X



トップページ数学
1002コメント527KB
面白い問題おしえて〜な 26問目
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2018/02/19(月) 00:21:10.33ID:uzLAXv/z
過去ログ
http://www3.tokai.or.jp/meta/gokudo-/omoshi-log/
まとめwiki
http://www6.atwiki.jp/omoshiro2ch/

1 http://cheese.2ch.net/test/read.cgi/math/970737952/
2 http://natto.2ch.net/test/read.cgi/math/1004839697/
3 http://science.2ch.net/test/read.cgi/math/1026218280/
4 http://science.2ch.net/test/read.cgi/math/1044116042/
5 http://science.2ch.net/test/read.cgi/math/1049561373/
6 http://science.2ch.net/test/read.cgi/math/1057551605/
7 http://science2.2ch.net/test/read.cgi/math/1064941085/
8 http://science3.2ch.net/test/read.cgi/math/1074751156/
9 http://science3.2ch.net/test/read.cgi/math/1093676103/
10 http://science4.2ch.net/test/read.cgi/math/1117474512/
11 http://science4.2ch.net/test/read.cgi/math/1134352879/
12 http://science6.2ch.net/test/read.cgi/math/1157580000/
13 http://science6.2ch.net/test/read.cgi/math/1183680000/
14 http://science6.2ch.net/test/read.cgi/math/1209732803/
15 http://science6.2ch.net/test/read.cgi/math/1231110000/
16 http://science6.2ch.net/test/read.cgi/math/1254690000/
17 http://kamome.2ch.net/test/read.cgi/math/1284253640/
18 http://kamome.2ch.net/test/read.cgi/math/1307923546/
19 http://uni.2ch.net/test/read.cgi/math/1320246777/
20 http://wc2014.2ch.net/test/read.cgi/math/1356149858/
21 http://wc2014.2ch.net/test/read.cgi/math/1432255115/
22 http://rio2016.2ch.net/test/read.cgi/math/1464521266/
23 http://rio2016.2ch.net/test/read.cgi/math/1497416499/
24 http://rio2016.2ch.net/test/read.cgi/math/1502016223/
25 http://rio2016.5ch.net/test/read.cgi/math/1502032053/
0101132人目の素数さん
垢版 |
2018/03/18(日) 23:28:02.32ID:kMHyRC84
>>98
ほー、そう呼ばれてるのか
勉強になったわ、サンクス
証明どうする? 載せた方がいい?
上のサイトに比べたら大したものじゃないけど
0103132人目の素数さん
垢版 |
2018/03/19(月) 18:19:55.56ID:JXYilKRY
80.6 < Σ[k=1→24]√k < 80.65 を示せ
0104132人目の素数さん
垢版 |
2018/03/20(火) 00:15:22.04ID:E4ArtLi4
お待たせ
当時の俺はこんなので感動したもんだ
ちなみにmが最終的に0になることの証明してないけど自明の理だよな?
もしあれだったら数学的帰納法で頑張って
http://imgur.com/3OwwL4R.jpg
0106132人目の素数さん
垢版 |
2018/03/20(火) 04:43:15.16ID:3dlcpbYb
mより大きな111...1[3]を、mに加えて三進法表示し、2→1、1→0、0→-1 とすればいいだけだろ
0107132人目の素数さん
垢版 |
2018/03/20(火) 05:04:38.68ID:HDkQdBLp
>>103 (右)

y=√x は上に凸だから
√k > ∫[k-1/2,k+1/2] √x dx,

(与式)> ∫[1/2,24+1/2] √x dx
 =[(2/3)x^(3/2)](x=1/2,49/2)
 =(2/3)(7^3 - 1)/(2√2)
 = 57√2
 = 80.610173

積分計算を避けたいなら、
AM-GM より
(kk -1/4)^3 ≧ kk・(kk -3/8)^2,

{(k+1/2)^(3/2) - (k-1/2)^(3/2)}^2 = 2k(kk +3/4) -2(kk -1/4)^(3/2)
 ≦ 2k(kk +3/4) -2k(kk -3/8)
 = 9k/4,

√k ≧ (2/3){(k+1/2)^(3/2) - (k-1/2)^(3/2)},
以下は同様。
0108132人目の素数さん
垢版 |
2018/03/20(火) 05:33:56.73ID:HDkQdBLp
>>103 (左)

y=√x は上に凸だから
{√k + √(k+1)}/2 < ∫[k,k+1] √x dx,

(与式) < 1 +√2 +√3 +(1/2)√4 + ∫[4,25] √x dx -(1/2)√25
 = 2 +√2 +√3 +[(2/3)x^(3/2)](x=4,25) - 5/2
 = 2 +√2 +√3 +(2/3)(125-8) -5/2
 = 80.6462644
0109132人目の素数さん
垢版 |
2018/03/20(火) 05:54:38.66ID:HDkQdBLp
〔問題〕
(2√6 + 5)/2 < ∫[24,25] √x dx,
を用いて
√6 < (485/6)/33 = 2.449494949…
を示せ。
0110132人目の素数さん
垢版 |
2018/03/20(火) 07:17:04.24ID:HDkQdBLp
〔応用問題〕
不等式
 {√k + √(k+1)}/2 < ∫[k,k+1] √x dx,   >>108
を用いて次を示せ。

(2) √2 < 99/70 = 1.41428571…    (k=8)
   √2 < 1393/985 = 1.41421320… (k=49)
   √2 < (19601/6)/2310 = 1.4142135642… (k=288)

(3) √3 < (1351/6)/130 = 1.73205128… (k=48)

(5) √5 < 2889/1292 = 2.236068111…  (k=80)

(6) √6 < (485/6)/33 = 2.4494949…  (k=24)

(7) √7 < 2024/765 = 2.645751634…  (k=63)

(10) √10 < 117/37 = 3.16216216…   (k=9)
   √10 < (27379/6)/1443 = 3.1622776622… (k=360)

(11) √11 < 3970/1197 = 3.316624895… (k=99)

(17) √17 < 268/65 = 4.123076923…   (k=16)

(37) √37 < 882/145 = 6.08275862…  (k=36)
0112132人目の素数さん
垢版 |
2018/03/20(火) 14:30:10.64ID:GpBOW+61
>>111
そんな難しい問題を解けるやつはこの板にいない
0114132人目の素数さん
垢版 |
2018/03/20(火) 14:41:21.16ID:E4ArtLi4
>>111
1枚目は行けそう
0115132人目の素数さん
垢版 |
2018/03/20(火) 20:01:34.88ID:GpBOW+61
>>114
それはそう
行けそうというか見ただけでいける
ただ2と3が難しい

(1)
|z||1-kw|=|w|
k|w-1/k|=|w|
1/kが表す点をAとする。wはOAをk:1に内分する点と外分する点をそれぞれ直径の両端とする円周上にある。

(2)
PQ=|z-w|=k|w|
また(1)より、
wの中心はk/(k+1)(k-1)、
半径は1/(k+1)|k-1|
したがって、
|w|の最大値
=k/(k+1)|k-1|+1/(k+1)|k-1|
=1/|k-1|
|w|の最小値
=|k/(k+1)|k-1|-1/(k+1)|k-1||
=1/(k+1)
以上より、
PQの最大値=k/|k-1|
PQの最小値=k/(k+1)
0116132人目の素数さん
垢版 |
2018/03/20(火) 23:21:38.16ID:eXRt6Wpn
大学学部レベル質問スレ 10単位目 https://rio2016.5ch.net/test/read.cgi/math/1519715377/647

nを正の整数、X={x_1,x_2,...,x_{2n+1}}を実数からなる(多重)集合とする。
Xから任意に1つの元を取り除いたとき、残った2n個の元を和の等しいn個ずつの
組に分けることができるならば、x_1=x_2=…=x_{2n+1} である。
0117132人目の素数さん
垢版 |
2018/03/21(水) 03:15:09.46ID:Y0EoMfqc
>>110
 kが平方数のときは、不等号が逆向きでござる。

(2) √2 > 1393/985 = 1.41421320… (k=49)

(10) √10 > 117/37 = 3.16216216…   (k=9)

(17) √17 > 268/65 = 4.123076923…   (k=16)

(37) √37 > 882/145 = 6.08275862…  (k=36)
0118132人目の素数さん
垢版 |
2018/03/21(水) 12:36:42.69ID:MWb2EIvX
>>116
Xが生成する加法群をYとおくと、Yは捩れなし有限生成アーベル群であるからZ^m(Zは整数全体からなる加法群、mはある非負整数)と同型。
したがって、x_1=…=x_{2n+1}でないならば、群準同型f:Y→ZであってfによるXの像f(X)が単元でないようなものが存在する。
x'_i=f(x_i-x_1) (i=1,…,2n+1)とおくと
X'={x'_1,x'_2,…,x'_{2n+1}} (⊂Z) も X と同様の性質を持つが、
S-x'_i (ただしS=x'_1+…+x'_{2n+1}) が全て偶数にならなければならないので、x'_iの偶奇は全て一致する。x'_1=0 は偶数であるから、他の全てのiについてもx'_i は偶数。
これより、 x''_i=(x'_i)/2 とおけば
X''={x''_1,x''_2,…,x''_{2n+1}} (⊂Z) もXと同様の性質を持つ。無限下降法よりx_1=…=x_{2n+1}でなければならない。
0120132人目の素数さん
垢版 |
2018/03/21(水) 23:16:51.36ID:NaAK8rgB
(a/p) を平方剰余記号とする。

(1) (123/769) の値を求めよ。
(2) (1234567/987654323) の値を求めよ。
(3) (a/p) の値を求めよ。ただし、a, pの値は以下とする。

a = 289589985200426886037189479736335834688462115581329068039
p = 579179970400853772074378959472671669376924231162658136139
0121132人目の素数さん
垢版 |
2018/03/22(木) 00:44:22.48ID:T9JdKZ5e
>>119
微分形式?平らじゃんR^n
0122132人目の素数さん
垢版 |
2018/03/22(木) 01:28:08.85ID:Qvak/x+C
>>111
2枚目は、分かスレ441-603,608-609 を参照

(1)
f(x) -(ax+b) =(1-a)x + log{1 + e^(-2x)}+ b,
∴ a = 1, b = - lim[x→∞]log{1 + e^(-2x)}= 0,

(2)
左 シュワルツ不等式で
 (x +1/2)・log(1 +1/x)= ∫[x,x+1] u du・∫[x,x+1]1/v dv >{∫[x,x+1] du}^2 = 1,

 GM-AM より
 1/x - 1/(x+1)= 1/(x(x+1))<{1/x + 1/(x+1)}/{2√(x(x+1))}= -{1/√(x(x+1))} '
 あるいは、√(x(x+1))- x は単調増加ゆえ
 1 <{√(x(x+1))} '
 1/x - 1/(x+1) = 1/(x(x+1))<{√(x(x+1))} '/(x(x+1))= -{1/√(x(x+1))} '
 x〜∞で積分して
 log{(x+1)/x}< 1/√(x(x+1)),

 なお、x → e^(2x)とすれば
 2e^(-2x)/{2 + e^(-2x)}< log{1 + e^(-2x)}< e^(-2x)/√{1 + e^(-2x)}

(3) e^x・dx = dθ/(cosθ)^2, より
 ∫[0,p]e^(-2x)/√{1 + e^(-2x)}dx = ∫[π/4,arctan(e^p)]1/(sinθ)^2・cosθdθ
 = [ -1/(sinθ)](θ:π/4〜arctan(e^p))
 = √2 - √{1 + e^(-2p)}
 → √2 - 1  (p→∞)

(4)
∫ 2e^(-2x)/{2 + e^(-2x)}dx = -log{2 + e^(-2x)},
∫[0,∞]2e^(-2x)/{2 + e^(-2x)}dx = log(3)- log(2)= 1.098612 - 0.693147 = 0.405465
S(∞)= ∫[0,∞]log{1 + e^(-2x)}dx = 0.4112335
√2 -1 = 0.41421356
0123132人目の素数さん
垢版 |
2018/03/22(木) 01:40:23.13ID:tjCH61Ex
>>120
(1) 320^2≡123 (mod 769) より 1
以下ヤコビ記号を使用する。すなわちbが奇数の合成数のときb=pb'なる素数pについて(a/b)=(a/p)(a/b')
(2) (1234567/987654323)=-(723/1234567)=(406/723)=-(203/723)=(114/203)=-(57/203)=-(32/57)=-1
(3) (a/p)=-(61/a)=-(57/61)=-(4/57)=-1
0124132人目の素数さん
垢版 |
2018/03/22(木) 01:41:25.13ID:Qvak/x+C
>>111
3枚目

∠ACB = θ とおく。
AC > AB > 0 より 0 < θ < π/2,

デカルト座標(x,y)を以下のようにとる。
A (0,0)
B (2 sinθ,0)     AB = 2 sinθ,
C (0,2 cosθ)     AC = 2 cosθ,
D (AD cosθ,AD sinθ)  AD = 2 AC sinθ = 2 sin(2θ),
E (2 sinθ,2 cosθ)  AE = BC = 2,
F (2 sinθ,2(sinθ)^2 /cosθ)
G (2 sinθ,1/cosθ)  FG = {1-2(sinθ)^2}/cosθ = cos(2θ)/cosθ,

直線AD: y = x tanθ,
直線BE: x = 2 sinθ,
直線CD: x/tan(2θ)+ y = AC = 2 cosθ,

以上により
△AFG = (1/2) AB FG = tanθ・cos(2θ)=(√T)(1-T)/(1+T),
ここに T =(tanθ)^2, (0<T<1)

φ =(1+√5)/2 = 1.618034 (黄金比と云う)を使うと
(5φ -8)(1+T)^2 - T(1-T)^2 =(φ-T)(T+3-2φ)^2 ≧ 0,
∴(△AFG)^2 = T(1-T)^2/(1+T)^2 ≦ 5φ -8 = 0.090170
∴ △AFG ≦ √(5φ -8)= 0.300283

等号成立は T = 2φ-3 = √5 -2 = 0.236068 のとき。
cos(2θ)= 1/φ =(√5 -1)/2 = 0.618034
θ = arctan(√T)= 0.452278447 (rad) = 25.91 (゚)
0125132人目の素数さん
垢版 |
2018/03/22(木) 09:47:30.38ID:vsUNKHqP
>>116
x_1からx_{2n+1}の中の最大値をM、最小値をmとする。
全ての元にTを加えた、X'={x_1+T,x_2+T,...,x_{2n+1}+T}という多重集合も、
「X'から任意に1つの元を取り除いたとき、残った2n個の元を和の等しいn個ずつの組に分ける」
ことができなければならない。

さて、X'において、ある元を除き、和が等しくなるようにn個ずつ分けた組の合計は、
下限がn*(m+T)、上限がn*(M+T)となるが、T >> M の様なケースを考えれば、下限、上限ともに、
n*Tが支配的な量になることから、X'の元の s 個の和 = X'の元の r 個の和 → s = r となる必要がある。

ところで、Tとして、(-1)*x_1 を考えると、(少なくとも)一つの元が0なので、
その元の加算は、和に影響を与えないので、左辺側にこの元が含まれると、
X'の元の n-1 個の和=X'の元の n 個の和 ;(左辺側にこの元が含まれる)
という事が起こる。この矛盾を回避するためには、「n 個の和」と思っていた物も、実質「n-1 個の和」
と等しければよく、これは、x_1と同じ値を持つ物が、右辺側にも含まれていることを意味する。
取り除く元としてx_1を選んだとき、どちらかのグループに、x_1と同じ値を持つ元が有るので、反対の
グループには、さらに、x_1と同じ値をもつ元がなければならない。
以下同様に、x_1と等しい元が、奇数個ある事が確認できている場合には、値不明の元を取り除く元として選び、
x_1と等しい元が、偶数個ある事が確認できている場合には、x_1と同じ値を持つ物を取り除く元として選べば、
順次、x_1と等しい新しい元の存在が確認でき、最終的に全ての元が、x_1と等しくなければならないことが示される。
0126132人目の素数さん
垢版 |
2018/03/22(木) 12:59:12.35ID:2lfOCr3y
次の条件を満たすn次正方行列の固有値を全て求めよ。

1≦m≦nを満たす全ての整数mについて第m行の行ベクトルは0が連続してn-m個並ぶその右に1/mがm個並んだものである。
0127132人目の素数さん
垢版 |
2018/03/22(木) 13:41:36.02ID:P81vFYvQ
矛盾してないから回避は不要。
0130132人目の素数さん
垢版 |
2018/03/23(金) 07:01:04.90ID:EuazrwzR
Le Veque の定理(1952)
 x-y = 1 のとき
 x^m - y^n = 1  …(1)
を満足する2以上の自然数解は x=3,y=2,m=2,n=3 に限る。

・カタラン予想に x-y=1 の制限を付加したもの。
・カタラン予想そのものは 2004年にミハイルスクにより証明された。

数セミ増刊 「数学 100の定理」 日本評論社(1984) p.104-105
数セミ増刊 「数学・物理 100の方程式」 日本評論社(1989) p.20-21
0132132人目の素数さん
垢版 |
2018/03/23(金) 07:07:00.80ID:EuazrwzR
(略証)
x = y+1 を (1) に入れると
 (y+1)^m - y^n = 1,
 ym +1 ≡ 1,  (mod yy)
 y|m   … (2)
また
y = x-1 を (1) に入れて
 x^m - (x-1)^n = 1,
 (-1)^n (nx-1) ≡ 1,  (mod xx)
 nは奇数 かつ x|n ∴ xも奇数 … (3)

(2)(3) より、yは偶数、mも偶数。

m=2r とおくと、
 x^m -1 = x^(2r) -1 = (x^r +1)(x^r -1),
右辺の2因子はともに偶数で、その差が2だから、
一方は 2×奇数、他方は 4の倍数。 …(4)
 y = (x-1)|(x^r -1) より
 gcd(x^r +1,y) = gcd(x^r +1,x-1) ≦ gdc(x^r +1,x^r -1) = 2,
x^r +1 が 奇素数pの倍数ならば yもpの倍数、gcd(x^r +1,y) も2pの倍数となり、矛盾する。
x^r +1 は2ベキである。
2^a = x^r +1 > x^r -1 ≧ x-1 = y ≧ 2,
a > 1,
(4) より
x^r -1 = 2×奇数,
y = 2K, (K:奇数) とおくと (1) より
(2K)^n = y^n = x^m -1 = (x^r +1)(x^r -1) = 2^(a+1)・K^n,
a = n-1,
2^(n-1) = x^r +1 > x^r -1 = 2・K^n,
2 > K,
K = 1,
y = 2K = 2,
x = y+1 = 3,
3^r -1 = 2K より r=1,
3^r +1 = 2^(n-1) より n=3. (終)

 H.B.Yu (1999) による。数セミ,38巻,6号(1999/June)
0135132人目の素数さん
垢版 |
2018/03/26(月) 21:19:56.09ID:IKnRwfdR
p、q、r を相異なる素数とするとき、[x/p] + [x/q] + [x/r] = x の実数解 x の個数を p、q、r を用いて表せ。
0136132人目の素数さん
垢版 |
2018/03/27(火) 05:37:52.70ID:H3+XdNyv
>>135

p<q<r とする。
(2, 3, 5) = 30,   {0,6,10,12,15,16,18,20,21,22,24,25,26,27,28,31,32,33,34,35,37,38,39,41,43,44,47,49,53,59}
(2, 3, 7) = 42,   {0,-6,-12,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,-51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}
(2, 3, 11) = 14,  {0,-6,-8,-9,-10,-11,-12,-14,-15,-16,-17,-19,-23,-25}
(2, 3, 13) = 12,  {0,-6,-8,-9,-10,-11,-13,-14,-15,-16,-17,-19}
(2, 3, 17) = 8,   {0,-6,-8,-9,-10,-11,-13,-19}
(2, 3, r) = 7,  (19≦r)  {0,-6,-8,-9,-10,-11,-13}
(2, 5, 7) = 8,       {0,-4,-5,-6,-7,-8,-9,-11}
(2, 5, r) = 5,  (11≦r)  {0,-4,-5,-6,-7}
(2, q, r) = 3,  (7≦q<r) {0,-4,-5}
(3, q, r) = 3,  (5≦q<r) {0,-3,-4}
(p, q, r) = 2,  (5≦p<q<r){0,-3}
かなあ。
0137132人目の素数さん
垢版 |
2018/03/27(火) 23:45:01.17ID:Pc4avu0S
素数関係ないな。
0139132人目の素数さん
垢版 |
2018/03/28(水) 00:14:07.38ID:6Bea2jrG
>>4
アホくさ

(1)
(@)正三角形を含む場合
AB=BC=CA=yと置く
DA,DB,DCの内2つは等しい
DB=DCと置く
DはBCの垂直二等分線に在る
(@-1)DA=yの場合
DBCが頂角30度の二等辺三角形の形の答えと、凧型の答えを得る
(@-2)DB=y の場合(自動的にDC=y)
1つの候補はDとAが重なり、もう1つの候補から内角60度の菱形という1つの答えを得る
(i-3)何方でも無い場合 DA=DB=DC
DがABCの重心に在る場合という1つの答えを得る

(A)正三角形を含ま無い場合
AB=AC=x, BC=yと置く
DA,DB,DCのうち2つは等しい
(ii-1)DB=DCの場合
DB=DC=yだと正三角形ができるのでDB=DC=xの場合を考えれば良い
更にAD=xだとABDが正三角形なのでAD=yを考えれば良い
ABDCが正方形という1つの答えを得る
(ii-2)DA=DB の場合
同様にDA=DB=yの場合を考えれば良い
DC=yだとDBCが正三角形なのでDC=xを考えれば良い
辺の長さから△BAC≡△ACD
ACを底辺と扱うと点B,DのACからの距離は同じなのでBD//AC
故に4点は等脚台形を為す
対角線が長い方の平行辺と長さが等しい図という答えに至る

(2)
A,B,C,Dが与えられた時のEの候補は次の2つに分けられる
・EA=EB=EC の場合のような場合3点の外接円(4種類)
・EA=EB, EC=EDの場合2点と2点に分けて垂直二等分線の交点(3種類)
と考えて全部を検討するのが漏れなく其れなりに効率良さそうな1つの考え方だ
ABCDが正方形の時だけは対辺の垂直二等分線が一致し点が定まらず、更に長さを考えるか、或いは視点を変えてBCDEも又(1)の形を為すと要求すると不可能であると分かる

(3) BCDEFも(2)の形を為すと要求するとF=Aと成るしか無く不適
0140132人目の素数さん
垢版 |
2018/03/28(水) 04:54:36.75ID:v6aRBv4c
p≡1 (mod 4) のとき 1
p≡-1 (mod 4) のとき -1
これをまとめると、(-1)^{(p-1)/2}

p≡±1 (mod 8) のとき 1
p≡±3 (mod 8) のとき -1
これをまとめると、(-1)^{(p^2-1)/8}

----------------------------------------------
問題. (1)〜(4)のそれぞれについて、(-1)^x の形で表せ。

(1)
p≡1,3 (mod 8) のとき 1
p≡-1,-3 (mod 8) のとき -1

(2)
p≡±1 (mod 5) のとき 1
p≡±2 (mod 5) のとき -1

(3)
p≡1,3,7,9 (mod 20) のとき 1
p≡-1,-3,-7,-9 (mod 20) のとき -1

(4)
p≡±1 (mod 12) のとき 1
p≡±5 (mod 12) のとき -1
0141132人目の素数さん
垢版 |
2018/03/28(水) 23:36:57.84ID:rYPiNLPi
そろそろ>>62の正解

初等幾何の諸定理より(リンク先参照)、n=kのときの明るさはn=k-1のときと等しく、
後ろ向きの帰納法を用いると、任意のnのときの明るさは(π^2)/4である。

また、無限に大きい円の場合、観測者が受ける光の明るさは、「数直線上の原点にいる観測者が、…,-5,-3,-1,1,3,5,…の点にある光源から受ける光の明るさα」と同等である。
よって
α = 2Σ[t=1,∞] 1/(2t-1)^2 = (π^2)/4
すなわち奇数の二乗の逆数和は(π^2)/8に収束することが導ける。

更に、「数直線上の原点にいる観測者が、…,-6,-4,-2,2,4,6,…の点にある光源から受ける光の明るさβ」は、逆二乗則より「数直線上の原点にいる観測者が、…,-3,-2,-1,1,2,3,…の点にある光源から受ける光の明るさγ」の1/4になるになるはずである。
γ=α+β=(π^2)/4+(1/4)γよりγ=(π^2)/3, β=(π^2)/12
よって
β = 2Σ[t=1,∞] 1/(2t)^2 = (π^2)/12
γ = 2Σ[t=1,∞] 1/(t^2) = (π^2)/3
すなわち
偶数の二乗の逆数和は(π^2)/24に収束し、
自然数の二乗の逆数和は(π^2)/6に収束する(バーゼル問題)。
0142132人目の素数さん
垢版 |
2018/03/28(水) 23:37:59.71ID:rYPiNLPi
物理学で対応する事象を用いたバーゼル問題の初等的・幾何的・直感的な証明は今世紀に入ってから発表されたものである。

論文
http://www.math.chalmers.se/~wastlund/Cosmic.pdf
動画
http://youtu.be/d-o3eB9sfls
0143132人目の素数さん
垢版 |
2018/03/29(木) 11:59:27.65ID:ihUI7uvJ
a,bを自然数とする。a^2+b^2をa+bで割った商をq、余りをrとすると、q^2+r=1977が成り立つという。
(a,b)を全て求めよ。
(もちろんq,rは非負整数でありr<a+b)

ヒント:r<2qを示せて、q,rが確定する。
0144132人目の素数さん
垢版 |
2018/03/29(木) 12:48:02.60ID:MHic9gzf
>>143

qq+r = 1977,r<2q から q=44, r=41 が確定する。

aa+bb = 44(a+b) +41,a+b>r=41 から{a,b}={7,50}{37,50}
0145132人目の素数さん
垢版 |
2018/03/29(木) 17:31:24.50ID:ihUI7uvJ
>>144
解答は合ってるけどさすがにダメ
0147132人目の素数さん
垢版 |
2018/03/29(木) 22:45:57.64ID:/OSBVUz8
>>4
>>139
許される距離がm種類だったり、空間にしてみたり拡張を考えたくなる
できるかは別として
0148132人目の素数さん
垢版 |
2018/03/29(木) 23:54:31.17ID:ihUI7uvJ
>>143

(a+b)q+r=a^2+b^2≧(a+b)(a+b)/2よりq≧(a+b)/2-r/(a+b)≧(a+b)/2
∴2q≧a+b>r
q^2+r=1977で2q>rを満たすのは(q,r)=(44,41)のみである。
このときa^2+b^2=44(a+b)+41⇔(a-22)^2+(b-22)^2=1009
1009は2平方数の和では(±15)^2+(±28)^2, (±28)^2+(±15)^2とのみ表されるから
(a-22,b-22)=(15,28),(-15,28),(28,15),(28,-15) (∵a-22≧-21, b-22≧-21)
よって(a,b)=(37,50),(7,50),(50,37),(50,7)

一昔前(1977年)の数オリだけど、難問揃いの近年では考えられないくらい簡単
0149132人目の素数さん
垢版 |
2018/03/30(金) 00:07:07.17ID:Bx07PAfT
簡単と言いながら間違える。
0150132人目の素数さん
垢版 |
2018/03/30(金) 16:45:22.96ID:9jey3GD7
>>55
(1) E.T. the Extra-Terrestrial 『E.T.』
(2) The Matrix 『マトリックス』
(3) Velocity
(4) Leaving Las Vegas 『リービング・ラスベガス』
(5) La La Land 『ラ・ラ・ランド』
(6) 12 Monkeys 『12モンキーズ』
(7) Pi 『π』
(8) Dr. No 『007 ドクター・ノオ』
(9) Seven 『セブン』
(10) Home Alone 『ホーム・アローン』
(11) The Green Mile 『グリーンマイル』
(12) The Lord of the Rings: The Fellowship of the Ring 『ロード・オブ・ザ・リング』
(13) Catch Me If You Can 『キャッチ・ミー・イフ・ユー・キャン』
(14) Gravity 『ゼロ・グラビティ』
(15) All the Money in the World 『ゲティ家の身代金』
(16) The Da Vinci Code 『ダ・ヴィンチ・コード』
(17) 2001: A Space Odyssey 『2001年宇宙の旅』
(18) Dial M for Murder 『ダイヤルMを廻せ!』
(19) Signs 『サイン』
(20) 8 Mile 『8 Mile』
有力な別解
(3) Speed 『スピード』
reddit.com/r/math/comments/815ojr
0151132人目の素数さん
垢版 |
2018/04/01(日) 00:24:31.04ID:VCG34iJE
(0,1),(1,1)を結ぶ曲線のx軸周りの回転体の表面積の最小値を求めよ.
0152132人目の素数さん
垢版 |
2018/04/01(日) 00:28:40.25ID:VCG34iJE
>>151
ごめんなさいミスです
(0,0),(1,1)を結ぶ曲線です
0154132人目の素数さん
垢版 |
2018/04/01(日) 01:39:38.11ID:VCG34iJE
>>153
違います
0156132人目の素数さん
垢版 |
2018/04/01(日) 01:41:16.70ID:VCG34iJE
>>155
名前は付いてるよ
0158132人目の素数さん
垢版 |
2018/04/01(日) 01:42:46.67ID:VCG34iJE
>>157
違うかな
日常でも良く現れる曲線です
0159132人目の素数さん
垢版 |
2018/04/01(日) 01:43:08.83ID:noFB9/4S
ごめんな解くのがめんどいんだわ
解くのが面白い問題じゃないだろうし、ひたすら計算って、問題としてはつまんねーし
0161132人目の素数さん
垢版 |
2018/04/01(日) 01:44:58.65ID:VCG34iJE
>>159
まあ計算ゲーではあるけども
厳密にそれが最小解であることを証明するのはかなり高度な抽象論必要だし面白いと思う
>>160
そうです
0163イナ ◆/7jUdUKiSM
垢版 |
2018/04/01(日) 17:17:42.23ID:+Kemoei8
_人人_/_/_/_/_/
(_^_)_/_/_/_/_/
_((-_-)_/_/_∩∩_/
_(っц)~/_/_(^) )_/
_(`γ)_/_/_,U⌒ヽ_/
_υυ_/_/(___)/_/_/_/_/_/_/UU/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/要はろくろだろ。扇形なら小さくなるし、放物線なら大きくなるし、指数関数にすればもっと大きくなるんじゃない?
0164132人目の素数さん
垢版 |
2018/04/01(日) 17:55:01.26ID:kw1PD5xS
101頭の牛がいてどの牛も体重は整数sである
どの1頭を除いても残りの100頭を総体重が等しい50頭ずつのグループに分けることができる
このとき全ての牛の体重は同じであることを示せ
0165132人目の素数さん
垢版 |
2018/04/01(日) 23:17:44.11ID:Sq5gTv4H
3人の女性A,B,Cがいる。
この3人は、
100%本当のことを言う正直者
50%の確率で本当のことを言う気まぐれ
0%の確率で本当のことを言う嘘つき
が一人ずつであるが、あなたは誰がどれに対応するかはわからない。
女性間では誰がどれに対応するかわかっている。

あなたは彼女らに「はい」、「いいえ」で答えられる質問を2回行う。
2回目の質問で「はい」と答えさせることができればあなたの勝ちである。
2回の質問をどう行うと良いか?

ただし、各質問は一人ずつにしか行えない。
0166132人目の素数さん
垢版 |
2018/04/02(月) 00:56:48.50ID:66IqDDyK
1回目:Aさんに質問
「もしあなたに『Bさんは気まぐれですか』と尋ねたら『はい』と答えますか」
2回目:1回目の答えが「はい」の場合はCさんに、「いいえ」の場合はBさんに質問
「あなたは正直者ですか」

1回目の質問で「少なくとも気まぐれではない1人」を探すのがポイント。
気まぐれでさえないことがわかっていれば、事実を聞き出したり特定の答えに誘導するのは簡単。
0167132人目の素数さん
垢版 |
2018/04/02(月) 01:21:42.33ID:ZjjiJzGw
>>166
お見事。
論理の2回反転で嘘つきを正直者にする解法ですね。
エイプリルフールなので出してみました
あ、エイプリルフールが終わってしまったようですw
0168132人目の素数さん
垢版 |
2018/04/02(月) 10:00:45.81ID:rDlRBZ4q
>>164
整数kgの101頭の牛に於いて同じ体重であるもの同士を同じグループとして分類せよ
全ての牛の体重が同じであることは無いとすれば2グループ以上に分類できる筈である
n(n≧2)グループに分類されたとせよ
其々のグループの牛の体重を
A[i]kg(i=1,2,3,…,n)とせよ
則ちA[n]>A[n-1]>…>A[2]>A[1]の大小関係が従う
D[i]=A[i+1]−A[i](i=1,2,3,…,n−1)とせよ
D[i]の最小値をmとし、其の時のi(かつiの中でも最小であるもの)をpとせよ
m|{D[i]|i=1,2,...n-1}
今グループA[p]の牛の1頭Xを除いて100頭の牛が総体重が等しい50頭ずつのαグループとβグループに分かれていたとせよ
此処でXの代わりにグループA[p+1]の牛の1頭Yと入れ替え、Yを除く100頭の牛の牛を総体重が等しい50頭ずつのグループに分ける操作を考えよ

Yを除外する前にYはαグループに存在していたとせよ。単純にYとXを交換しただけなれば、則ちグループαの総体重がmだけ減る

2つのグループの総体重を均衡させるにはグループαの総体重をm/2kg増やし、グループβの総体重をm/2kg減らすことが必要…★

αとβグループで牛を交換する操作で此れを行う必要があるが、A[1],A[2],…,A[n]のグループ間の体重差はmの整数倍, 則ちαグループ、βグループ間でいくら牛を交換した所で★は達成され得無い

故に全ての牛の体重は同じである
0169132人目の素数さん
垢版 |
2018/04/02(月) 10:30:56.56ID:qydp8iS9
IMO系統の問題だね
0170132人目の素数さん
垢版 |
2018/04/02(月) 19:51:00.50ID:UtRAneS5
>>168
A[1],A[2],…,A[n]のグループ間の体重差はmの整数倍というのが何故言えるのかが分からないです
0171132人目の素数さん
垢版 |
2018/04/02(月) 22:04:17.89ID:ZjjiJzGw
>>170
確かにmの整数倍で無い
mより大きな体重差の牛を入れ替えてm/2kgの体重差を±し均衡させることは不可能という流れだろう
0172132人目の素数さん
垢版 |
2018/04/02(月) 22:30:49.48ID:ZjjiJzGw
>>168
いや、論理が破綻していた様だ
0173132人目の素数さん
垢版 |
2018/04/04(水) 00:46:02.74ID:f//H+LBj
>>164
ちょっとだけ一般化。
問題
2n+1枚のカードが有り、全てに正整数が書かれていていて
どの一枚を除いても、残り2n枚を、和が等しいn枚ずつに分けることができるとする。
この時、全てのカードには同じ正整数が書かれていることを示せ。

解答
2n+1枚の和が奇数の時、和の合計から、偶数が書かれているカードがあるとすれば、
偶数枚でないといけないが、取り除くカードとして偶数のカードを選んだとき
「どの一枚を除いても、残り2n枚を、和が等しいn枚ずつに分けることができるとする。」
ができないから、和が奇数の時は、全てのカードは奇数で無ければならない。

2n+1枚の和が偶数の時も同様の理由から、全てのカードは偶数でなければならないことがわかる。

和が正で、奇数の時は、全てのカードから1を減じ、偶数の時は、2で割る。この操作を繰り返しても、
「どの一枚を除いても、残り2n枚を、和が等しいn枚ずつに分けることができるとする。」という性質は
維持される。1を減じるか、2で割る、という操作を繰り返すと、いつかは必ず、0に到達する。
これは、最初に書かれていた正整数が、全て等しかったことを意味する。
0174132人目の素数さん
垢版 |
2018/04/04(水) 01:18:28.03ID:EmPoqxOk
>>152

曲線の式を y=f(x) とする。
曲面の表面積は S[f] = ∫[0,1] 2πf(x) √{1 + [f'(x)]^2} dx,
これは
L[f,f'] = 2πf(x)・√{1 + [f '(x)]^2},
を Lagrangian とする変分問題。

S[f] = ∫[0,1] L[f,f '] dx
を f(x) で変分すると、
δS[f] = ∫[0,1] δL dx
= ∫[0,1] {(∂L/∂f)δf +(∂L/∂f')δf'}dx
= ∫[0,1] {(∂L/∂f)-(d/dx)(∂L/∂f')}δf dx + [ (∂L/∂f')δf ](x=0,1)
 ↑ 部分積分した。
f(0) と f(1) が固定されていて δf= 0(x=0,x=1)のときは右辺第2項は0

任意の変分 δf に対して 右辺第1項が0となることから、

(∂L/∂f)-(d/dx)(∂L/∂f ') = 0,  … Euler-Lagrange方程式

本問では
 f(x)f "(x) - {f '(x)}^2 = 1,
により、懸垂曲面(カテナリー)
0177132人目の素数さん
垢版 |
2018/04/04(水) 07:19:54.51ID:xFWQXFxC
>>174
その微分方程式の一般解はf(x)=Acosh((x+B)/A)になると思うけどどんなA,Bに対しても(0,0)は通らなくね?
0178132人目の素数さん
垢版 |
2018/04/04(水) 09:11:37.84ID:E749QQfH
(0,0)-(1,0)-(1,1).
最小値π。
0179132人目の素数さん
垢版 |
2018/04/04(水) 11:07:27.37ID:vqWKdTt9
>>173
素晴らしいです!
この問題が載ってた本の解答では、最軽量の牛の体重を全ての牛から引いて体重0sの牛1頭と100頭の牛にするという手法でした
0180132人目の素数さん
垢版 |
2018/04/04(水) 12:21:21.04ID:DuTnz6IW
>>165
誰にでもいいから2回目に「あなたはこの質問に正直に答えますか」で良くないか?
0181132人目の素数さん
垢版 |
2018/04/04(水) 19:20:46.19ID:EqC9nuEi
>>8
近大数コン問題2つの解説
競争に参加するには去年から事前申し込みが必要になった

[24-437]
2005年A4
http://imgur.com/Fl4qnjr.jpg

[23-937,24-30]
2009年A6
http://imgur.com/dxasE4H.jpg

本は『白熱!無差別級数学バトル』
競技数学、趣味数学の本として面白いので買おう(ダイマ)
0185132人目の素数さん
垢版 |
2018/04/05(木) 13:20:46.75ID:HpOHoLwn
>>140
これ、x を p の有理数係数多項式で表す問題だと思ってたんだけど
それでは(2)が不可能であることが証明できてしまった。

(ちなみに(1)は、上の例をずらして x=((p-2)^2-1)/8 でできる。)

以下、分母が奇数であるような分数として表せる有理数全体の集合を U とし、
2U={ 2u | u ∈ U } とする。
すなわち、2U は分母が奇数、分子が偶数であるような分数として表せる有理数全体の集合である。

[補題]
f(x) を有理数係数多項式とすると、十分大きい正整数 k が存在して、
任意の整数 n に対し f(n+2^k)-f(n) ∈ 2U が成り立つ。

[証明]
f(x) が単項式の場合:
f(x)=ax^d とおく。
a*2^k ∈ 2U となるような正整数 k をとる。
すると、
 f(n+2^k)-f(n) = a{(n+2^k)^d-n^d} = a*2^k*(整数) ∈ 2U
となる。

f(x) が一般の多項式の場合:
各項に対して上のような k をとり、その最大値をとればよい。□

[命題]
x が p の有理数係数多項式であるとき、>>140の(2)は成り立たない。

[証明]
f(p) を p の有理数係数多項式とし、
 p≡±1 (mod 5) のとき (-1)^f(p)=1
 p≡±2 (mod 5) のとき (-1)^f(p)=-1
が成り立つと仮定する。

f(p) に対し、補題のように k をとる。
 5a + 2^k*b = 1
を満たすように整数 a,b をとる。すると
 5a + 1 + 2^k*b = 2
である。補題より、
 f(2) - f(5a + 1) = f(5a + 1 + 2^k*b) - f(5a + 1) ∈ 2U
である。一方、仮定より f(2) は奇数、f(5a + 1) は偶数であるから、
f(2) - f(5a + 1) は奇数であり、f(2) - f(5a + 1) ∈ 2U に反する。 □
0186132人目の素数さん
垢版 |
2018/04/05(木) 13:21:12.21ID:HpOHoLwn
で、有理数係数多項式以外で何かしら綺麗に表す方法がないか探した結果、
一応次のようなものがあった。
 x=(cos(2pπ/5)-cos(2π/5))/(cos(4π/5)-cos(2π/5))

ただ、これを許してしまうと(3),(4)も三角関数と多項式補完の組み合わせですぐにできてしまうので
なんだかなあという感じ。
0187132人目の素数さん
垢版 |
2018/04/05(木) 23:21:09.59ID:DTitQ5x8
>>184

x^4 ≡ 7 ≡ 7 + 19*126 = 2401 = 7^4 (mod 19)


(x+7)(x-7)(xx+49) ≡ 0 (mod 19)

-49 ≡ 8 は平方非剰余なので
x ≡ ±7 (mod 19)
0188132人目の素数さん
垢版 |
2018/04/06(金) 22:34:30.05ID:hYTmrE4N
一辺1の正n角形の各辺(頂点除く)に1点ずつとって作ったn角形の周長をl(n)とする。
3/2≦l(3)  (Fagnanoの問題の特別な場合)
2√2≦l(4) [『美しい不等式の世界』 演2.59]
3√3≦l(6) [『美しい不等式の世界』 演2.60]
を示せ。
0189132人目の素数さん
垢版 |
2018/04/07(土) 11:33:38.40ID:ozKr5R4w
>>188

正n角形の頂点をA_i、辺A_i A_{i+1} 上にとった点をB_i とする。(i=1,2,…,n)
∠A_i = π - 2π/n,

B_{i-1}A_i = x,A_i B_i = y とおくと、
第2余弦定理より
(B_{i-1}B_i)^2 = xx + yy +2cos(2π/n)xy
 = {cos(π/n)・(x+y)}^2 + {sin(π/n)・(x-y)}^2
 ≧{cos(π/n)・(x+y)}^2,
(x+y)cos(π/n)≦ B_{i-1}B_i ≦ x+y,
1周にわたって和をとれば
 n cos(π/n)≦ I(n) ≦ n,

・別解
 参考書のp.189の図に示されているように、辺に関する鏡映を使う。

・参考書
 佐藤淳郎(訳)『美しい不等式の世界』朝倉書店(2013)
0190132人目の素数さん
垢版 |
2018/04/07(土) 11:47:52.45ID:ozKr5R4w
>>188

等号成立条件(左側)は x=y より
 nが奇数のとき … B_i は A_i A_{i+1}の中点
 nが偶数のとき … 互い違いに並ぶ
0192132人目の素数さん
垢版 |
2018/04/08(日) 05:24:00.36ID:EiOPZE4m
(1) p≡1 (mod 4) をみたす素数pに対して、gがpの原始根ならば、-gもpの原始根であることを示せ。
(2) p≡1 (mod 4) をみたす素数pに対して、2はpの原始根であることを示せ。
(3) Σ[k=1 to 2001] k^(2001) を13で割った余りを求めよ。
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況