>>60
場合分けなどが面倒くさくて疲れ果てたけど、計算結果は>>133と一致。
P1st(n)-Q1st(n) が(偶奇によらず) (n^2-2n-6)(n-1)/6 になったので、n=2,3でQが、n≧4でPが有利。

コードはSagemath。
from sage.calculus.calculus import symbolic_sum
,var m,l,k,a,n
P1 = (symbolic_sum((m-1)*(m)-2*l-1, l,1,m-2)
+ symbolic_sum(symbolic_sum((m-1-k)*(m-k)+k-1-l, l,k,2*k) + symbolic_sum((m-1-k)*(m-k)+3*k-2*l-1, l,2*k+1,m-2), k,1,a-2)
+ symbolic_sum(symbolic_sum((m-1-k)*(m-k)+k-1-l, l,k,m-2), k,a-1,m-2)
).substitute({a:m/2}).substitute({m:n+1})
P2 = (symbolic_sum((m-1)*(m)-2*l-1, l,1,m-2)
+ symbolic_sum(symbolic_sum((m-1-k)*(m-k)+k-1-l, l,k,2*k) + symbolic_sum((m-1-k)*(m-k)+3*k-2*l-1, l,2*k+1,m-2), k,1,a-1)
+ symbolic_sum(symbolic_sum((m-1-k)*(m-k)+k-1-l, l,k,m-2), k,a,m-2)
).substitute({a:(m-1)/2}).substitute({m:n+1})
def P1st(x):
return P1.substitute({n:x}) if mod(x,2) == 1 else P2.substitute({n:x})
Q1 = (symbolic_sum(symbolic_sum((m+1-k)*(m-k)+k-2*l-1, k,0,l-1), l,0,a)
+ symbolic_sum(symbolic_sum((m+1-k)*(m-k)+k-2*l-1, k,0,m-l-1) + symbolic_sum((m-k)^2+k-l,k,m-l,l-1), l,a+1,m-1)
+ symbolic_sum(k^2-2*m*k+m^2+k-m,k,0,m-2)
).substitute({a:(m-1)/2}).substitute({m:n})
Q2 = (symbolic_sum(symbolic_sum((m+1-k)*(m-k)+k-2*l-1, k,0,l-1), l,0,a-1)
+ symbolic_sum(symbolic_sum((m+1-k)*(m-k)+k-2*l-1, k,0,m-l-1) + symbolic_sum((m-k)^2+k-l,k,m-l,l-1), l,a,m-1)
+ symbolic_sum(k^2-2*m*k+m^2+k-m,k,0,m-2)
).substitute({a:m/2}).substitute({m:n})
def Q1st(x):
return Q1.substitute({n:x}) if mod(x,2) == 1 else Q2.substitute({n:x})

P1 == 1/24*(6*n^3 + 20*n^2 - n - 27)*(n - 1) # nが奇数のとき
P2 == 1/4*n^4 + 7/12*n^3 - 7/8*n^2 - 13/12*n + 1 # nが偶数のとき
Q1 == 1/24*(6*n^2 + 10*n - 3)*(n + 1)*(n - 1) # nが奇数のとき
Q2 == 1/24*(6*n^2 - 2*n - 5)*(n + 2)*n # nが偶数のとき