数理論理学(数学基礎論) その13

1132人目の素数さん2018/07/28(土) 04:58:13.63ID:cuNdeNig
数学基礎論は、数学の基礎づけを目的として誕生したが
現在では、数理論理学として、証明論、再帰的関数論、
構成的数学、モデル理論、公理的集合論など、 多くの分野
に分かれ、極めて高度な純粋数学として発展を続けています。
(「数学基礎論」という言葉の使い方には、専門家でも
若干の個人差があるようです。)
応用、ないし交流のある分野は、計算機科学の諸分野や、
代数幾何学、英米系哲学の一部などを含み、多岐にわたります。
(数学セミナー98年6月号、「数学基礎論の学び方」
ttp://www.math.tohoku.ac.jp/~tanaka/intro.html
或いは 岩波文庫「不完全性定理」 6.4 数学基礎論の数学化などを参照)

前スレ
数学基礎論・数理論理学 その12
https://rio2016.5ch.net/test/read.cgi/math/1509638068/

628132人目の素数さん2019/01/14(月) 07:43:56.87ID:b9BxLLxL
>>627
>そこは頑張ってほしいんだけどな

何を呑気なことを言ってなはるの。自分で研究して御覧なさいな。
私はアメリカのとある大学の教員をしています。 大学は東大の
院をでたのですが、上には上があって苦労の連続です、、、、。

629132人目の素数さん2019/01/17(木) 10:54:45.59ID:lTvr+WmF
>>615
>p∨¬pをそれより弱い主張の(p→q)∧(p→¬q)→¬pに替えて使う
後者は最小論理で示せるぐらいだからあんまり意味ないんじゃ?
p, (p→q)∧(p→¬q) |- p, p→q
p, p→q |- q
p, (p→q)∧(p→¬q) |- p, p→¬q
p, p→¬q |- ¬q
p, (p→q)∧(p→¬q) |- q, ¬q
(p→q)∧(p→¬q) |- ¬p
この主張は
pを仮定して矛盾が出たら¬pを結論するっていう最小論理の公理と同値で
q, p→¬q |- ¬p
のタイプの背理法とも同値
直観主義論理で排除される背理法は
q, ¬p→¬q |- p
あと
(¬p→q)∧(¬p→¬q)→p
を公理にすると排中律が出ると思うよ

630132人目の素数さん2019/01/17(木) 19:11:09.72ID:srr7Syej
数理論理学以外の分野ではなぜ自然数nにたいして n+1=n∪{n} が意識されないように議論されてるんですか?

631132人目の素数さん2019/01/17(木) 19:20:08.43ID:blgjOmUK
標準モデルに限定した話はしたくないからかな

632132人目の素数さん2019/01/18(金) 01:39:28.87ID:OFyyBdpX
それは単にZFCのuniverse Vの中で
自然数全体と同型な構造を構成する
一つの方法なだけなので。

n+1 = {n}と決めて解釈しても別に構わないし
同じように自然数の理論は展開できる訳で。
無限順序数の話は出来ないけど、あまり普通の数学で
無限順序数って頻繁に使われる訳じゃないよね。
自然数は数学のほぼ全ての分野で使うけど。

実数を構成するのに有理数体から、
デデキントの切断とコーシー列とどっちを使っても
同型の構造が作れるのと似たような話。

633132人目の素数さん2019/01/18(金) 02:28:54.55ID:79VjmU7Q
>>629
そりゃ公理からは証明されるだろうよ。

634132人目の素数さん2019/01/18(金) 03:21:55.21ID:CSqUHsTl
>>632
ペアノの公理を満たすものであれば何でもいいと言うことですかな。

でも数理論理学以外の数学ってZFCの基に議論が成り立っている(はず?)であり、
ZFCの公理から自然数はn+1=n∪{n}として構成されているのだから、
わざわざ同型な他の対象をもってして自然数として考えるというのは不自然だと思います。

635132人目の素数さん2019/01/18(金) 14:19:51.49ID:SeSoGWBh
そんなこと言ってると実数に含まれた自然数は自然数でない事になるぞ

636132人目の素数さん2019/01/18(金) 17:02:03.20ID:0QBetosB
理論内部で定義できないから無問題

637132人目の素数さん2019/01/18(金) 18:20:17.91ID:hlzteWqL
自然数nの後者がn∪{n}と定義されるのってなんか本質的じゃない気がするんだよね。
nの要素数とnが一致するからってのは何か釈然としない。

638132人目の素数さん2019/01/18(金) 18:57:18.45ID:ZS8DsJLe
そりゃ本質は公理系にあるわけで、具体的な構成方法に本質はないでしょ

639132人目の素数さん2019/01/18(金) 19:57:22.24ID:hlzteWqL
本質が公理系にあるってどうゆう意味?
ZFCが本質的なのであって構成法は本質的云々言うべきじゃないって事?

640132人目の素数さん2019/01/18(金) 20:44:32.02ID:hoYJRZe2
ペアノ公理系のことでしょ

641132人目の素数さん2019/01/18(金) 20:56:10.81ID:hlzteWqL
ペアノの公理系に本質があるってのならめっちゃ同意だけど実際ペアノの公理系は公理系として扱われてないでしょ

642132人目の素数さん2019/01/18(金) 21:05:49.26ID:OFyyBdpX
順序対を{{x},{x,y}}と定義することなんか、
性質だけが重要でコーディングの詳細はほとんど
どうでもよく非本質的である例の最たるものだけど、
そうは言っても最初に勉強するときは、
実際にはこの特定のコーディングの仕方に
依存して理論を作っていっているようにも
見えるので、ちょっとこういう
「お気持ち」を理解するのは難しいかも。

それに数理論理は分野によっては
(特に証明論系の分野では)
コーディングに依存しまくった定義や議論をするので
コーディングがどこまで本質的かは微妙な問題だよね。

643132人目の素数さん2019/01/18(金) 21:06:39.20ID:OFyyBdpX
物事を統語論的な面と意味論的な面に分けて考えた時に
統語論的側面にはそういう、意味の分からない煩雑さの
中に捉えどころのない物事の本性が隠れ棲んでいるような
ところがある。これを証明論の研究者のvan Dalenは
論理学のesoteric秘教的で神聖な’sacredな’側面であると
比喩的に呼んでいて云々、みたいな話を前したことあるな

644132人目の素数さん2019/01/18(金) 21:12:13.35ID:OFyyBdpX
圏論のLeinsterが、Rethinking set theory
https://arxiv.org/abs/1212.6543で、
ZFCを基礎とした公理的集合論を批判してて、
まあ個人的に八割がた難癖みたいに聞こえるんだけど、
直観的に実数と実関数は型が違う対象であるはずなのに、
全ての数学的対象を集合とみなして、コーディングを
デコードする人のキモチで区別するのっておかしくない?
みたいなこと言ってて、まあそれはその通りなのかなあ、
とも思うんだよね。

645132人目の素数さん2019/01/18(金) 21:22:45.88ID:Rfh10wmC
実数も関数も微分形式もスペクトルも集合な方が分かりやすいし、レンスターには同意できんな
レンスターのベー圏は原著が無料だったから読んで三章以外好きだけどね

646132人目の素数さん2019/01/18(金) 21:58:50.83ID:hlzteWqL
>>642 で俺が言いたい事を完璧に表現してくれた。
コーディングってのは俺の言う構成法の事でしょ。

レンスターはその「お気持ち」を理解した上でzfcを批判してるんだろうけど俺は理解せずに批判しているって事やね。
その「お気持ち」と言うのはさ、申し訳ないがどうにか噛み砕いて教えてもらえないかな。

647132人目の素数さん2019/01/18(金) 22:05:18.40ID:Rfh10wmC
お気持ちなどない
あえて言うなら、ただの記号列でそれを操作するゲーム、と捉えるのが気持ちだろう

648132人目の素数さん2019/01/18(金) 22:28:25.59ID:hlzteWqL
それについては分かってるつもりだよ
642で言われてるお気持ちと言うのが何なのかを知りたいわけ

じゃあさ、実数が集合の方が分かりやすいってのは何でそう思うの?
「1」と言う実数が集合であろうがなかろうが数学をする上で困らない様に思うんだけど

649132人目の素数さん2019/01/18(金) 22:54:18.83ID:4GllDUvh
642で言ってるのは順序対の定義を変えれば他の結果も自明な変更で対処できるから、あえて別の定義を使う理由もないということだと思う

困らないけど分かりやすいじゃん
微分形式もスペクトルも取りかかる際「単に直感から生まれたもの」と捉えるより「直感から生まれた集合」の方が地に足がついてて安心感あるしね

650132人目の素数さん2019/01/18(金) 23:43:38.54ID:hlzteWqL
ん?順序対の定義を変えるとってどうゆう事だ?
要するにzfcさえ真理として認められてれば他に順序対だの実数だのは自明で決まるから新しく公理を認める必要がない的な?

651132人目の素数さん2019/01/18(金) 23:52:55.10ID:4GllDUvh
Wikipediaを見ればわかるが順序対の定義は上のだけではない
どれを使っても別に良いんだが、
直感的な理由で上のを定義として採用してるだけ

そうは言っても初学者が最初に勉強するときには、上の定義の形をあえて採用する理由があると捉えてしまいやすい
実際には「順序対の定義は性質が大事で、上の定義は性質を満たすもののうちの一つを何となく選んだだけ」というお気持ちがあることを初学者は気づきにくい
ということだろう

652132人目の素数さん2019/01/18(金) 23:54:04.32ID:hlzteWqL
あともう一つzfcを否定する理由があるんけどさ、
グッドスタインの定理ってのがあるらしくてこれはペアノ算術では証明できないけどzfcの上では成り立つらしい。
ペアノ算術は自然数の基本的な本質だけを記述してるけどzfc上での自然数はペアノの公理を満たした上でそれより少し強い性質を持ってるんだよね。
だからzfcを認めると本来自然数が持つべきでない様な性質を持って良い事になっちゃってる様な気がするんだけど。

653132人目の素数さん2019/01/18(金) 23:58:32.43ID:OFyyBdpX
集合は何か数学的対象の模型を作りたい時の
マテリアルとしては便利なんだけど、
所詮は石膏とか大理石とか粘土みたいなものに過ぎず、
イデア、概念はまた別にある。

そこら辺を区別せず、
万物は石膏でその像を形造る事が出来る、
と言うべきところで
万物は石膏である、みたいな言い方するから
「な訳ないやん」と反論されることになる

654132人目の素数さん2019/01/19(土) 00:02:31.42ID:bxBmUoqb
>>652
自然数については、
そうではなくて寧ろ、本来自然数が持っているはずの
性質でも、ペアノ算術+一階述語論理の公理系から
導けないような種類の性質が存在する、と考える方が
普通だと思うけど。

実際、排中律が正しいならグッドスタインの定理と
その否定のどちらかは正しい事になるけど、
否定が成り立っていると考えるべき理由はないよね

655132人目の素数さん2019/01/19(土) 00:08:32.48ID:Pl9ydUsa
wikiの順序対見てきたけど、どの定義もzfcを認めた上での定義だから俺からしたら全部同じに見えるしそういう意味で言えばその「お気持ち」は俺には分かるよ。
さっきの定義で言えばクラトフスキーの定義に入るんだろうけど、別にどれを使っても良いと言うのも分かる。

まあ何と言うか俺は弱い定義とか公理を使って議論した方が良いと思ってるんだよ。
それで本質だけを示した定義か公理ならそれが最も弱いものになるだろうって感じ。

順序対のそう言う定義を考えるなら、
1.二つの要素を取ってきて、順序対を返す様な関数がなくてはならない。
2.任意の順序対には1番目の要素を取り出す関数と2番目の要素を取り出す関数が存在していなければならない。
3.1の引数と2の返値は一致していなければならない。
こんな感じかな。全然厳密ではないけど。

zfc上での順序対じゃなくてこっちを使いたい。

656132人目の素数さん2019/01/19(土) 00:22:59.67ID:Pl9ydUsa
>>654
なるほどね。
つまりAかAの否定のどちらかは証明できる様な公理系を使うべきだって感じ?
完全性だっけ?

ちなみにグッドスタインの定理はペアノでは証明も反証もできないって事でペアノが排中律に反する事の証明にもなってる。
まあzfcでも何でも完全性の証明はできないらしいけど今の所排中律に反するようなものがzfcから見つかってないらしいからね。
それは俺が>>652で言いたかった事とは明後日の方向の返しではあるんだけどまあ一理あるとは思う。

じゃあ俺が>>652とか>>655で言ってる様な事と完全性は両立できないから完全性を取ろうって事でみんなzfcを認めた上で議論してるのかな。
俺的にはどうせ証明できない様な完全性よりも本質を捉えた定義の方が大事に思えるけど。

657132人目の素数さん2019/01/19(土) 00:36:40.68ID:Pl9ydUsa
>>652では俺の言い方が悪かったよ。
本来自然数が持つべきでない様な性質を持って良い事になっちゃってる
って言ったけど。

zfcでの順序対がクラフトスキーの定義である様にzfcでの自然数はフォンノイマンによる定義。
だからこの自然数の事をフォンノイマンの自然数と呼ぶ事にする。

で、フォンノイマンの自然数はペアノシステムを満たしてるわけじゃん。
ペアノ算術だけで証明できる事って要するにペアノシステムを満たす自然数全てに共通して成り立つ事だけを証明できるって事だよね。

グッドスタインの定理をペアノで証明も反証もできないってのはフォンノイマンの自然数以外の自然数では成り立たない事もあるって事じゃん。
だから自然数と言っただけではグッドスタインの定理が成り立つとは言い切るべきじゃないと思うんだよ。
任意のペアノシステムで成り立つかって言う命題なら否定はできるわけだしその意味じゃ排中律に反してないし。
だからzfc上ではなくてもっと弱い数理システム上で話を進めた方が良いんじゃないかって思ってる。

658132人目の素数さん2019/01/19(土) 05:17:34.60ID:9TwxXMZH
>だから自然数と言っただけではグッドスタインの定理が成り立つとは言い切るべきじゃないと思うんだよ。

グッドスタインの定理がペアノの公理系で証明も反証もできない以上、
「グッドスタインの定理が成り立つべき」という立場が厳密には正しくないのは
その通りだが、じゃあグッドスタインの定理が成り立つ場合と
成り立たない場合を見てみると、成り立たない場合では
自然数の「有限性」について我々が標準的には期待しない性質が
出てきてしまうので、心情的には「グッドスタインの定理が成り立つべき」
という立場に傾いてしまう

659132人目の素数さん2019/01/19(土) 05:22:35.67ID:9TwxXMZH
詳しく言うと、グッドスタインの定理が成り立たないようなペアノシステムでは、
グッドスタイン数列が停止しない自然数が存在することになる
ここでは、そのような自然数を1つ取って n と置く

ところで、"具体的に書ける自然数" においてはグッドスタイン数列は
必ず停止するので、グッドスタイン数列が停止しない自然数 n について、
その n は "如何なる具体的に書ける自然数" よりも大きい自然数となる

たとえば、100000000<n とか 10000000000000000<n とかが必ず成り立つことになる
しかも0の個数はいくら(具体的に)増やしてもやはり "1000…000<n" が成り立つ

こうなると、n は無限大やんけと思ってしまうが、
しかしこのようなペアノシステムでは n は無限大ではなく「自然数」である、
……という、自然数の有限性について我々が標準的には期待しない性質が
出てきてしまうので、心情的には「グッドスタインの定理が成り立つべき」
という立場に傾いてしまう

660132人目の素数さん2019/01/19(土) 10:14:16.26ID:kb0p2d2H
そういうのに拘らない数学者はZFC上で、グッドスタインが成り立ってて何も困ることはないのが事実
よくは知らないけど逆数学なんかは平均値の定理みたいな普通の定理をどれだけ弱い算術で示せるかみたいなのを研究してたはずだから、そっちが向いてるんじゃね

661132人目の素数さん2019/01/19(土) 11:04:34.39ID:bxBmUoqb
>>656
グッドスタインの定理がどうとかいう話がしたいなら
まず不完全性定理がどういう定理かという事を
きちんと理解すべき。その後の話。

662132人目の素数さん2019/01/19(土) 11:34:04.58ID:lOkK/jxU
>>659
aが停止する自然数ならa+1も停止するってことが証明できないということ?不思議ね

663132人目の素数さん2019/01/19(土) 12:09:32.87ID:9TwxXMZH
>>662
aが停止することを仮定した上で、
ペアノの公理系の範囲内でa+1も停止することが証明できてしまったら、
それはただの数学的帰納法であって、ペアノの公理系の中で
グッドスタインの定理が証明できたことになるので、
証明も反証もできないことに矛盾する

…と考えると、別に不思議ではないような

664132人目の素数さん2019/01/19(土) 12:15:55.05ID:Pl9ydUsa
>>659
詳しい事は分からないけどペアノで本来自然数が持ってるべき性質をペアノの公理じゃ記述仕切れてないって話なのかな?
zfcだとそれが記述仕切れてると。
それならzfcがどうとか以前にペアノの公理の方に問題があるって事にならない?

俺の主張としてはzfcを使うより本質を表した公理を使いたいって事だからペアノが自然数の本質を表しきれてないならペアノを改良した公理を用いればzfcはいらないしその傾いてしまうってのも解決できるよね?zfcがなくても

665132人目の素数さん2019/01/19(土) 12:17:21.39ID:Pl9ydUsa
グッドスタインに関してはちょっと勉強してみるよ。
ペアノを改良するならどうすれば良いのかっての考えてみる。

666学術2019/01/19(土) 13:05:23.38ID:F8GF084k
暗唱を発達させていけば、新しい数式が記述されるのか?

667132人目の素数さん2019/01/19(土) 13:47:07.47ID:kb0p2d2H
普通に考えてペアノの公理に単純な問題があるだけなら既に解決してるし、
ペアノの公理を発展させるだけでZFCがいらなくなるなら既にZFCは使ってないよね

キューネンの集合論という本を読めば分かるがZFCで普通の数学が扱えることをきちんと示している
一方ペアノ程度の弱い表現力では無理
まずは勉強して土台に立つところからだな

668132人目の素数さん2019/01/19(土) 14:13:13.18ID:x3ursV4d
有限個の公理系では対象を唯一に指定できないんだから
自分の好きなようにすればいい
大体、本質なんて見方次第でどうにでもなるもんだから
それを逆手にとって成果を出すのが数学ってもんよ

669132人目の素数さん2019/01/19(土) 15:24:54.73ID:lOkK/jxU
>>663
いやそうなんだけど何か不思議

670132人目の素数さん2019/01/19(土) 15:27:49.61ID:lOkK/jxU
>>665
>グッドスタインに関してはちょっと勉強してみるよ。
順序数の何とか表記で証明は簡単に理解できるけど
それがペアノから証明も否定もできない(否定はできなくて当然)てことを
証明するためには
どうも超準的な自然数(ペアノを満たす)を利用するらしいから
かなり難しそうだよ

671132人目の素数さん2019/01/19(土) 15:32:47.19ID:lOkK/jxU
>>668
>有限個の公理系では対象を唯一に指定できないんだから
これも不思議
実数論を展開できる可算集合の存在ってのがどうも腑に落ちなくて
あと
ペアノの公理って2階じゃないの?2階なら確定するらしいけど

672132人目の素数さん2019/01/19(土) 15:55:11.07ID:kb0p2d2H
そうだよ
668が間違ってる
一階述語論理ではペアノの公理、特に数学的帰納法は無限個の公理だが、
二階述語論理では量化記号の適用範囲が広がるから有限公理化できる

673132人目の素数さん2019/01/19(土) 15:58:54.36ID:hCdeXsBc
横だけど>>668はモデルが一意に定まらない(カテゴリカルでない)と言ってるんじゃないの?
公理が有限個か無限個かではなく?

674132人目の素数さん2019/01/19(土) 18:05:21.29ID:udFEJ8kb
∀S∋0[ ∀n∈S[suc(n)∈S] ⇒ N⊆S ]
数学的帰納法ってこれじゃダメ?
一階述語論理の1つの公理で表せてない?

675132人目の素数さん2019/01/20(日) 02:06:23.34ID:v2abW0FX
ヒカキンの年収が10億超え!?明石家さんま・坂上忍も驚愕の総資産とは??
https://logtube.jp/variety/28439
【衝撃】ヒカキンの年収・月収を暴露!広告収入が15億円超え!?
https://nicotubers.com/yutuber/hikakin-nensyu-gessyu/
HIKAKIN(ヒカキン)の年収が14億円!?トップYouTuberになるまでの道のりは?
https://youtuberhyouron.com/hikakinnensyu/
ヒカキンの月収は1億円!読唇術でダウンタウンなうの坂上忍を検証!
https://mitarashi-highland.com/blog/fun/hikakin
なぜか観てしまう!!サバイバル系youtuberまとめ
http://tokyohitori.hatenablog.com/entry/2016/10/01/102830
あのPewDiePieがついに、初心YouTuber向けに「視聴回数」「チャンネル登録者数」を増やすコツを公開!
http://naototube.com/2017/08/14/for-new-youtubers/
27歳で年収8億円 女性ユーチューバー「リリー・シン」の生き方
https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all
1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10
https://gigazine.net/news/20151016-highest-paid-youtuber-2015/
おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子
https://www.businessinsider.jp/post-108355
彼女はいかにして750万人のファンがいるYouTubeスターとなったのか?
https://www.businessinsider.jp/post-242
1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD
https://weekly.ascii.jp/elem/000/000/305/305548/
世界で最も稼ぐユーチューバー、2連覇の首位は年収17億円
https://forbesjapan.com/articles/detail/14474

676132人目の素数さん2019/01/20(日) 08:35:16.54ID:mpRY7WEL
圏論は基礎論の一分野なの?
それとも代数学の一分野なの??

677132人目の素数さん2019/01/20(日) 10:38:17.32ID:FSHvLGh9
>>674
ペアノの公理を書く言語ではその論理式が書けない

678132人目の素数さん2019/01/20(日) 11:34:28.18ID:Hksl+fZv
>>676
集合論の派生じゃない?

新着レスの表示
レスを投稿する