。
  だが、時枝はそこの「非可測集合の確率論」に触れずに、その解法を正当化できるような言辞を弄している。
  そこが、第一の間違い
5)第二の間違いは、確率変数の独立性の解釈だ
  >>408に引用したように、
 ”>確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
 の認識が少しまずい”ってこと
 「任意の有限部分が”xx”のとき,(全体が)”xx”,と定義される」という言い方は、数学で結構頻出と思う
 ”xx”=黒い としてみよう
 「任意の有限部分が黒いとき,(全体が)黒い,と定義される」となる
 つまり、特に全体が無限集合のとき、この言い方が有効に機能する。
 そして、どの確率論のテキストでも、採用されている。
 私は、この「任意の有限部分族が独立のとき,独立」という定義は、
 これ結構自然で、これ以外の定義はないんじゃないですかね?

つづく

438現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 11:21:40.04ID:0gruIbQc
>>437

つづき

6)もし、「非可測集合の確率論」があった(出来た)としても
 確率変数の独立の定義で、
 ”任意の有限部分族が独立のとき,独立,と定義”したとすれば、
 定義より、確率変数xiは、サイコロ振り試行なら1/6などのように、その1回の試行と同じ確率になる
 定義だから、これを定理で覆すことはできない
 よって、どんな解法も、時枝解法を正当化できない
 よって、それが可能なように書いた時枝記事の第二の間違いがここにある
7)時枝記事が間違っているという私の主張は、上記2点

8)さて、では、上記の確率変数の無限族の独立の定義を書き換えるか、
 あるいは先験的な独立の定義をしないか
 そういう理論で、かつ、非可測集合を扱う確率論が可能なのか?
 過去¥さんが、発言していたのも、そういうことかもしれないが
 なので、時枝記事に拘らずに、コルモゴロフ流確率論を拡張する試みは数学として正当だと思うが

つづく

439現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 11:26:31.67ID:0gruIbQc
>>438

つづき

9)しかし、考えてみると
 会田茂樹の講義資料などにもあるように
 確率変数の無限族は、すでに既存のコルモゴロフ流確率論において、取り扱われて
 既述のように、確率変数xiは1回の試行と同じ値だと
 もし、拡張された「非可測集合まで扱える確率論」が出来たとしても、
 既存のコルモゴロフ流確率論と整合しない結論は、導けないと思う。
 あたかも、量子力学が古典力学を包含するがごとく。
 なので、「非可測集合まで扱える確率論」が出来たとして、
 コルモゴロフ流確率論の成果を否定することはないだとろうと。
 あたかも、コルモゴロフ流確率論の成果が否定されるごとく書いたことが、
 時枝記事の第三の間違いだろうと思う。

(もちろん、古典力学の外で、量子力学独自の結果を導くとしても、
 既存の古典力学の結果を否定することはできない。
 (ボーアの指導原理(下記))
https://kotobank.jp/word/%E5%AF%BE%E5%BF%9C%E5%8E%9F%E7%90%86-90840
対応原理
ブリタニカ国際大百科事典 小項目事典の解説 コトバンク
(抜粋)
ミクロの世界を探究するためにニールス・ボーアが提案した指導原理。
古典物理学は,マクロの世界の物理現象をきわめて正確に記述することが十分確かめられているので,ミクロの世界で説明できない現象が見つかったからといって,簡単に捨て去るべきではなく,むしろ,古典物理学では説明できないミクロの世界の現象を支配する物理法則はある極限で古典物理学に対応しなければならない,というのがボーアの考えである。
対応原理は,ウェルナー・K.ハイゼンベルクが行列力学を創始したときも指導原理となった。
(引用終わり))

10)なので、あるいはベイズ確率論で、非可測集合を扱える、面白い確率論が可能かも知れない
 だが、サイコロ振り1/6を、99/100にできる確率論が可能かと言えば、私は否定する方に賭けますよ

以上

440現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 11:36:00.67ID:0gruIbQc
>>439 補足

現状のベイズ確率が、時枝を扱えるとは、決して思いませんが、
未来は分かりません

https://ja.wikipedia.org/wiki/%E3%83%99%E3%82%A4%E3%82%BA%E7%A2%BA%E7%8E%87
ベイズ確率

ロナルド・フィッシャー以降の推計統計学等で前提とされる「頻度主義」、すなわちランダムな事象が生起・発生する頻度をもって「確率」と定義する考え方と対比されることが多い[1]。

ベイズ主義と頻度主義とで同じ結論が得られる問題も多い。

統計学的仮説検定について、ベイズ主義と頻度主義との差が現れやすい。
頻度主義では推定したいパラメータは一つの真の値をとると考えるが、ベイズ主義においてはパラメータは確率変数であると考える。

ベイズ確率の応用
ベイズ確率は現在いろいろな方面で応用されている。一方で頻度主義に基づく統計学の理論体系に対しては、かえって実用性を犠牲にしているとのベイジアンからの批判がある。
むしろベイズ主義のほうが人間の思考様式になじむというわけである。
ベイズ推定は、まず複数の仮説について尤もらしさ(信念の度合)を考え、実験や観測により新しい情報(データ)を収集し、それらを組み合わせてベイズの定理によってその確率を改訂するという点で、科学的方法のモデルとしても提案されている。

441現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 11:38:52.57ID:0gruIbQc
>>439 補足の補足

時枝記事を数学としてでなく
パズルとしてみた時
よくできていると

上記のように、「当たらない」ものを
あたかも「当たる」ように見せる
それを、「非可測だから」の一言で片づけずに

もう少し突っ込んでみようと
それが、過去スレに書いてあることです

442132人目の素数さん2018/11/14(水) 17:32:14.21ID:fYd7wf6p
>>433

> それって
> サイコロ試行の場合で
> 数列のしっぽが、
> ・・・,a ,a ,a ,a ,(以下a がつづく)
> 具体的には例えば
> ・・・,3 ,3 ,3 ,3 ,(以下3 がつづく)
> ってこと?

違う
同じサイコロを無限回つかうのでなくて箱ごとに使うサイコロ(この場合6種類ある)は異なる
ただしその無限個のサイコロ試行では必ず同じ数列(通常のサイコロ試行で得られる事象の1つ)が得られる

数当ての数字を選ぶことにサイコロをつかっても当然構わないが
数当ての数字にサイコロで選ばれたという情報は当然含まれない

443132人目の素数さん2018/11/14(水) 17:59:17.21ID:fYd7wf6p
もう少し補足すると

> くどいが、サイコロを1回振って、出た目の数を、一つの箱に入れていく意味な

サイコロを無限回振ってその無限数列を無限個の箱に入れるとしても同じ
要は無限個の箱に全く同じ無限数列のコピーを作るということ

スレ主がおそらく意図している確率論頻出のサイコロ試行では
全く同じ無限数列のコピーを作る確率は0になる

444現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/14(水) 21:00:45.85ID:WJ7ga7rS
>>442-443

楽しいことを考えられますね〜(^^
下記にも面白いサイコロが沢山紹介されていますね

私は、頭が悪いので、普通の日本のサイコロしか理解できませんので
あしからず。どなたか、頭の良い人とお願いします
https://ja.wikipedia.org/wiki/%E3%82%B5%E3%82%A4%E3%82%B3%E3%83%AD
サイコロ
(抜粋)
https://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Dice.jpg/250px-Dice.jpg
サイコロ(ピップ)

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e6/Transparent_dice.jpg/250px-Transparent_dice.jpg
サイコロ(算用数字)

https://upload.wikimedia.org/wikipedia/commons/thumb/6/6d/Sixsided_Dice_inJapan.jpg/220px-Sixsided_Dice_inJapan.jpg
日本製のサイコロ(天一地六東五西二北三南四: 雄)

https://upload.wikimedia.org/wikipedia/commons/thumb/8/85/DnD_Dice_Set.jpg/450px-DnD_Dice_Set.jpg
各種ダイス(左から4面、6面、8面、12面、20面、10面、10面(2桁))

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5e/D60_60men-saikoro.JPG/120px-D60_60men-saikoro.JPG
60面ダイス(凧形六十面体)

非実用的な多面ダイス

https://upload.wikimedia.org/wikipedia/commons/thumb/1/15/Zocchihedron2.jpg/110px-Zocchihedron2.jpg
100面ダイス(ゾッキヘドロン)

多面化の問題点

https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/D34_trapezohedron_dice.JPG/120px-D34_trapezohedron_dice.JPG
34面ダイス(ねじれ双十七角錐)

出目に関する各種の値
任意の面数を持つサイコロを、任意の回数ないし個数振る際の各種の値は、・・・各回の出目の和を合計値とすると、一般に以下の式で求められる。

(引用終り)

445132人目の素数さん2018/11/14(水) 21:51:20.72ID:eag+icKq
>>436
いや、俺は解法、つまり「めでたく確率99/100で勝てる.」までの部分のどこに
間違いがあるのかを問うているんだが。
解法は「勝てる」と言い切ってるんだから、スレ主が勝てないと主張するなら解法
の間違い箇所を指摘できるはずだよね?

446132人目の素数さん2018/11/14(水) 22:02:03.02ID:fYd7wf6p
>>444
そうやって変形サイコロだけを見て重要な部分に気づかずに逃げるのは
スレ主の通常のスタイルだけれどもちゃんと考えないとダメだよ

無限数列のコピーを作ることができないと数当ての成否は判断できない

サイコロを振ってたとえば1がでた
しかし箱の中に同じ数字のコピーをつくることができない
スレ主は箱の中に1が入っていないことを根拠に
時枝戦略は間違いであると主張していることと同じ


無限数列Anのコピーを作るというのは要は別の無限数列A'nを構成して
無限個全ての値が等しいことを示す手段があるということであり
このことは誤差εを含めれば通常の極限やサイコロ試行でも同様である

通常のサイコロ試行だとn回振った場合に2つの出目が
全て一致する確率は有限数列{1/6, 1/6^2, ... , 1/6^n}で表せる
試行回数を増やしていくと0に収束するということは>>409の[1]と同じで

代表元を使わずに構成した(当然同じ数列をつくることは可能)
{1/6, 1/6^2, ... , 1/6^m, ε, ε, ... , ε, ... }
{1/6, 1/6^2, ... , 1/6^m, -ε, -ε, ... , -ε, ... }
を使えばしっぽの無限個をまとめて扱える

しっぽが{ε, ε, ... , ε, ... }と{-ε, -ε, ... , -ε, ... }の間に
値を取る無限数列のどれかに必ず一致してmが有限であれば
それより先の値が誤差εで0であることが必ず当てられることから
lim_{n→∞} 1/6^n = 0が得られる

447現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 00:01:17.21ID:77uFGJVQ
>>445
悪いが
数学としては、>>436-441で尽きていると思う
なので、私はどこに間違いがあるかという思考はしない
非可測の対象を、あたかも可測集合のごとく扱ったことに、根本の間違いがあるのだと

「当たらないのに、なぜ、当たるように見えるか」という思考はする。
時枝記事のトリックの種明かしとしてね

過去スレに書いた通り
面倒なので詳しくは繰返さない

が、大雑把に言えば、決定番号は確率として有限の範囲に来ない
なのに、100列の決定番号の大小比較ができるが如く見せているところ

これが「当たらないのに、なぜ、当たるように見えるか」のトリックだと思っている
なお、この話も過去スレに書いた

以上

448132人目の素数さん2018/11/15(木) 02:25:16.12ID:zyHWSgeM
>>447
>決定番号は確率として有限の範囲に来ない
つまり決定番号=∞であると?
それ本気で言ってますか?

449132人目の素数さん2018/11/15(木) 03:03:12.62ID:SjhWGnFn
デタラメコピペを大量に流してさらに過去レスに書いたとかいういつもののスレ主の常套手段
もう相手するのがうんざりするするまで延々とトンデモ話を続ける

これ似非科学の人も使ってる手段なのよね
皆気をつけよう

450現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 07:40:31.37ID:77uFGJVQ
>>448-449
数学としては、>>436-441で尽きていると思う
これは、この議論の当初から言っている

>>437より)
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される
つまり、(>>408より)
任意有限部分族が独立とは
P(∀i=1,…n,X_i∈A_i)=Π[i=1,n]P(X_i∈A_i)
これから導かれることは、P(X_i)は、
例えばサイコロなら一回の試行の確率1/6になる
1〜n番の札をランダムに引くなら1/nになる

これは定義だ
一方、時枝を含めて、なにかP(X_i)を推定する方式を考えたとしよう

それは定理だ。
定義から出発して、いろんな推論を組み合わせて結論を導くということ
従って、定義に矛盾する定理はありえない

だから、確率変数の無限族の定義を上記に取る限り、
P(X_i)は一回の試行の確率以外には成り得ない

つづく

451現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 07:42:57.55ID:77uFGJVQ
つづき

なので、時枝記事の解法なるものは、最初からデタラメだ(根本から間違っている)と
さらに附言すれば、時枝解法は、列の数をkとして、列の数にしか依存していない
100列だから、99/100(=1-1/100).
列の数がkなら、1-1/kだ
が、普通に考えれば、それは1回の試行の確率にも依存するはず

例えば、コイン投げなら1/2、
サイコロなら1/6、
1〜n番の札をランダムに引くなら1/n、・・・

1回の試行の確率をpとしよう
時枝記事のような解法では、
その確率は、関数として列数kと1回の試行の確率pとの二変数になるべき
f(k,p)となるべき。
ところが、時枝解法ではf(k)と一変数になっている
これは、根本から間違っていることの傍証である

なので、時枝記事は根本から間違っているので、
(非可測の対象を、あたかも可測集合のごとく扱ったことに、根本の間違いがある >>447
時枝記事が正しいとか、
あるいは間違っているかどうか不明の前提で
「どこに間違いがあるかという」議論は、無意味
根本が間違っているのだから、
それを踏まえて「当たらないのに、なぜ、当たるように見えるか」という議論のみが意味がある

つづく

452現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 07:46:03.75ID:77uFGJVQ
>>451

つづき

さて、その上で、時枝記事の決定番号を考えてみると
(スレ46 https://rio2016.5ch.net/test/read.cgi/math/1510442940/18 より)
まず、列の長さをnとする
二つの列
s = (s1,s2,s3 ,・・・,sn-1,sn ),s'=(s'1, s'2, s'3,・・・,s'n-1,sn )∈R^n
で、シッポ snが一致する(sn=sn)同値類として同値s 〜 s'が成り立つ
同値類の代表を選ぶのに、特に制約はないので、代表をs'とする
代表と対比する列s において、sn-1=s'n-1 となる確率は
サイコロの場合では、ゾロ目になる確率(二つの目がそろう確率)なので1/6
同様に、1〜n番の札をランダムに引くなら1/nだ

さて、ここでは、後の便宜のために、Sergiu Hart氏のPDF(>>364)の
by choosing the xi independently and uniformly on [0, 1]
つまり、[0、1]はこの区間の任意の実数を、箱に入れるとする
そうすると、二つの数がそろう確率は0だ(Sergiu Hart氏のPDF(>>364)にある通り)

従って、sn-1=s'n-1 となる確率は0。
つまり、決定番号が1〜n-1になる確率は0。
決定番号がnになる確率は1。

この場合において、
n→∞として、可算無限長の数列を考えると
決定番号が1〜n-1になる確率は0。
つまりn→∞で
決定番号が有限になる確率は0。
QED

以上

453現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 07:50:36.47ID:77uFGJVQ
>>452 追加

附言すれば、
決定番号が有限になる確率は0
なのに
決定番号の大小比較をして
確率99/100などと議論していることが
「当たらないのに当たるように見せている」
仕掛けということ

これが、手品のタネだね

454132人目の素数さん2018/11/15(木) 17:46:17.08ID:h+WlCZeN
>>453
完全代表系の定義からそれは無限個の箱の全てに実数が入っている確率が0
ということだから時枝戦略の間違いにはならないよね

箱の全てに実数が入っていなければ決定番号の大小比較はできない (これは正しい)
ということは
数当てゲームの出題ができないということで数当ての方法以前の問題

455現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 18:32:03.89ID:6L/Nsc2I
>>454
極限を取っています
「n→∞として、可算無限長の数列を考える」(>>452

そして、これは、「可算無限長の数列」をどう考えるかの、数理哲学の問題でもあり
可能無限、実無限の話になっていくのでは?(下記、砂田 利一先生ご参照)

なお、
”だから時枝戦略の間違いにはならないよね”は、Yesです

もともとの時枝の間違いの数学的な議論は、>>450です。
>>453は、パズルや数学マジックとしての解説です

http://mathsoc.jp/publication/tushin/index21-4.html
日本数学会
数学通信第21巻第4号目次 Feb 20, 2017
http://mathsoc.jp/publication/tushin/2104/2016sunada.pdf
数学の発展と展望 砂田 利一 明治大学総合数理学部 Feb 2017
(抜粋)
カントルはユダヤ系と言ったが,正確にはユダヤ人の血が混じっているというこ
とであり,むしろ彼は宗教的には敬虔なカトリック教徒であった.彼の時代を画す業績
は,一対一対応を基礎として,「実無限」を許容する集合論を創始したことである(実無
限については,次節で述べる)

2  無限の概念
ここで,カントルの理論の背景にある,無限概念についての歴史を振り返ろう.

無限を最初に扱ったのは,古代ギリシャのアナクシマンドロス(前610 頃{前546 頃)
である.彼は「アペイロン」(限りがない)という概念を導入し,それを万物の根源(ア
ルケー)とした.その後アナクサゴラス(前510 頃{前428 頃)により「無限大,無限小」
について語られたが,19 世紀後半まで歴史の中で大きな影響を与えたのはアリストテレ
ス(前384{前355)である.彼は,無限には「実無限」と「可能無限」の2 種類があっ
て,可能無限は認められるが,実無限は存在しないと考えた.カントルの集合論は,ま
さにアリストテレスに対するアンチテーゼなのである.
念のため,「実無限」と「可能無限」の意味を与えておく.
可能無限:無限を把握出来るのは,限りがないということを確認する操作が
存在していることだけで,無限全体というのは認識出来ないとする立場
実無限:無限の対象の全体性を把握して,無限が実際に存在しているとする
立場
(引用終わり)

456現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 18:40:00.54ID:6L/Nsc2I
突然ですが
https://www.nikkei.com/article/DGXMZO37752760U8A111C1000000/
「高専生は日本の宝」 AI時代を引っ張る強みあり
松尾豊・東大特任准教授に聞く
日経産業新聞 コラム(ビジネス)
2018/11/15 6:30
(抜粋)
ニッポンの産業界の浮沈に関わるとも言われるディープラーニング(深層学習)や人工知能(AI)分野の人材育成。この分野に詳しい松尾豊・東京大学大学院特任准教授は「高専生の能力をもっと生かすべき時が来ている」と強調する。なぜ、高等専門学校生をそれほどまでに高く評価しているのか。松尾氏の研究室に訪ねて聞いた。

――身近に優秀な高専出身者がいるのですか。

https://www.nikkei.com/content/pic/20181115/96958A9F889DE1E5E5E7E0E5E4E2E3E6E3E3E0E2E3EAE2E2E2E2E2E2-DSXMZO3775295014112018XY0001-PN1-10.jpg
まつお・ゆたか 1975年生まれ。東京大博士(工学)、特任准教授。専門はウェブ工学、人工知能

「いる。研究室で『優秀な学生だな』と思い、『どこの出身?』と聞くと『どこどこ高専です』『高専でロボコンやってました』と答える学生が多い。これまでに研究室には高専出身者が10人ほどいて、本当に外れがなくて優秀だ」

つづく

457現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE 2018/11/15(木) 18:40:33.86ID:6L/Nsc2I
>>456

つづき

――専門のディープラーニングと高専出身者の能力は親和性があると。

「その通りだ。ディープラーニングの研究はロボティクスのような機械などのリアルな世界の方向に進んでいる。自動運転、医療画像、顔認証など画像認識にはイメージセンサーやカメラが必要だ。電気や機械の基礎知識を習得した高専出身者は強みを発揮できる」

「ディープラーニングを学んでから電気や機械を学ぶよりも、逆の順の方がはるかに簡単で身につきやすい。電気や機械の基礎を学ぶには1、2年はどうしてもかかるが、ディープラーニングはあっという間にできるようになることがある。これからのAI時代の三種の神器は電気、機械、ディープラーニングだ」

「高専出身者は、とにかく手が動く。普通に東大に入学した学生は口はうまいが、やらない。高専出身者はとにかくやってみて、結果を私のところに持ってくる。こちらも的確な指導ができて、次のチャレンジにどんどん進んでくれる。いろいろなモノを使えるようにする実装力がある。プロジェクトのリーダーとしてもふさわしい」

――高専の教育システムがよかったのですか。

「ぼくからすると、この日のために高専があるといってもいいくらいだ。『よくぞ(日本固有の高専教育を)作ってくれていたなぁ』と思う。高専は高度成長期に製造業の現場を強くしようとする目的で作られた。今のイノベーションの素養と高専教育が一致している。聞けば聞くほどよくできたシステムだ」
(引用終わり)
以上

458132人目の素数さん2018/11/15(木) 18:42:58.18ID:h+WlCZeN
>>455
> パズルや数学マジックとしての解説です
その解説自体が間違っているという話です

新着レスの表示
レスを投稿する