X



トップページ数学
1002コメント527KB
面白い問題おしえて〜な 26問目
レス数が1000を超えています。これ以上書き込みはできません。
0001132人目の素数さん
垢版 |
2018/02/19(月) 00:21:10.33ID:uzLAXv/z
過去ログ
http://www3.tokai.or.jp/meta/gokudo-/omoshi-log/
まとめwiki
http://www6.atwiki.jp/omoshiro2ch/

1 http://cheese.2ch.net/test/read.cgi/math/970737952/
2 http://natto.2ch.net/test/read.cgi/math/1004839697/
3 http://science.2ch.net/test/read.cgi/math/1026218280/
4 http://science.2ch.net/test/read.cgi/math/1044116042/
5 http://science.2ch.net/test/read.cgi/math/1049561373/
6 http://science.2ch.net/test/read.cgi/math/1057551605/
7 http://science2.2ch.net/test/read.cgi/math/1064941085/
8 http://science3.2ch.net/test/read.cgi/math/1074751156/
9 http://science3.2ch.net/test/read.cgi/math/1093676103/
10 http://science4.2ch.net/test/read.cgi/math/1117474512/
11 http://science4.2ch.net/test/read.cgi/math/1134352879/
12 http://science6.2ch.net/test/read.cgi/math/1157580000/
13 http://science6.2ch.net/test/read.cgi/math/1183680000/
14 http://science6.2ch.net/test/read.cgi/math/1209732803/
15 http://science6.2ch.net/test/read.cgi/math/1231110000/
16 http://science6.2ch.net/test/read.cgi/math/1254690000/
17 http://kamome.2ch.net/test/read.cgi/math/1284253640/
18 http://kamome.2ch.net/test/read.cgi/math/1307923546/
19 http://uni.2ch.net/test/read.cgi/math/1320246777/
20 http://wc2014.2ch.net/test/read.cgi/math/1356149858/
21 http://wc2014.2ch.net/test/read.cgi/math/1432255115/
22 http://rio2016.2ch.net/test/read.cgi/math/1464521266/
23 http://rio2016.2ch.net/test/read.cgi/math/1497416499/
24 http://rio2016.2ch.net/test/read.cgi/math/1502016223/
25 http://rio2016.5ch.net/test/read.cgi/math/1502032053/
0904132人目の素数さん
垢版 |
2018/07/21(土) 17:13:05.39ID:oD6UOuI2
>>899 >>900
言い忘れてた、そうです元の個数です
0905イナ ◆/7jUdUKiSM
垢版 |
2018/07/21(土) 19:06:13.60ID:g6r8bf/f
>>901関孝和?
縦9寸、横12寸の直角三角形に内接する同じ大きさの二個の円の直径を求める問題みつけた。
/_/_/_人_/_/_/_
/_/_(_)/_/_/_
/_/_(__)/_/_/_
/_/_((^。^)/_/_/_
/_/_(_っ-┓_/_/_
/_/_◎゙┻υ◎゙/_/_
/_/_/_/_/_/_/_/_/_/_/_/キコキコ……/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/なかなかやりおる。
0906132人目の素数さん
垢版 |
2018/07/21(土) 23:30:10.14ID:4/chbJgW
>>905

3頂点を O(0,0) A(0,9) B(12,0) とする。
(x,y) と直線ABの距離は (1/5)|36-3x-4y|

P(r,9-2r) を中心とする半径rの円pはOA,ABに接する。
Q(3(4-r),r) を中心とする半径rの円qはOB,BAに接する
 PQ = 5(3-r),
また、2円p,qが外接する。
 PQ = 2r,
∴ r = 15/7
0908132人目の素数さん
垢版 |
2018/07/22(日) 00:11:59.89ID:1DdlAJLc
>>896
一応できたような気がするが、長い。

以下では、{ a+a'|a,a'∈A } のことを A+A と書くことにする(個人的に 2A と書きたくないので)。
Fを2元体とする。次の定理を示せば十分である。

定理:Vは有限次元のFベクトル空間とする。k≧0 と A⊂V は|A|>2^{k−1}を満たすとする。
このとき、|A+A|≧2^k が成り立つ。

証明:n≧0に関する命題P(n)を以下のように定義する。

P(n):Vはn次元のFベクトル空間とする。k≧0 と A⊂V は
|A|>2^{k−1}を満たすとする。このとき、|A+A|≧2^k が成り立つ。

任意のn≧0に対してP(n)が真であることを、nに関する数学的帰納法で示す。
P(0)について:Vは0次元のFベクトル空間とする(自動的にV={o}である)。
k≧0 と A⊂V は|A|>2^{k−1}を満たすとする。示すべきは|A+A|≧2^k である。
まず、1=|V|≧|A|>2^{k−1} より 1>2^{k−1} となるので、自動的に k=0 となる。
次に、|A|>2^{k−1}>0 より A≠φであり、よって A+A≠φであり、よって
|A+A|≧1=2^0=2^k である。よって、P(0)は真である。

次に、n≧1を任意に取る。P(n−1)は真とする。P(n)も真であることを示す。
Vはn次元のFベクトル空間とする。k≧0 と A⊂V は|A|>2^{k−1}を満たすとする。
示すべきは|A+A|≧2^k である。
0909132人目の素数さん
垢版 |
2018/07/22(日) 00:14:30.08ID:1DdlAJLc
簡単のため、B:=A+A と置く。示すべきは|B|≧2^k である。
まず、Fが2元体であることから|V|=2^n となることが分かる。これと
|V|≧|A|>2^{k−1} より 2^n>2^{k−1} となるので、自動的に n≧k である。
次に、|A|>2^{k−1}>0よりA≠φである。よって、a∈A が1つ取れる。
このとき a+a∈A+A=B すなわち o∈B である(Fは2元体なので a+a=o である)。

さて、|B|≧2^k を示したいのだった。もし V−B=φ ならば、
V=B となるので、|B|=|V|=2^n≧2^k である(n≧kに注意)。
よって、この場合は成立。以下では、V−B≠φ としてよい。
そこで、x∈V−B を1つ取る。o∈B だったから、自動的に x≠o である。
W:={λx|λ∈F} (={o,x}) と置けば、W は V の部分空間である。
また、x≠o に注意して dim(W)=1 である。

この W を利用して、s,t∈V に対して s〜t ⇔ s−t∈W と定義すれば、〜 は V 上の同値関係になることが分かる。
s∈V の同値類を [s] と書くことにする。商集合 V/〜:={ [s]|s∈V } は自然な定義でFベクトル空間となる。
また、ベクトル空間の商空間の一般論から dim(V/〜)=dim(V)−dim(W) = n−1 となることが分かる。
0911132人目の素数さん
垢版 |
2018/07/22(日) 00:17:45.51ID:1DdlAJLc
さて、

A':={ [a]|a∈A } ⊂ V/〜

と置くと、|A'|=|A|である。実際、f:A→A' を f(a):=[a] で定義すれば、
これは明らかに well-defined かつ全射である。また、f は単射である。実際、
f(a_1)=f(a_2), a_i∈A とすると、[a_1]=[a_2] であるから a_1〜a_2 となる。
よって、a_1−a_2∈W={o,x} すなわち a_1−a_2=o,x である。a_1−a_2=x のときは、
x=a_1−a_2=a_1+a_2∈A+A=B となる(Fは2元体なので −a_2=a_2 である)。
しかし、x∈V−B だったから矛盾する。よって、a_1−a_2=o となるしかない。
よって、a_1=a_2 となるので、f は単射である。よって、fは全単射となったので、
|A|=|A'|である。|A|>2^{k−1} だったから、|A'|>2^{k−1} となる。

今の段階で、次が成り立っている。

・ V/〜 は(n−1)次元のFベクトル空間, k≧0, A' ⊂ V/〜, |A'|>2^{k−1}.

よって、P(n−1)が真であることから、|A'+A'|≧2^k である。
0912132人目の素数さん
垢版 |
2018/07/22(日) 00:21:20.07ID:1DdlAJLc
次に、|B|≧|A'+A'|が成り立つことを示す。g:B → A'+A' を g(b):=[b] で定義すると、
これは well-defined である。実際、b∈B を任意に取ると、b=a_1+a_2, a_i∈A と表せるので、
このような表示を何でもいいから1つ取れば

g(b)=[b]=[a_1+a_2]=[a_1]+[a_2]∈A'+A'

であり、よって well-defined である。また、g は全射である。実際、c∈A'+A' を任意に取ると、
A' の定義から、c=[a_1]+[a_2] なる a_i∈A が取れる。このような a_1,a_2 を何でもいいから
1つずつ取って b:= a_1+a_2∈B と置けば、g(b)が定義できて

g(b)=[b]=[a_1+a_2]=[a_1]+[a_2]=c

となるので、確かに g は全射である。g:B → A'+A' だったから、以上より、|B|≧|A'+A'|である。
|A'+A'|≧2^k だったから、以上より、|B|≧2^k である。

よって、いずれの場合も|B|≧2^kとなったので、P(n)は真である。
数学的に帰納法により、任意のn≧0に対してP(n)は真である。よって、題意が成り立つ。
0913 【ぴょん吉】
垢版 |
2018/07/22(日) 00:56:01.57ID:SEmuhAob
>>905
三平方の定理より、
直角三角形の斜辺は、
√(9^2+12^2)=15(寸)
円の直径を2rとすると、
二つの円の中心間の距離も2rなので、直角三角形の辺の比は、
3:4:5=3(2r/5):4(2r/5):2r
=(6r/5):(8r/5):2r
直角三角形の斜辺は、
{9寸-(6r/5)-r}+2r+{12寸-(8r/5)-r}=15寸
6寸=14r/5
2r=30/7(寸)
0914132人目の素数さん
垢版 |
2018/07/22(日) 01:38:28.55ID:41rzkBcX
>>912
正解です素晴らしい!実はより一般に
X,Y⊂F^n が空でない時、 |X|+|Y|>2^k ならば |X+Y|≧2^k
を示してからその系として導く解法を想定していたのですが、本質的にかなり簡単になっていて驚きました。V\(A+A) から元をとる発想はなかったです。。
0915132人目の素数さん
垢版 |
2018/07/22(日) 01:53:47.71ID:1DdlAJLc
>>914
>X,Y⊂F^n が空でない時、 |X|+|Y|>2^k ならば |X+Y|≧2^k

なんと、そんな定理も成り立つのか (^o^)

実は、>>896 の F_p バージョンである次の定理が、>>908 と同じやり方で証明できる。
―――――――――――――――――――――――――――――――
定理:p は素数とする。V は有限次元の F_p ベクトル空間とする。
k≧0 と A⊂V は|A|> p^{k−1} を満たすとする。このとき、

|Σ[i=1〜p] A|≧ p^k

が成り立つ。ただし、Σ[i=1〜p] A := { Σ[i=1〜p] a_i|a_1,…,a_p∈A }
と定義する。
―――――――――――――――――――――――――――――――

この定理を

>X,Y⊂F^n が空でない時、 |X|+|Y|>2^k ならば |X+Y|≧2^k

と見比べると、たぶん次の定理も成り立つのかな (^o^)
―――――――――――――――――――――――――――――――
定理(?): p は素数とする。V は有限次元の F_p ベクトル空間とする。
k≧0 と空でない X_1,X_2,…,X_p⊂V は Σ[i=1〜p]|X_i|> p^k を
満たすとする。このとき、|Σ[i=1〜p] X_i|≧ p^k が成り立つ。
―――――――――――――――――――――――――――――――
0917132人目の素数さん
垢版 |
2018/07/22(日) 12:19:45.04ID:U4aZuyBV
>>915
情報ありがとうございます。色々考えてみました。
上の定理(?)には、残念ながら反例があるようです。W⊂VをVのk次元部分空間として、
X_1=W∪{a} (ただしa∈VはWに属さない元)
X_i=W (i=2,…,p)

代わりに次の定理が成り立つようです。
(定理)pを素数、整数、 1≦m<p とし、VをF_pベクトル空間とする。
整数 k≧0 と空でない X,Y⊂V が |X|+|Y|>mp^k を満たすならば |X+Y|≧mp^k が成り立つ。□
折角なので証明の概略だけ置いときますね
〜〜〜〜〜〜〜〜
a∈V, S⊂V に対して a+S={a+s: s∈S} と定める。
適当な x∈X, y∈Y をとれば |-x+X|=|X|, |(-x+X)+(-y+Y)|=|X+Y| 等が成り立つので、 0∈X,Y の場合のみを考えればよい。
X∩(-y+Y)≠X が成り立つような y∈Y が存在する時、次の操作を考える。
(操作)「X'=X∩(-y+Y), Y'=X∪(-y+Y) とし、 XをX'に、YをY'に置き換える」
この操作により、|X|は減少し、|X|+|Y| は保たれる。
また、X'+Y'⊂X+(-y+Y) より、|X+Y| は非増加となる。新しいX,Yはどちらも0を元に持つ。
この操作は、|X|の狭義単調減少性により、有限回でできなくなる。
このような最終状態のX,YをそれぞれP,Qとおくと、操作ができないことから、任意のq∈Qについて P∩(-q+Q)=P が成り立つ。
ゆえに、q+P⊂Q より、 Q+P⊂Q.
したがって、Q+<P>=Q. (ただし、<P>はPが張るベクトル空間。)
これより、元を足すことによる<P>のQへの作用を考えることができるが、この作用による任意の軌道は|<P>|個の元を持つので、|Q| は |<P>| の倍数。…[1]
また、|Q|+|P| = |X|+|Y| > mp^k より
|Q| > mp^k - |<P>| となる。 …[2]
|<P>| ≦ p^k の場合、[1]と[2]より |Q| ≧ ([2]の右辺)+|<P>| = mp^k.
|<P>| ≧ p^(k+1) の場合、 <P>⊂Q より |Q|>mp^k.
したがって、いずれの場合も |P+Q| ≧ |Q| ≧ mp^k.
操作により|X+Y|は非増加であったから、 |X+Y| ≧ |P+Q| ≧ mp^k. □
0918132人目の素数さん
垢版 |
2018/07/22(日) 16:50:21.14ID:X11xpoqn
和算の問題です。
一つの円があります。
その円の中に、大、中、小の円を内接させます。
條件は、大、中、小の円は、一番外側の円に内接します。

大円は、中円と小円に外接します。
中円は大円と小円に外接します。
小円は、大円と中円に外接します

この場合、この4つの円の関係を求めてください。

出典」三上義夫「日本数学史」(この本は、「科学図書館」という
サイトに全文がPDFファイルとしてアップされています)
0919イナ ◆/7jUdUKiSM
垢版 |
2018/07/22(日) 20:03:51.82ID:SEmuhAob
>>918
外側の円の半径:Я
大円の半径:R
中円の半径:R
小円の半径:r
とすると、
Я>R+R>R>R>r
0920132人目の素数さん
垢版 |
2018/07/22(日) 20:53:32.75ID:XHMrpicM
大円の半径が3
中円の半径が2
小円の半径が1
のときの内側の円の半径は?
とかにしないと問題としては答えにくくね?
まぁこのケースはそんなに難しくないかもしれないけど。
この3円に外接するの方が難しいのかな?
数値もへぇって値になった記憶が
0922132人目の素数さん
垢版 |
2018/07/22(日) 23:51:55.24ID:8X1Zeg9C
反転法使えばそんな難しくなさそうだけど、暗算できるほど簡単ではないな。
0925イナ ◆/7jUdUKiSM
垢版 |
2018/07/23(月) 08:16:34.35ID:7/0/1MEy
よって四つの円の包含関係は、
外側の円⊃大円
外側の円⊃中円
外側の円⊃小円
但し、大円、中円、小円はたがいに外接する。
>>919
0926132人目の素数さん
垢版 |
2018/07/23(月) 10:11:04.09ID:+uNFdt3Z
デカルトの円定理
0928132人目の素数さん
垢版 |
2018/07/23(月) 12:19:19.88ID:BhRl/p7g
複素係数一変数多項式 f, g であって {f(x)}^2 + {g(x)}^2 = x を満たすものは存在するか。
0930132人目の素数さん
垢版 |
2018/07/23(月) 17:17:16.75ID:KhSOAKcF
ごめん間違えた、
f^2 + g^3 = x を満たす多項式は存在するか
でした
0931132人目の素数さん
垢版 |
2018/07/23(月) 21:21:51.05ID:7FS8HckQ
>>930
できたか?
存在すると仮定する。
f(x)がxを因子に持てばg(x)もxを因子にもちv_x(左辺) ≧ 2、v_x(右辺) = 1により矛盾。
よってf(x)はxを因子に持たない。よってf(t^2)もtを因子に持たない。
与式より
g(t^2)^3 = (t - f(t^2)) (t + f(t^2))
であるが、(t-f(t^2),t+f(t^2)) = (2t,t+f(t^2)) = 1によりt-f(t^2)とt+f(t^2)は互いに素である。
よってg(t^2)の因子のうちt-f(t^2)の因子になっているものの積をh(t)、t+f(t^2)の因子になっているものの積をk(t)とおけば
h(t)^3 = c(t - f(t^2))、k(t)^3 = d(t + f(t^2))、cd = 1
となる定数c,dがとれる。
h,kをc,dの3乗根で割ったものに取り替えれば
h(t)^3 = t - f(t^2)、k(t)^3 = t + f(t^2)
となるとしてよい。
一方t-αがh(t)の因子なら-t-αはk(t)の因子であるからk(t) = e h(-t)となる定数eがとれる。
このとき
h(t)^3 - t = - f(t^2) = t - k(t)^3 = t - e^3 h(-t)^3
により
h(t)^3 + e^3 h(-t)^3 = 2t
となる。
ここで容易にg(x)の次数は奇数であり、h(t)とk(t)の次数は等しいからh(t)の次数も偶数である。
よって上の式の最高次からe^3 = -1がわかる。
よって
h(t) + h(-t) = 2t
を得るが左辺は偶関数により矛盾。
0932132人目の素数さん
垢版 |
2018/07/23(月) 23:46:59.29ID:jsKLvMqB
>>931
まちごうた。最後から2行目
h(t)^3 - h(-t)^3 = 2t
で左辺の次数は3(deg h)-1で5以上より矛盾。
0933132人目の素数さん
垢版 |
2018/07/24(火) 01:11:19.24ID:v83j+alb
>>931-932
改めて清書するとミスや余計な議論のオンパレードだけど、もう修正のせるとスレ汚しになるのでやめときます。
ホントはC(x)上の楕円曲線

 Y^2 = - X^3 + x

の有理点についての議論でかっこよくやるのが通なんだろうけどオラには無理。
なんか数オリの解答みたいになってヤだけどこれしか思いつかん。
0934132人目の素数さん
垢版 |
2018/07/24(火) 01:17:52.25ID:rRTBzOQ4
>>930
メーソン・ストーサーズの定理(ABC予想の多項式版)を使ったら凄く簡単に出たw
もちろん、「存在しない」が答え。
0937132人目の素数さん
垢版 |
2018/07/24(火) 04:25:23.69ID:lehQeRGl
>>931
レス遅くなりました。23時頃に一度投稿しようとして投稿規制くらった文章をそのまま載せときます。
最後の定理は既出でしたね
〜〜〜〜〜〜〜〜

>ここで容易にg(x)の次数は奇数であり、
以降がちょっと難しいですがその直前の式でほぼ矛盾が示せているので正解とします。
(直前の式の左辺を因数分解して、両辺の次数を比べ、左辺の3つの因数のうち少なくとも二つが次数0でなければならないことからも矛盾が示せます)

実はABC予想の多項式版の類似であるメーソン・ストーサーズの定理を使えば比較的簡単に解くことができるので、よければ調べてみてください
0938132人目の素数さん
垢版 |
2018/07/24(火) 06:21:54.98ID:bmjGlIcJ
>>937
ありがとうございます。
比較的どころかメーソン・ストーサーズの定理使えば瞬殺ですね。勉強しときます。
0939132人目の素数さん
垢版 |
2018/07/24(火) 17:51:22.07ID:xg2jMb4Q
これもしかして、このメーソン・ストーサーズの定理が元でその数論版がABC予想とかではないんですかね?
やっぱりABCの方が先?
0940132人目の素数さん
垢版 |
2018/07/26(木) 04:23:17.15ID:gCZSgyqq
群Gの正規部分群NはZ(整数)と同型
G/NはZ/nZと同型
nは1より大きい整数
Gの構造を決定しろ
0942132人目の素数さん
垢版 |
2018/07/26(木) 09:42:15.39ID:r9ee9dZW
>>940
以下x’:=x^(-1)とする。
N=<a>とし、b∈G\NをbNがG/Nの生成元となるようにとる。
準同型x→bxb’は同型N→Nを引き起こすがこのときaの像はa,a’のいずれかである。
(i) bab’ = aのとき。
このときG≌Z⊕Z/nZである。
(ii) bab’ = a’ のとき。
nが奇数とするとn = 2q + 1とおくとき
a = b^(2q+1)ab^(-(2q+1)) = bab’ = -a
となって矛盾するからnは偶数である。
逆にnが偶数のとき
<a,b|bab’ = a’,b^n=e>
はZのsemi trivial extensionであり、条件を満たす。
0943132人目の素数さん
垢版 |
2018/07/26(木) 11:06:27.02ID:g7KCpv5X
>>832
返信遅くなって申し訳ない (>>826です)
超越基底を用いれば簡単になるであろうということ。
――――――――
何か鳩ノ巣原理を使う難問が欲しい
此れだけでは申し訳ないので幾つか投下:
(難問ではなく何も既知の筈)

・長さNの正整数から為る数列が2つ存在し, 数列を構成する数は1以上N以下である.
A, Bから其々空でない部分数列を適当に選ぶとき, 其々の総和を等しく出来るか.

・αが無理数の時, 次の不等式を満たす整数の組(p,q)が無限に存在することを示せ:
|α-p/q|<1/q²

序でに右辺をk/q²として不等式を満たす組が無限に存在する様な最小のkを求めると, k=1/√5になることが知られてる

母関数を使うらしく, 序でにk=1でも分母の自乗はx(>2)乗に変えた瞬間成り立たないそうだ(知ってるのは此処まで).
0944132人目の素数さん
垢版 |
2018/07/26(木) 12:19:01.89ID:B8nOkJxx
【何故シヌの、JK″】 島津論文「安倍とオウムに接点」 露国防相「気づかれてないと思うな晋三」
http://rosie.5ch.net/test/read.cgi/liveplus/1532569537/l50



地震多すぎ! 日本は地震大国だから、は大ウソだった! ほら吹きの安倍が、地下核実験をやっている!
0945132人目の素数さん
垢版 |
2018/07/27(金) 06:49:09.69ID:0WjqahXc
>>940
Zの自己同型は±1のみ
Zn→Z2はnが偶数なら0と全射nが奇数なら0のみ
よって
Z+Znか偶数ならZとZnの半直積
094682
垢版 |
2018/07/27(金) 07:59:20.49ID:sps923Uv
>>82の正解発表
>>87 (A)正解
>>85 (B)正解
094782
垢版 |
2018/07/27(金) 08:00:12.73ID:sps923Uv
>>82(A)の模範解答】
以下、図形の内部には周も含める。

[補a]
幅1のルーローの三角形は、内部の任意の2点間の距離が1以下である。
半径1、中心角60°以下の扇形は、幅1のルーローの三角形の一部である。よって、内部の任意の2点間の距離が1以下である。 ■

[A]
5点ならば、円に内接する正五角形の各頂点に配置すれば、どの2点間の距離も1より大きくなる。
どの2点間の距離も1より大きくなるような6点の配置を考える。
円の中心に1点Aを配置すると、円の中心と内部の任意の点との距離は1以下だから、Aと他の5点との距離は全て1以下になる。よって、円の中心以外にAを配置する。
円を扇形で6等分すると、Aが2つの扇形X,Yの境界に乗るようにすることができる。別の点をX,Yに配置すると、[補a]より、Aとその点との距離は1以下になる。よって、X,Y以外の4つの扇形に残りの5点を配置する。
鳩の巣原理より、少なくとも2点は同じ扇形の内部になる。[補a]より、その2点間の距離は1以下になる。
したがって、どのように6点を配置しても、ある2点間の距離が1以下になる。
最小のmは6である。 ■
094882
垢版 |
2018/07/27(金) 08:02:00.38ID:sps923Uv
>>82(B)の模範解答】
以下、図形の内部には周も含める。

[補b]
半径1/2の円の内部の2点間の距離は、直径の両端のときは1、それ以外のときは1未満である。
一辺1/2の正六角形は、半径1/2の円に内接する。よって、内部の2点間の距離は、最も遠い頂点どうし(3組ある)のときは1、それ以外のときは1未満である。
カップケーキ形(図の黄色部分)は、一辺1/2の正六角形の一部である。よって、内部の2点間の距離は、弧の両端のときは1、それ以外のときは1未満である。
弧の片側の端点を欠いたカップケーキ形(以下、単に「図形」)は、元のカップケーキ形の一部である。よって、内部の2点間の距離は1未満である。 ■

[B]
7点ならば、円の中心と、円に内接する正六角形の各頂点に配置すれば、どの2点間の距離も1以上になる。
どのような8点の配置も、ある2点間の距離が1未満であることを背理法で示す。
どの2点間の距離も1以上であるような8点の配置が存在すると仮定する。
http://imgur.com/kTTm64O.jpg
半径1の円は、7つのパーツ
一辺1/2の正六角形ABCDEF、図形HBA(G)、図形ICB(H)、図形JDC(I)、図形KED(J)、図形LFE(K)、図形GAF(L)
で覆うことができる。
鳩の巣原理より、少なくとも2点は同じパーツの内部にある。[補b]より、その2点は正六角形のパーツの内部にある。AとDにあるとして一般性を失わない。
[補b]より、A,Dを含む図形4つには別の点はない。また、[補b]より、図形LFE(K)とICB(H)にはそれぞれ最大で1点しかない。
このとき、合計で最大でも4点しか配置されていないため矛盾。仮定は誤りであった。
したがって、どのように8点を配置しても、ある2点間の距離が1未満になる。
最小のnは8である。 ■
094982
垢版 |
2018/07/27(金) 08:03:17.37ID:sps923Uv
出典
(A)
https://www.cut-the-knot.org/pigeonhole/six_points.shtml
このサイトに証明が2つ載っている。
1つ目は上記。
2つ目は>>87と同じ方針で最後に[補a]を使わない方法である(三角形の内角の大小関係を使っている)。
(B)
https://math.stackexchange.com/questions/1228119/
1点を欠いた図形を考えるのがミソである。この一工夫で証明はかなり楽になる。クレバーな方法。

(B)の画像はGeoGebraで自作した。

この手の問題は
「定幅図形(またはそれらに内包される図形)で元の図形を被覆/分割して、鳩の巣原理に持ち込む」
のが定石だが、効率の良い被覆や分割は発見に試行錯誤を要することが多い。
「図形Aに、どのようにk個以上の点を配置しても、ある2点間の距離がd以下/未満になる」
みたいな一般化は厳しいだろう。
0950188
垢版 |
2018/07/27(金) 08:05:38.26ID:sps923Uv
>>188の正解
正n角形について、辺AB,BC,CD…の順に鏡映を取っていく操作を
nが偶数ならばn-1回
nが奇数ならば2n-1回
それぞれ繰り返せば、l(n)を「平行な2辺間を結ぶ直線か折れ線の長さ」に帰着することができる。折れ線のときは直線のときより長いことを利用すれば、幾何的にl(n)の最小が求まる。
もちろん>>189みたいに式で解けるならそれに越したことはないが…
0951132人目の素数さん
垢版 |
2018/07/27(金) 09:50:50.05ID:NlkV/5Nh
>>856
解答です。
PQRSにおける接線の交点を結んで得られる四角形をXYZWとする。
XからCに引いた2接線の接点の交点をx、y,z,wに対するそれをy,z,wとする。
仮定よりXYZWは円D上にあるしてよい。
このときDのCに関する反転をdとするとxyzwはd上である。
よって主張は成立する。□
0952132人目の素数さん
垢版 |
2018/07/27(金) 22:17:47.94ID:uXdC9xjt
一辺の長さ1の正五角形の頂点を全て結ぶ分岐あり曲線の長さの最小値を求めよ
0953132人目の素数さん
垢版 |
2018/07/27(金) 22:19:49.89ID:uXdC9xjt
正n角形の頂点を全て結ぶ分岐あり曲線の長さが最小となるとき、分岐点の角度は必ず120°となることを証明せよ
0954132人目の素数さん
垢版 |
2018/07/27(金) 22:22:17.06ID:uXdC9xjt
>>953
ごめんこれ嘘
なんでもない
0955 【豚】
垢版 |
2018/07/28(土) 00:32:41.08ID:6VVd4WCT
>>952


∵五角形の中に桜の花びらを描くように半径1の弧を各頂点から描くと、
弧の最小単位
2π×(36°/360°)
が十個、頂点と分岐点を交互に通るかたちになる。

>>925開運!!
0957535
垢版 |
2018/07/28(土) 07:52:44.92ID:o+vDTN8W
>>535の正解発表

【Step 1 与式の分割】

例えば最初の分数式について
(a-b)(a-c)/(a+b+c)
=(1/2)(a-c)(a-c)/(a+b+c)
+(1/2)(a-c)(a-2b+c)/(a+b+c)
は容易に確認できる。

そこで
s=a+b+c+d
A'=(a-c)(a-c)/(s-d)
A''=(a-c)(a-2b+c)/(s-d)
B'=(b-d)(b-d)/(s-a)
B''=(b-d)(b-2c+d)/(s-a)
C'=(c-a)(c-a)/(s-b)
C''=(c-a)(c-2d+a)/(s-b)
D'=(d-b)(d-b)/(s-c)
D''=(d-b)(d-2a+b)/(s-c)
と置くと
(与式の左辺)
=(1/2)[A'+A''+B'+B''+C'+C''+D'+D'']
=(1/2)[(A'+B'+C'+D')+(A''+B''+C''+D'')]
と分割できる。
0958535
垢版 |
2018/07/28(土) 07:55:37.99ID:o+vDTN8W
【Step 2 A'+B'+C'+D'の評価】

√A',√B',√C',√D',√(s-a),√(s-b),√(s-c),√(s-d)にコーシー・シュワルツの不等式を適用すると
[A'+B'+C'+D'][(s-a)+(s-b)+(s-c)+(s-d)]
≧[{√A'}*{√(s-a)}+{√B'}*{√(s-b)}+{√C'}*{√(s-c)}+{√D'}*{√(s-d)}]^2 …△
⇔3s(A'+B'+C'+D')≧(|a-c|+|b-d|+|c-a|+|d-b|)^2
⇔3s(A'+B'+C'+D')≧(2|a-c|+2|b-d|)^2
相加相乗平均の不等式より
2|a-c|+2|b-d|≧2√(2|a-c|*2|b-d|)>0
だから
(2|a-c|+2|b-d|)^2≧16|a-c||b-d| …▲
よって
3s(A'+B'+C'+D')≧16|a-c||b-d|
⇔A'+B'+C'+D'≧16|a-c||b-d|/(3s) …@
0959535
垢版 |
2018/07/28(土) 08:02:39.32ID:o+vDTN8W
【Step 3 A''+B''+C''+D''の評価】

(a-c)(a-2b+c)(s-b)+(c-a)(c-2d+a)(s-d)
=(a-c)[(a+c-2b)(a+c+d)-(a+c-2d)(a+c+b)]
=(a-c)[{(a+c)^2+(d-2b)(a+c)-2bd}-{(a+c)^2+(b-2d)(a+c)-2db}]
=(a-c)[(d-2b-b+2d)(a+c)]
=3(a-c)(d-b)(a+c)
またM=(s-d)(s-b)とおくと
M=s(s-b-d)+db=s(a+c)+bd
A''+C''
=[(a-c)(a-2b+c)(s-b)+(c-a)(c-2d+a)(s-d)]/[(s-d)(s-b)]
=3(a-c)(d-b)(a+c)/M

同様にN=s(b+d)+acとおくと
B''+D''=3(b-d)(a-c)(b+d)/N

よってW=(b+d)M-(a+c)Nとおくと
W=(b+d){s(a+c)+bd}-(a+c){s(b+d)+ac}=(b+d)s(a+c)+(b+d)bd-(a+c)s(b+d)-(a+c)ac=(b+d)bd-(a+c)ac
A''+C''+B''+D''
=3(a-c)(b-d)[(b+d)/N-(a+c)/M]
=3(a-c)(b-d)[(b+d)M-(a+c)N]/(MN)
=3(a-c)(b-d)W/(MN)

ここで
MN={(a+c)s+bd}{(b+d)s+ac}=(a+c)(b+d)s^2+{(a+c)ac+(b+d)bd}s+bdac
>{(a+c)ac+(b+d)bd}s
x>0,y>0のときx+y>|x-y|より
{(a+c)ac+(b+d)bd}s>|(a+c)ac-(b+d)bd|s=|W|s
よって
MN>|W|s⇔(1/s)>|W|/(MN)

ゆえに
|A''+C''+B''+D''|=3|a-c||b-d||W|/(MN)≦3|a-c||b-d|/s …▼
したがって
A''+C''+B''+D''≧-3|a-c||b-d|/s …A
0960535
垢版 |
2018/07/28(土) 08:06:13.82ID:o+vDTN8W
【与式の証明と等号成立条件】
@とAより
(与式の左辺)
=(1/2)[(A'+B'+C'+D')+(A''+B''+C''+D'')]
≧16|a-c||b-d|/(3s)-3|a-c||b-d|/s
=16|a-c||b-d|/(3s)-3|a-c||b-d|/s
=7|a-c||b-d|/(3s) …☆
明らかに
7|a-c||b-d|/(3s)≧0=(与式の右辺) …★
よって
(与式の左辺)≧(与式の右辺)

(与式の等号が成立する)
⇔(☆、★の等号が成立する)
⇔(@、A、★の等号が成立する)
⇔(△、▲、▼、★の等号が成立する)

▲の等号成立条件は
2|a-c|=2|b-d|⇔|a-c|=|b-d|
▼と★の等号成立条件は
|a-c|=0∨|b-d|=0⇔a=c∨b=d
よって
a=c∧b=d
このとき△でも等号が成立している。

したがって、与式の等号成立条件はa=c∧b=d ■
0961535
垢版 |
2018/07/28(土) 08:08:38.70ID:o+vDTN8W
他の2つの模範解答もどう発想するのか判らない解答であるうえ、ただ煩雑で汚いので省略。
リンク先で見てください。
出典:IMO2008SL-A7
https://www.imo-official.org/problems/IMO2008SL.pdf
0962132人目の素数さん
垢版 |
2018/07/28(土) 08:13:53.49ID:Sc9m8D2O
|a b c d|
|b bx d cx|
|c d ay by|
|d cx by axy|
を因数分解せよ
0963132人目の素数さん
垢版 |
2018/07/28(土) 09:35:34.58ID:pdtqHzrG
>>418
解答です。
R=F[T]/(T^2+1)、X1={(x,y,z)∈X | z≠0}、X2={(x,y,z)∈X | z=0}
とおいてR^をRの可逆元のなす群としN:R→Fをノルム写像とする。
またTの類T+(T^2+1)をtとする。
x,y∈FにたいしてN(x+yt) = x^2+y^2である。
x∈Fでx^2+1≠0かつx^2+1がGに属さないものがとれる。
(∵1〜q-2のうちa∈G,a+1はGに属さないaをとってx^2=aとなるxをとればよい。)
このときN(x+t)=x^2+1はGに属さず0でもないのでx+tはR^\N^(-1)(G)に入る。
よってR^/N^(-1)(G)はR^の真部分群であり準同型定理によりZ/2Zであるとわかる。
とくに#N^(-1)(-G) = (1/2)#R^である。
以上により
#X = 2・(1/2)#R^ + (R\R^) = #R^ = q^2
である。
以下(a/q)を平方剰余記号とする。
(-1/q)=-1のときX2={(0,0,0)}であり#X2=1である。
(-1/q)=1のときu^2=-1となるu∈FをとればX2={(x,±ux,0)}であるから#X2=2q-1である。
以上により
#Y=#X-3#X2+3-1
=q^2-1 (q≡3 mod 4)、=q^2-6q+5 (q ≡ 1 mod 4)
である。
つぎに
Y2={(x,y,z) | x=y,xyz≠0}
とおくとき(-2/q)=-1ならばばY2=∅であり、
(-2/q)=1ならばv^2=-2となるv∈FをとればY2={(x,x,±vx)|x∈F^}であるから#Y2=2q-2である。
また
#Z=#Y-3#Y2
であるから以上と第2補充法則により
#Z=q^2-12q+11 (q ≡ 1 (mod 8))
#Z=q^2-6q+5 (q ≡ 3,5 (mod 8))
#Z=q^2-1 (q ≡ 7 (mod 8))
を得る。
0964132人目の素数さん
垢版 |
2018/07/28(土) 09:38:12.21ID:z2BC7zek
log2=0.3010, log3=0.4771が与えられている.
ここから, log11の小数第2位の値を求めよ.
0965132人目の素数さん
垢版 |
2018/07/28(土) 09:41:05.15ID:pdtqHzrG
>>962
>|a b c d|
>|b bx d cx|
>|c d ay by|
>|d cx by axy|
determinant(matrix([a,b,c,d],[b,b*x,d,c*x],[c,d,a*y,b*y],[d,c*x,b*y,a*x*y])),factor;
a^3*b*x^2*y^2−a*b^3*x*y^2−a^2*b^2*x*y^2+b^4*y^2−a*b*c^2*x^2*y−a^2*c^2*x^2*y−a*b*d^2*x*y−a^2*d^2*x*y+2*b^2*c*d*x*y+6*a*b*c*d*x*y−2*b^2*c^2*
x*y−2*b^2*d^2*y+c^4*x^2−2*c^2*d^2*x+d^4
????
0967132人目の素数さん
垢版 |
2018/07/28(土) 10:43:17.16ID:eDTZE8Ag
>>962
こう?
determinant(matrix([a,b,c,d],[b,a*x^2,d,c*x^2],[c,d,a*y^2,b*y^2],[d,c*x^2,b*y^2,a*x^2*y^2])),factor;
(a*x*y−b*y−c*x+d)*(a*x*y−b*y+c*x−d)*(a*x*y+b*y−c*x−d)*(a*x*y+b*y+c*x+d)
0968132人目の素数さん
垢版 |
2018/07/28(土) 13:37:27.98ID:25At2aHe
>>955
今更だけど不正解
少なくとも4つの辺を結べば5点を結べるから4より小さくないとおかしい
0969132人目の素数さん
垢版 |
2018/07/28(土) 14:57:21.13ID:z4N8++BV
>>953
分岐点に隣接する3点の作る三角形の外心と、分岐点が一致する
ということでいいんでない?
0970132人目の素数さん
垢版 |
2018/07/28(土) 15:11:48.34ID:z4N8++BV
いや、>>969はたぶん違うな……
むしろ分岐点の角がすべて120°のほうが正しい気がしてきた
0971イナ ◆/7jUdUKiSM
垢版 |
2018/07/28(土) 15:20:45.41ID:6VVd4WCT
>>968長さ4だと正五角形の周長より短いじゃないか。曲線じゃない直線だし。

一つの頂点を一回通ればいいってことか。
>>955
0973イナ ◆/7jUdUKiSM
垢版 |
2018/07/28(土) 15:37:26.36ID:6VVd4WCT
>>972わかった。十個の弧のうち四個は省けるね。
2π×(36゚/360゚)人人
/_/×6=4π/5(_^_)
/_/_/_/_/(__)
/_/_/_/_/(^。^))
/_人人_/_/_(_っ┓
/_(_)_)_/_/◎┻υ◎
/_( __)_/_/_/_/_
/_(_(`)_/_/_/_/_
/_(υ_)┓_/_/__/_/
/◎υ┻-◎_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/屁でもねえや。前>>971それよかいいワープロねえか。
0974132人目の素数さん
垢版 |
2018/07/28(土) 16:14:37.96ID:Sc9m8D2O
>>966
axの間違い
0975132人目の素数さん
垢版 |
2018/07/28(土) 16:15:36.89ID:Sc9m8D2O
>>967
も1つ
abcdの多項式でxyについては2次拡大まで使うと1次4つの積に
0976132人目の素数さん
垢版 |
2018/07/28(土) 16:21:20.32ID:RosE4Rin
>>952
角度120度の前提で 3.891156823 って数値が出たけど、これより良い結果ある?
http://i.imgur.com/VhC8cug.png
0977132人目の素数さん
垢版 |
2018/07/28(土) 16:24:52.44ID:EnyRsA6W
ax = f, cx = g とおくと


|a, b, c, d|
|b, f, d, g|
|c, d, ayy, byy|
|d, g, byy, fyy|

= {(af-bb)yy + (cg-dd)}^2 - (ag+cf-2bd)^2 yy

= {(af-bb)yy +(ag+cf-2bd)y +(cg-dd)}{(af-bb)y^2 -(ag+cf-2bd)y +(cg-dd)},
0978132人目の素数さん
垢版 |
2018/07/28(土) 16:40:58.48ID:Sc9m8D2O
>>977
もひとつ
0979132人目の素数さん
垢版 |
2018/07/28(土) 16:56:48.40ID:zqnKg1oN
>>971
そう、一つの頂点を一回通ればいいってこと
あと直線も曲線の一部

>>969,970
正7角形の場合、周をなぞるのが一番短いから角度は120°じゃないって言おうとしたけどジャンクションではないね
ジャンクションに限定するなら120°は成り立ちます
「プラトーの法則」

>>976
不正解です

実は左右非対称になる
0980イナ ◆/7jUdUKiSM
垢版 |
2018/07/28(土) 17:37:50.18ID:6VVd4WCT
直線も曲線のうち!?
;;;;;;;;;;;人人;;;;;;
;;;;;;;;;;(_;^_);;;;;
;;;;;;;;;;(_^;_);;;;;
;;;人人;;;(^。^;);;;;;
;;(_)_);;(_っ┓;;;;
;;(_(_);◎゙┻υ◎゙;;
;;(_(`);;;;;キコキコ……
;;(υ_)┓;;;;;;;;;;;
◎゙υ┻-◎゙_/_/__/_/
/_/キコキコ……/_/_/_/_/_/_/_/_/きっといい地境がみつかる。前>>973
0981イナ ◆/7jUdUKiSM
垢版 |
2018/07/28(土) 18:05:00.89ID:6VVd4WCT
>>980
対角線2つ=1+√5
対角線の一つに残りの頂点から引いた垂線={√(5+2√5)}/2-{√(10-2√5)}/4
分割線=1+√5+{√(5+2√5)}/2-{√(10-2√5)}/4
0982132人目の素数さん
垢版 |
2018/07/28(土) 18:38:01.92ID:Sc9m8D2O
>>967
正解だったどもスマン
0983132人目の素数さん
垢版 |
2018/07/28(土) 18:40:27.16ID:Sc9m8D2O
ちなみに8次でも同じような問題できる
2^n次でできるのかも
0984132人目の素数さん
垢版 |
2018/07/28(土) 19:32:48.35ID:57kIc8+e
>>2
7+8-5=10
俺の勝ち

ちなみに
ID:AT99r3l3(>>24,29) → 9+9/(3*3)=10
0985132人目の素数さん
垢版 |
2018/07/28(土) 19:33:18.55ID:57kIc8+e
そろそろ次スレを
0986132人目の素数さん
垢版 |
2018/07/28(土) 20:56:04.78ID:zqnKg1oN
>>981
不正解
>>979でも言ったけど左右対称じゃない
0987132人目の素数さん
垢版 |
2018/07/28(土) 20:58:42.11ID:zqnKg1oN
>>981
しかもそれ4より大きいじゃん
0988132人目の素数さん
垢版 |
2018/07/28(土) 21:04:35.57ID:5RD8Md9I
数列{a_n}を以下のように定める。
a_1 = 3
a_(n+1) = (a_n)^2 - 2
この時、 a_n が合成数になるような n は存在するか。
0989132人目の素数さん
垢版 |
2018/07/28(土) 21:36:52.34ID:Nf1txf93
>>988
mod 1087で考えると
a_1≡3
a_2≡7
a_3≡47
a_4≡33
a_5≡0
明らかにa_5>1087なのでa_5は合成数
0990132人目の素数さん
垢版 |
2018/07/28(土) 21:46:55.05ID:boOQAkuB
ちなみにmod 127でも
a_1≡3
a_2≡7
a_3≡47
a_4≡48
a_5≡16
a_6≡0
a_6>127よりa_6は合成数

1087も127も勘で見つけた
0991132人目の素数さん
垢版 |
2018/07/28(土) 22:05:52.09ID:ttDOnSiN
>>990
正解、1087は見つけられんかったわ すごい
pがメルセンヌ素数の時にフィボナッチ数列がmodpでp+1を周期に持つ条件やら何やらを考えてて127を偶然見つけたけど、
メルセンヌ素数かどうかの判定法でリュカテストというのがあって、殆ど同じことやってたのを問題出してから知った…
0992イナ ◆/7jUdUKiSM
垢版 |
2018/07/28(土) 22:32:30.32ID:6VVd4WCT
>>981対角線2つのほかに、あえて対称じゃない分割線を一本引いたのに、対称と言われた。
――――――――――
@対角線1つ=(1+√5)/2
A対角線から最寄りの頂点への垂線=(1/4)√(10-2√5)
B中心角72°の扇形の弧=2π/5
C扇形の弧から残りの頂点への垂線={(1+√5)/2}-1
――――――――――
@+A+B+C=√5+2π/5+(1/4)√(10-2√5)
=4.08049029……ぉしい!!
0993132人目の素数さん
垢版 |
2018/07/28(土) 22:40:01.22ID:boOQAkuB
まあa_5, a_6をwolframに因数分解してもらって、modで書き直しただけなんだけど


余談だが、素数を無限に生成する関数
強い順に
f(n)=p_n
{f(n)}=Pかつf(m)≠f(n)
{f(n)}=P
{f(n)>0}=P
は存在するが、いずれも人為的なものであり実用性は乏しい(下の論文では"engineered"と表現している)

漸化式で定義された数列では
a_1=7
a_n=a_(n-1)+gcd(n, a_(n-1))
の階差数列b_nは1か奇素数になる
しかも全ての奇素数が現れるという
{a_n}=7,8,9,10,15,18,19,20,21,22,33,36,37,…
{b_n}=1,1,1,5,3,1,1,1,1,11,3,1,…

https://cs.uwaterloo.ca/journals/JIS/VOL11/Rowland/rowland21.html
0994132人目の素数さん
垢版 |
2018/07/28(土) 22:45:27.23ID:XEewS8qw
>>983
そりゃできるんじゃね?
|a b c d|
|b ax d cx|
|c d ay by|
|d cx by axy|
なら行列は0行0列から数えるとして
1の位が0の行、つまり0行目と2行目に√xをかけ、1の位が1の列、つまり1列目と3列目を√xで割る。
同じことを2の位について√yで行えば√x=u、√y=vとして
|auv bv cu d|
|bv auv d cu|
|cu d auv bv|
|d cu bv auy|
となって結局
|A B C D|
|B A D C|
|C D A B|
|D C B A|
を考えることになる。
2行目+3行目+4行目を1行目にたせば1行目は全部A+B+C+Dだからdetは(A+B+C+D)で割り切れる。
ー2行目+3行目ー4行目を1行目にたせば1行目は全部A-B+C-Dだからdetは(A-B+C-D)で割り切れる。
2行目ー3行目ー4行目を1行目にたせば1行目は全部A+B-C-Dだからdetは(A+B-C-D)で割り切れる。
ー2行目ー3行目+4行目を1行目にたせば1行目は全部A-B-C+Dだからdetは(A-B-C+D)で割り切れる。
A^の係数は1だからdet = (A+B+C+D)(A-B+C-D)(A+B-C-D)(A-B-C+D)。
これ2^2でやったけど2^nでもできると思う。
0995132人目の素数さん
垢版 |
2018/07/28(土) 22:58:36.93ID:Sc9m8D2O
>>994
なるほど
0996132人目の素数さん
垢版 |
2018/07/28(土) 23:00:35.26ID:Sc9m8D2O
2^nだとどう並べたら良いかな
0997132人目の素数さん
垢版 |
2018/07/28(土) 23:17:01.50ID:XEewS8qw
とりあえず2^2のパターンを2つつかって2^3は
A B C D E F G H
B A D C F E H G
C D A B G H E F
D C B A H G F E
E F G H A B C D
F E H G B A D C
G H E F C D A B
H G F E D C B A
でこのパターンをまた文字変えて並べて…でいけると。
1,-1のパターンは
n=1のとき1,1と1,-1
n=2のとき1,1,1,1と1,-1,1-1と1,1,-1,-1と1,-1,-1,1 (2つコピペして並べたものとそのままと-1倍したものを並べたもの)
n=3のとき1,1,1,1,1,1,1,1,と1,1,-1-1,1,1,-1-1と1,-1,1,-1,1,-1,1,-1と1,-1,-1,1,1,-1,-1,1と…
でいけると思う。このパターンで各行を足したり引いたりしたら全成分同じ値が並ぶ行が出てくると思う。
0998132人目の素数さん
垢版 |
2018/07/28(土) 23:46:15.45ID:Sc9m8D2O
A=[[a,b],[b,a]]という形式の行列でテンソル積を取っていけばよいのかな>>997
A*A=[[aA,bA],[bA,aA]]
A*A*A=[[aA*A,bA*A],[bA*A,aA*A]]
みたいな
ただし
aA=[[aa,ab],[ba,bb]]
の成分は非可換でA*^nの成分はaaa…aからbbb…bまでの2^n通りで
0999132人目の素数さん
垢版 |
2018/07/28(土) 23:54:37.19ID:Sc9m8D2O
そしたら
|A*^(n+1)|=|[(a+b)A*^n,(a+b)A*^n],[bA*^n,aA*^n]|=|[a+b)A*^n,O],[bA*^n,(a-b)A*^n]|=|(a+b)A*^n||(a-b)A*^n|
から上手く因数分解した形で求められそう
1000132人目の素数さん
垢版 |
2018/07/28(土) 23:58:12.29ID:XEewS8qw
>>998
テンソル積でうまく表現できるかもですね。
いま思いついたんだけどGを可換有限群としてGの元gに対応する不定元Agを用意しておいてg行h列がAghである行列にすればよさそう。
GがZ/2Zをn個直積した場合が今回の例でG=Z/nZの場合が巡回行列の行列式の理論になる。
その行列式はGの既約指標x(g)にたいしてΣ[g] x(g)Agの形の一次式をn個の指標全体でかけ合わせたものになると思う。
それで今回の話も巡回行列の行列式の理論も同様に説明できるみたい。
10011001
垢版 |
Over 1000Thread
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 159日 23時間 37分 2秒
レス数が1000を超えています。これ以上書き込みはできません。

ニューススポーツなんでも実況