コラッツ予想がとけたらいいな その2

1righ1113 ◆OPKWA8uhcY 2018/05/10(木) 22:10:23.74ID:ogyKPvh0
コラッツ予想に挑戦するスレです。

前スレ コラッツ予想がとけたらいいな
https://rio2016.5ch.net/test/read.cgi/math/1350178359/

>>1の証明(未検証)
https://github.com/righ1113/collatzProof

それより弱い成果もあります(未検証)
コラッツのループはあるとしてもとても長い
https://github.com/righ1113/collatzLongLoop

600righ1113 ◆OPKWA8uhcY 2018/08/09(木) 05:30:13.84ID:h30rXcjy
>>597
前スレで、「全てのstar変換後の完全割数列は、全ての3の倍数の奇数を尽くす」事を証明しました。

しかし、後ろに無限に長く、base caseである21[6]にたどり着かない
完全割数列を排除できなくて、その時は挫折しました。

601righ1113 ◆OPKWA8uhcY 2018/08/09(木) 23:59:53.30ID:h30rXcjy
star変換後に、割数列の要素が0や負になる事は禁止していますが、
これを認めたらどうなるでしょうか。
2つほど試してみます。

9[2,1,1,2,3,4]
↓ F[5,-2] y=8x/3-3
21[5,0,1,1,2,3,4]
・確認の計算
割数列を逆から辿る。4->3->2->1->1まででコラッツ値は7だから
(7*2^0-1)/3 = 2
(2*2^5-1)/3 = 21 辻褄は合ってます

15[1,1,1,5,4]
↓ C[4,-4] y=x/3-2
3[4,-3,1,1,5,4]
・確認の計算
割数列を逆から辿る。4->5->1->1まででコラッツ値は23だから
(23*2^-3-1)/3 = 5/8
((5/8)*2^4-1)/3 = 3 辻褄は合ってます

どちらも、コラッツのルールからは外れるけれども、
(3x+1)/2^pの計算自体は出来ているようです。

602righ1113 ◆OPKWA8uhcY 2018/08/10(金) 00:28:24.11ID:tK64NAzp
全ての場合でうまくいく訳ではありません。
star変換それぞれについて見てみます。

・3 mod 9
A[6,-4] y=4x/3-7 x=3+9t ⇒ y=3(4t-1) t=0は禁止する
B[1,-2] y=x/6-1/2 x=3+9t ⇒ y=3t/2 t:奇数は禁止する
・6 mod 9
C[4,-4] y=x/3-2 x=6+9t ⇒ y=3t t=0は禁止する
D[3,-2] y=2x/3-1 x=6+9t ⇒ y=3(2t+1) オールオッケー
・0 mod 9
E[2,-4] y=x/12-3/4 x=9t ⇒ y=(3/4)(t-1)
               t-1が4の倍数でない時禁止する
F[5,-2] y=8x/3-3 x=9t ⇒ y=3(8t-1) オールオッケー


変換後のコラッツ値が、0や負や分数になるものを禁止すれば、
この変換は、3の倍数から3の倍数に写ります。
これで得られる割数列を「拡張完全割数列」「拡張コラッツ予想」と呼ぶ事にします。

603righ1113 ◆OPKWA8uhcY 2018/08/10(金) 23:41:44.61ID:tK64NAzp
拡張完全割数列のうちで、後ろに無限に長く、base caseである21[6]にたどり着かない、
最小反例を考えます。
この割数列にstar変換を施したものも、後ろの方は変わっていないので、反例です。
この反例が最小反例よりも小さければ、矛盾を引き出すことができます。
こういう目論見です。

604righ1113 ◆OPKWA8uhcY 2018/08/13(月) 15:49:38.48ID:7T5v8z4w
考えていた物と別の証明が浮かんだので、そっちを書きます。
>>603の最小反例に、コラッツ値が偶数のものはありません。
2で割るとさらに小さくなるからです。
ということは、拡張完全割数列でコラッツ値が偶数のものは有限項です。
これに、star変換を逆に施した、普通の完全割数列も有限項(1に辿り着く)ということです。

605righ1113 ◆OPKWA8uhcY 2018/08/13(月) 15:53:03.94ID:7T5v8z4w
普通の完全割数列に、star変換を施して、変換後のコラッツ値が偶数になるものを見てみましょう。
・3 mod 9
各star変換 変換関数 返還前 変換後
A[6,-4] y=4x/3-7 x=3+18t ⇒ y=24t-3 偶数はない
B[1,-2] y=x/6-1/2 x=3+18t ⇒ y=3t t:偶数でyは偶数 ⇒ x=36t+3は有限項
・6 mod 9
C[4,-4] y=x/3-2 x=15+18t ⇒ y=6t+3 偶数はない
D[3,-2] y=2x/3-1 x=15+18t ⇒ y=12t+9 偶数はない
・0 mod 9
E[2,-4] y=x/12-3/4 x=9+18t ⇒ y=(3/2)t t:4の倍数でyは偶数 ⇒ x=72t+9は有限項
F[5,-2] y=8x/3-3 x=9+18t ⇒ y=48t+21 偶数はない

606righ1113 ◆OPKWA8uhcY 2018/08/13(月) 16:12:32.34ID:7T5v8z4w
コラッツ値x=36t+3とx=72t+9は1にたどり着く事が分かりました。
(3と9は手計算で、ということにしましょう)
ここで思ったのですが、このパターン、剰余コラッツ予想で解かれてなかったっけ!?

>>4
>前スレ>>786の予想は、以下の場合に証明できています。
>・n は 83 以下の奇数, k は任意
36は81に帰着されるので有効、
72は243なので今のところout

607righ1113 ◆OPKWA8uhcY 2018/08/14(火) 15:24:26.87ID:jD9M+OTo
偶数は「最小でない反例」の可能性があるのですね。
失礼しました。
>>604-606は無しでお願いします。

608righ1113 ◆OPKWA8uhcY 2018/08/15(水) 13:30:28.73ID:GlbaFw1x
>>603を証明します。

拡張完全割数列のうちで、後ろに無限に長く、base caseである21[6]にたどり着かない、 
最小反例cを考えます。
「cは奇数」であり、「c≠3」「c≠9」とします。
「c≡3 mod 9」「c≡6 mod 9」「c≡0 mod 9」で場合分けをします。

・c≡3 mod 9のとき
  star変換B[1,-2]をおこないます。変換関数はy=c/6-1/2
  入力は
   c=9t+3 (t≦0) から始めて
   cは奇数なので c=18t'+3 (t'≦0)
   cは3ではないので c=18t'' +21 (t''≦0)
  変換関数に代入すると
   y=3t'' +3 < c  より小さい反例が得られました。

・c≡6 mod 9のとき
  star変換D[3,-2]をおこないます。変換関数はy=(2/3)c-1
  入力は
   c=9t+6 (t≦0) から始めて
   cは奇数なので c=18t'+15 (t'≦0)
  変換関数に代入すると
   y=12t' +9 < c  より小さい反例が得られました。

609righ1113 ◆OPKWA8uhcY 2018/08/15(水) 13:33:56.44ID:GlbaFw1x
・c≡0 mod 9のとき
  star変換E[2,-4]をおこなうと、分数になる場合があります。
  なので入力を分割します。
   c=9t+9 (t≦0) を
    c1=36t'+9 (t'≦0)  9を除いて36t'' +45 (t''≦0)
    c2=36t'+18 (t'≦0)  偶数なので除外
    c3=36t'+27 (t'≦0)
    c4=36t'+36 (t'≦0)  偶数なので除外

   ・c1のときはE[2,-4]をおこなう
     y=c1/12-3/4 = 3t'' +3 < c1  より小さい反例が得られました。
   ・c3のときは、以下をそれぞれF後のmod9に応じておこないます。
     F → C  (1/3)((8/3)c3-3)-2 = (8/9)c3 -3 < c3
     F → B  (1/6)((8/3)c3-3)-1/2 = (4/9)c3 -1 < c3
     F → E  (1/12)((8/3)c3-3)-3/4 = (2/9)c3 -1 < c3
       どの場合も、より小さい反例が得られました。

 なお、F → Eのときは循環する可能性がありますが、
 y=(8/3)(27+36t')-3 = 72+96t'-3 = 27+ 42+96t'
  42+96t' = 36t'' とおくと、一次不定方程式になりますが、
  42はgcd(96, 36)=12 の倍数ではないので、この式は整数解を持ちません。
  よって、27+36t' ―F→ 27+36t'' になることはありません。


いずれの場合も、より小さい反例が得られたので、
最小反例cは存在しません。

610righ1113 ◆OPKWA8uhcY 2018/08/15(水) 13:38:16.32ID:GlbaFw1x
拡張完全割数列に対して、無限項のものがないと分かりました。
よって、全ての項が正である、通常の完全割数列に限定しても、無限項のものはありません。
以上より、全ての3の倍数の奇数は、1に辿り着くことが言えました。

611132人目の素数さん2018/08/15(水) 16:53:18.16ID:GLWugf1o
えっ
ちょい待ち
全ての6n-3が1を含む枝に属する事が証明できた?
コラッツ予想の証明完了じゃん

612righ1113 ◆OPKWA8uhcY 2018/08/15(水) 17:00:20.05ID:GlbaFw1x
>>611
そうなりますねぇ......

613132人目の素数さん2018/08/15(水) 23:30:39.14ID:kdLKmBaZ
マジで?
記念パピコ

614前786 ◆5A/gU5yzeU 2018/08/16(木) 00:57:42.04ID:M+raKM1N
>>608で、c=18t''+21 から y=3t''+3 への変換で
対応する割数列の変換が本当に B[1,-2] になってるかが怪しいような。

615righ1113 ◆OPKWA8uhcY 2018/08/16(木) 05:27:05.36ID:TWEwRPxI
>>614
c=18t''+21 ーB[1,-2]→ y=3t''+3 を
先頭5個を手計算してみました。

21[0,6] → 3[1,4]
39[0,1,1,2,1,... → 6[1,-1,1,2,...
57[0,2,1,2,2,... → 9[1,0,1,2,...
75[0,1,2,8] → 12[1,-1,2,8]
93[0,3,1,5,4] → 15[1,1,1,5,4]

ひとまずうまくいっているようです。

616righ1113 ◆OPKWA8uhcY 2018/08/16(木) 07:46:18.73ID:SnTp/ir+
c≡0 mod 9のときに不備がありそうです。
調査します。

617前786 ◆5A/gU5yzeU 2018/08/16(木) 10:23:39.87ID:M+raKM1N
0 や負の項を許しているのを失念していました。
ただそうすると、一つの数に対して複数の数列が対応することになります。

c=18t''+21 の割数列に変換 B[1,-2] を施すと、y=3t''+3 の拡張完全割数列の一つが得られますが、
それは y=3t''+3 の通常の割数列と同じとは限らず、通常の割数列が無限に長いとは言い切れない、
すなわち反例になっているとは言い切れないと思います。

618righ1113 ◆OPKWA8uhcY 2018/08/16(木) 13:10:13.37ID:1OdknrZ/
うーむ……
もうちょっと考えてみます。

619132人目の素数さん2018/08/17(金) 03:14:56.80ID:vsonpbq1
せっかく解けない問題があるんだから、何かに使えないんでしょうか

数独のようなパズルを作る
乱数を作る
暗号システムを作る

620righ1113 ◆OPKWA8uhcY 2018/08/18(土) 15:11:04.30ID:D9NuquiS
>>617
入力も拡張完全割数列にすればどうでしょう。
図を書いてみました。
https://github.com/righ1113/CollatzMod/blob/master/picture/divSeq_logic.jpg

反例を、
「ある3の倍数のコラッツ値を表す、拡張完全割数列の少なくとも一つが無限項である」
と定義します。これならどうでしょうか。

621righ1113 ◆OPKWA8uhcY 2018/08/18(土) 15:15:35.49ID:D9NuquiS
画像が見えませんでした
https://imgur.com/a/XPQ850h

622前786 ◆5A/gU5yzeU 2018/08/19(日) 13:08:49.21ID:Nc96juHr
最小反例が 3 である可能性がありますね。
その場合、コラッツ値をより小さくすることはできず、矛盾は生じません。

623righ1113 ◆OPKWA8uhcY 2018/08/19(日) 16:15:52.14ID:z4KwPURj
そうですねぇ、だめですね……
ありがとうございました。

624righ1113 ◆OPKWA8uhcY 2018/08/20(月) 11:12:57.60ID:rrcWSjx+
もうちょっと粘ってみます。

625righ1113 ◆OPKWA8uhcY 2018/08/24(金) 21:38:07.63ID:md4HSYVM
レベルというものを導入します。
6x+3のコラッツ値で、全ての項が正の完全割数列のみがあらわす
ものを、レベル0のコラッツ値とします。
レベル0のコラッツ値と、全ての項が正の完全割数列は、
1対1対応しています。

レベル0のコラッツ値を、0,負も認めたstar変換を1,2,3回施した
ものを、レベル1のコラッツ値とします。
レベル1のコラッツ値で、最小反例が無い事を証明します。

・レベル1のコラッツ値3が最小反例でない事
3から、star変換を逆に施していきます。
それぞれ、1,2,3回逆に施したところで、レベル0に戻るので、
1対1対応した割数列を割り当てます。
有限個の割数列が得られるので、1つ1つ有限項か計算すれば良いです。

626righ1113 ◆OPKWA8uhcY 2018/08/24(金) 21:40:15.28ID:md4HSYVM
プログラムを使って説明します。
コラッツ値をあらわす割数列を列挙する関数allDivSeqを考えます。
第一引数は、コラッツ値です。
第二引数は、star変換を施した回数です。
allDivSeq 3 1を例にとって説明します。
star変換を1回施して、コラッツ値が3になるものを考えて、
allDivSeq 3 1
 = B[1,-2] ++ allDivSeq 21 0
 , C[4,-4] ++ allDivSeq 15 0
 , D[3,-2] ++ allDivSeq 6 0
 , E[2,-4] ++ allDivSeq 45 0
と再帰的に表せます。
第二引数が0になった所で、そのコラッツ値があらわす、
全ての項が正の完全割数列を当てはめます。偶数は無視します。
allDivSeq 3 1
 = B[1,-2] ++ [6]
 , C[4,-4] ++ [1,1,1,5,4]
 , D[3,-2] ++ Nothing
 , E[2,-4] ++ [3,2,3,4]
と、有限項の割数列で列挙できました。

627righ1113 ◆OPKWA8uhcY 2018/08/25(土) 07:17:46.04ID:uY6dzjku
レベル1のコラッツ値3x+3に、最小反例が存在しない事を証明します。
3と9はallDivSeqを使って、
残りの数は、>>608-609を手直ししたものを使います。

628righ1113 ◆OPKWA8uhcY 2018/08/26(日) 21:21:27.79ID:Oj7Z7mtg
3の倍数に0も含めることにします。
3も9もstar変換で0になって、小さくなるのでOKとします。

レベル1のコラッツ値3xに、最小反例が存在しない事を証明します。(後日)
0はallDivSeqを使って、
残りの数は、>>608-609を手直ししたものを使います。

629righ1113 ◆OPKWA8uhcY 2018/08/31(金) 10:08:50.31ID:rYUAgAC8
いろいろ見直しています。
時間がかかりそうです。

630righ1113 ◆OPKWA8uhcY 2018/09/07(金) 00:24:45.25ID:cStMejnA
見直しというか、証明の形式化にチャレンジしています。
Idrisというマニアックな言語を使っています。Coqみたいな事ができます。
型を合わせるのがめんど……いや、難しいですね。

631righ1113 ◆OPKWA8uhcY 2018/09/10(月) 00:29:04.64ID:3QK+PA5a
場合分けが尽くせてないですが、Ver0.1をリリースします。
https://github.com/righ1113/collatzProof_DivSeq
最終的な定理はProofColDivSeqMain.idrにあって、以下です。

allDivSeqInfFalse : (n:Nat)
 -> any unLimited (allDivSeq (n+n+n) 0) = False

これは、3の倍数の奇数の完全割数列が全て、有限項である(1に辿り着く)
事を示しています。

632righ1113 ◆OPKWA8uhcY 2018/09/10(月) 17:40:25.69ID:5z7WrYfQ
レベルを下げる関数に不備がありそうです。

633righ1113 ◆OPKWA8uhcY 2018/09/17(月) 02:46:14.64ID:bqQZOfDF
>>632
関数を変更中です。手こずっています。

634132人目の素数さん2018/09/18(火) 19:02:33.53ID:pWdQneLm

635132人目の素数さん2018/09/18(火) 21:06:42.03ID:Ww3uzjyt
しかし>>1の情熱がすごい
よくあきらめないな

636righ1113 ◆OPKWA8uhcY 2018/09/18(火) 21:38:11.79ID:0UzjDC9R
>>635
なんというか、諦めきれないのです。

637132人目の素数さん2018/09/19(水) 02:37:49.74ID:+Q956Ag5
数学の60年来の難問を、「不老不死研究」の生物医学者がこうして解き明かした
https://wired.jp/2018/08/02/a-decades-old-math-problem/

押しても引いてもだめなら、まったく違う方面からのほうがいいのかもね

638righ1113 ◆OPKWA8uhcY 2018/09/19(水) 06:04:16.85ID:SqxJ5GTm
>>637
はー、なるほど。分かったような、分からないような。

639righ1113 ◆OPKWA8uhcY 2018/09/20(木) 23:55:04.37ID:pHGNvy1m
ひとまずレベルを下げる関数の変更ができました。
https://github.com/righ1113/collatzProof_DivSeq

640righ1113 ◆OPKWA8uhcY 2018/09/20(木) 23:58:02.70ID:pHGNvy1m
一つ注意点があります。
プログラムでの証明中に、postulate(無条件の仮定)を使っています。
なので、完全な形式化という訳ではないです。
postulateな命題については、紙の上で証明すれば良いと考えています。

641righ1113 ◆OPKWA8uhcY 2018/09/22(土) 01:11:42.46ID:2udthHUG
https://github.com/righ1113/collatzProof_DivSeq/wiki

こんな感じで紙の証明も作ってってます。

642132人目の素数さん2018/09/22(土) 02:25:57.68ID:u2bLw4/9
なにげに結構なボリュームあるな
普通にすごいわ
内容的にただしいのか俺の実力じゃジャッジできないけど

643righ1113 ◆OPKWA8uhcY 2018/09/22(土) 04:26:55.20ID:3m3m4Y8s
>>642
ありがとうございます。

644righ1113 ◆OPKWA8uhcY 2018/09/26(水) 15:54:57.58ID:oAYpDJEp
DIR EN GREYのアルバムを買った。
これを聴いて証明を頑張ろう。

645righ1113 ◆OPKWA8uhcY 2018/10/01(月) 03:21:47.90ID:wmcGCB2y
紙の証明 第二部が作成完了しました。
良かったら見てみて下さい。

第2部 レベル0のallDivSeqは、全て有限項 (これが言えればコラッツ予想も真)
https://github.com/righ1113/collatzProof_DivSeq/wiki

646132人目の素数さん2018/10/02(火) 01:11:28.28ID:F4M3UZCA
糞スレ晒しage

647132人目の素数さん2018/10/02(火) 22:53:15.38ID:OaloQ4ah
コラッツ予想を解くと500ドルもらえるらしい

648righ1113 ◆OPKWA8uhcY 2018/10/03(水) 11:35:22.75ID:bBWfQNB+
>>647
多いのか、少ないのか……

649132人目の素数さん2018/10/03(水) 20:24:37.00ID:o70MBvQP
正直、1000万円くらいの懸賞かかっててもいいと思うけどね

650righ1113 ◆OPKWA8uhcY 2018/10/03(水) 20:30:12.03ID:nw1H62gV
そうですよね。100万でも「おおっ」ってなります。

新着レスの表示
レスを投稿する