巨大数探索スレッド13

1132人目の素数さん2017/12/08(金) 22:59:03.88ID:8DbvNjq1
大きな実数を探索するスレッドです。

前スレ
 http://rio2016.5ch.net/test/read.cgi/math/1484923121/
巨大数研究室
 http://www.geocities.co.jp/Technopolis/9946/
巨大数 (Wikipedia)
 http://ja.wikipedia.org/wiki/%E5%B7%A8%E5%A4%A7%E6%95%B0
ふぃっしゅっしゅ氏の巨大数論PDFと書籍
 http://gyafun.jp/ln/
たろう氏のまとめ
 http://gyafun.jp/ln/archive/7-571.txt
Dmytro Taranovsky の順序数表記
 http://web.mit.edu/dmytro/www/other/OrdinalNotation.htm
巨大数研究Wiki
 http://ja.googology.wikia.com/wiki/

2132人目の素数さん2017/12/08(金) 23:00:41.37ID:8DbvNjq1
12が終わっていたので立てました

3132人目の素数さん2017/12/08(金) 23:05:50.63ID:FhkUus/o
https://twitter.com/wota1969?t=1&cn=ZmxleGlibGVfcmVjcw%3D%3D&refsrc=email&iid=7ee5dd3e1aad40d9a574c9f18d8e62a1&uid=525178774&nid=244+272699405

4132人目の素数さん2017/12/08(金) 23:53:59.44ID:eHEqmV0D
削除依頼を出しました

5132人目の素数さん2017/12/09(土) 15:50:10.26ID:xkFAdF/c

6132人目の素数さん2017/12/09(土) 19:08:00.43ID:uy54sgE5
耳栓をしたら世界が変わってワロタ

7132人目の素数さん2017/12/09(土) 20:35:37.12ID:p6fMzslQ

8132人目の素数さん2017/12/09(土) 21:21:25.92ID:zJEmLits
俺的文明レベルの定義
文明のレベルはビジービーバー関数の値をどこまで求められるかで測られる。
現在の人類の文明レベルは4

9132人目の素数さん2017/12/10(日) 01:48:55.49ID:nwVYj8m4
囲碁、チェス、将棋のプログラムで一気にトップに出た Google に、
絶大なコンピュターパワーでビジービーバー関数の計算にチャレンジしてほしい

10132人目の素数さん2017/12/10(日) 04:39:30.18ID:ieniCcbp
GIMPSみたいに分散コンピューティングしたいけれどあまりにも知名度が

11132人目の素数さん2017/12/10(日) 04:58:42.71ID:gFQMK9Wr
名前がよくない
いっそ社畜関数って名前にしてしまえばもっと共感を呼ぶ

12132人目の素数さん2017/12/10(日) 12:05:06.92ID:MAwb8jeG
計算量がそのまんまビジービーバー関数レベルで増えていってやばい。
指数関数レベルの増え方とは次元が違う・・・と思ったけどほんとにそうだろうだろうか?

13132人目の素数さん2017/12/10(日) 12:38:10.99ID:MAwb8jeG
停止するプログラムをすべて最後まで走らせてその中で最大の値を求める。
これは本当に最後まで走らせる必要があるわけではない、
どこまで計算効率を上げられるか
停止しないプログラムは停止しないという判定をしなければならない。
限定的に停止性を判定するアルゴリズムは存在するものの、それをどこまで簡単にできるか?
またそのプログラムを開発するプログラムはもっと複雑になるのではないか?
停止性を判定するプログラムはオラクルで与えられてもいい、つまり適当に作ったプログラムが
たまたまそうなっていたとしてもいい、ではそれがほんとうに停止性を判定するプログラムであると
判定するプログラムは?
停止性を判定するプログラムであると判定するプログラムであると判定するプログラムは?

これもうわかんねえな

14132人目の素数さん2017/12/10(日) 14:30:25.03ID:bZV8J1/5
>>13
普通にゲーデルの不完全性定理を停止問題として言い換えられるのぐらい知ってて言ってるよね?。

15132人目の素数さん2017/12/11(月) 03:42:36.57ID:iDlBu66T
BB(100)とかは無理だろうけど、BB(5)とかBB(6)くらいなら、
Googleが頑張ればそのうちなんとか、とか思わないでもない

16132人目の素数さん2017/12/11(月) 13:17:10.60ID:LVWAoDNS
そんな宣伝にならんことに金を使うわけがない

17132人目の素数さん2017/12/11(月) 13:18:30.68ID:LVWAoDNS
実際に求める必要なんてないと思うが
グラハム数だって計算しようなんてヤツはいない

18132人目の素数さん2017/12/11(月) 16:02:38.03ID:KefKcF5V
>>14あくまで限定的な停止性判定のアルゴリズムの話なので。
たとえば4状態のプログラムは有限個しか存在しないので、究極最初からプログラムの中に
それぞれの入力されたプログラムに対する答えを用意しとけば4状態の停止性を判定する
プログラムとなります。

と書いて思ったけどこんなのでもアルゴリズムと言っていいのか? プログラムとは言えるけど

19132人目の素数さん2017/12/11(月) 16:05:57.71ID:KefKcF5V
計算可能レベルの追究が結果的にビジービーバー関数の値を求めることにもなるだろう。
逆も然りだが、こちらからはけっこう難解

20132人目の素数さん2017/12/11(月) 20:10:05.70ID:aAlStgH7
ならないよwww

21132人目の素数さん2017/12/11(月) 20:23:56.81ID:iDlBu66T
実際に求めると言うのは、当然10進数で求めるという意味ではなくて、
優勝マシンを決定すること
その一般的なアルゴリズムはないけど、小さいnに対しては決定できても
おかしくはない

22132人目の素数さん2017/12/11(月) 22:57:22.67ID:KefKcF5V
巨大数ベイクオフ大会もある意味BB(512)の値を追求する大会ですし

23132人目の素数さん2017/12/12(火) 08:24:50.60ID:TStY9q2s
>>21
それを追求しても巨大数探索にはならんぞ

24132人目の素数さん2017/12/12(火) 09:12:47.35ID:2YwkEi3X
前スレでビジービーバー関数の全域性うんぬん言ってたやつに致命的な間違いを見つけた。
ω矛盾の定義がおかしい。∃n∈(自然数)(Q(n))が証明可能なのに
Q(0),Q(1),Q(2),...がいずれも証明不能であることをω矛盾の定義といってたが、
これだとペアノ算術に例えば定数記号aを加えただけの拡張でも、
a = a から ∃n (a = n)が導出できる一方で、a = 0,a = 1,a = 2,... のいずれも証明不能で、
ω矛盾になる。しかし、これにa = 0という仮定を加えても無矛盾だから、
超準モデルになるとは限らない。

間違いの源はおそらく日本語版wikipediaだ。

"ω矛盾とは、自然数 n によって定まる論理式 Q(n) が存在して、次を満たすことをいう。
Q(0), Q(1), Q(2), …が全て証明可能であるが、「∃n: ¬Q(n) 」も証明可能である"

この記述は正しい。問題があるのはその下の、

"公理系が無矛盾であれば、対偶を取る事により、ω矛盾の概念が次と同値である事を示せる:
「∃n: Q(n) 」が証明可能であるが、Q(0), Q(1), Q(2), … のいずれも証明可能ではない。"

というところだ。最初の記述は「Q(0),Q(1),Q(2),...が証明可能で、かつ∃n(¬Q(n))も証明可能」
と言い換えられる。すると、実はAならばBの形になってないから、そもそも"対偶を取る"のは変だ。
英語版wikipediaには下の記述に該当する文は無い。
同値でないことも簡単に確認できる。ペアノ算術に定数記号aを加えただけの拡張は、
∃n(a = n)が証明可能で、a = 0, a = 1, ...が証明不能なことから下の記述を満たすが、
∃n(¬(a ≠ n))が証明可能な一方、a ≠ 0, a ≠ 1, ...は証明不能だから、上の記述を満たさない。
よって2つの記述は同値でない。
だから、前スレのあの証明では、「ビジービーバー関数の出力が超準的自然数になる」ことは
証明できていない、と言える。

あー、すっきりした

25132人目の素数さん2017/12/12(火) 18:38:09.54ID:2YwkEi3X
まぁでも、「ビジービーバー関数の出力が超準的自然数になる」、すなわち
BB(x)をビジービーバー関数として、
「十分大きな自然数Mについて、0 < BB(M), 1 < BB(M), 2 < BB(M), ...が証明可能」
は証明できてないけど、もっと弱い主張である※ならば簡単に証明できる。
(∀n(n < BB(M))と、0 < BB(M), 1 < BB(M), ...は異なる。∀n (n < BB(M))からは、
例えばBB(M) + 1 < BB(M) を導出できるので明らかに矛盾)

※: 任意の無矛盾かつ帰納的公理化可能な公理について、ある自然数Mが存在して、
任意のn ∈ {0,1,2,...}について公理に n < BB(M) という式を加えてもなお無矛盾

やや分かりにくいけど、公理に0 < BB(M)とか1 < BB(M)とか 2 < BB(M)をいくら加えても
そこから矛盾が導出できない、ということ。ビジービーバー関数を扱える公理じゃないと
いけないので、多分自然数論を含むだろう。

26132人目の素数さん2017/12/12(火) 19:44:25.84ID:2YwkEi3X
証明: 背理法による。どんなに大きな自然数Mに対しても、n < BB(M)を仮定すると矛盾が
導出できるような n ∈ {0,1,2,...}が存在すると仮定する。
公理が帰納的公理化可能なので、以下のような計算機械を構成すれば、必ず停止する

k = 0 とする
親プロセス:
(1).子プロセスに k < BB(M)を与えて起動する
(2).子プロセスが1つでも停止したら(3)へ
そうでなければ k を 1 増やして(1)へ戻る
子プロセス:
k < BB(M)が与えられたら公理 + (k < BB(M))から
矛盾の導出を試みて、矛盾を導出したらkを出力して停止
また、親プロセスが停止したら停止
すべてのプロセスは並行して行われる

この計算機械の出力する値を N とすると、N < BB(M)から矛盾を導出したので
N ≧ BB(M)を導出でき、状態数M以下のチューリングマシンをエミュレートして
N個を超える1を出力した時点でそのチューリングマシンは停止しないと判定できる。
どんなに大きな自然数Mに対してもこのことが言えるので、
任意の停止性問題を解ける計算機械が構成できることになり矛盾する。

よって背理法より※が示された。

27132人目の素数さん2017/12/12(火) 20:36:45.94ID:2YwkEi3X
※からは面白いことが分かる。
例えば、いかに大きなn∈{0,1,2,...}についてもn < BB(M)の仮定と矛盾しないということは
ある程度大きなMについてBB(M)に意味のある上限を導出できないことを意味する。
上限 m∈{0,1,2,...} が導出できるなら、m < BB(M)の仮定を加えると矛盾し、※に反するから。
(ここでいう意味のない上限とは、BB(M) < BB(M) + 1など)

ある程度大きなというのがどれくらいかは公理によるが、例えばZFCで100とすると
BB(100)の上限がふぃっしゅ数ver6ぐらい、とか、H(ψ(Ω_ω))である、といった
何かしら計算可能なもので表せると証明されることはありえない、ということになる。

あとは、"公理が無矛盾 ⇒ 公理 + (n < BB(M)) が無矛盾"は示した通りだが
逆は明らかなので公理と公理 + (n < BB(M))は無矛盾性同値でもある。

なんだか、まるでBB(M)は連続体濃度みたいな感じがする。
連続体濃度cも、ZFC + (アレフ1 < c) とか ZFC + (アレフ2 < c),...にしたって無矛盾だし、
cは存在するし一定の濃度でもあるはずだけど、可算無限との間にいくつの濃度の異なる集合が
あるのか決まらない、といったような。
何をもって一意に定まるとするのかは、もはや哲学の問題だね。

28132人目の素数さん2017/12/12(火) 21:22:07.48ID:TStY9q2s
いまだにビジービーバーみたいな小さな関数で思考が止まってるのか

29132人目の素数さん2017/12/12(火) 21:22:23.17ID:TStY9q2s
進歩がないねえ

30132人目の素数さん2017/12/12(火) 21:25:21.22ID:TStY9q2s
グラハム数が指数の塔で表現出来なくても
ちゃんと大きさが見積もれる

31132人目の素数さん2017/12/12(火) 21:53:39.39ID:Lg1Qpa+v
計算可能レベルを全否定ですか?

32132人目の素数さん2017/12/12(火) 23:20:33.49ID:mvyOcewj
嫌味ったらしい。何様だよ

33132人目の素数さん2017/12/12(火) 23:23:03.05ID:dr4XG1HO
ビジービーバーは神聖にて不可侵なものです。

34132人目の素数さん2017/12/12(火) 23:47:22.18ID:Lg1Qpa+v
前スレの「フワフワした感じがすっきりしないんじゃないか?」を「大きさを見積もることができない」
と言っていると勘違いされた可能性はどうだろう

35132人目の素数さん2017/12/13(水) 06:28:12.09ID:INqifKwb
>>26
「どんなに大きな自然数Mに対しても、n < BB(M)を仮定すると矛盾が
導出できるような n ∈ {0,1,2,...}が存在する」
としたら、「1をn個出力するまでチューリングマシンを走らせる」とするだけで
停止性問題が解決してしまうので、そういうnが存在しないということが
停止性問題と同値であることは自明

36132人目の素数さん2017/12/13(水) 07:03:06.15ID:Tekttjs5
>>31
小さな数しか作れないものは否定されてもしょうがない

37132人目の素数さん2017/12/13(水) 09:37:19.32ID:Zm7XTPvZ
無限の無限乗の無限乗の無限乗の無限乗の・・・・・(これが無限に続く)

ってどのくらい大きいの?

38132人目の素数さん2017/12/13(水) 09:48:50.30ID:gNGMfg74
>>37
「無限」じゃないですかね
元の無限とは異なるんだろうけど

39132人目の素数さん2017/12/13(水) 11:38:16.69ID:gNGMfg74
無限について考えていてふと思ったんだけど、仮に「ゼロで割る」という操作が「できる」と仮定したら、何かおもしろいことが起きるか、
例えば、u×0=1という関係が成り立つuを仮定して、これをあたかも虚数単位のようにして数を拡張すること、
具体的には、実数集合Rに対して、このuを使って集合U={a+bu|a、b∈R}を定義することができるが、このような集合Uに、果たして数学的な意義はあるのか
それともまったく無意味なのか

こんなことを思い付いて研究してる数学者が、じつは既に居るんじゃないかって気がしてるんですが、その辺りどうなんでしょうか?

40132人目の素数さん2017/12/13(水) 12:01:20.58ID:r64hvitv
とりあえずルベーグ測度を勉強すれば幸せになれると思う

41132人目の素数さん2017/12/13(水) 12:16:49.85ID:mq6hIL5p
計算可能レベルは別スレ立てるといいかもしれない

42132人目の素数さん2017/12/13(水) 13:07:40.65ID:HhXxkefZ
>>41
だね

43132人目の素数さん2017/12/13(水) 13:08:41.64ID:HhXxkefZ
>>39
とりあえず、ある程度までは自力で考えてみよう

44132人目の素数さん2017/12/13(水) 13:20:01.86ID:2FmXVCa9
1/0と0/0を割と自然に追加したのが車輪
でも
(1/0)*0
は1じゃなく0/0になっちゃうが

45132人目の素数さん2017/12/13(水) 18:51:22.26ID:iZ+rAmTJ
結局、巨大数を求めるにあたってどこまで奇妙な性質をもつことを許容できるか
という哲学の問題なのかな。

いったんここでは自然数論のモデルに属しうるものはすべて自然数と呼ぶことに
して、以下の4つに分類しよう。特に断りがない場合、証明可能とは古典論理の
もとで証明可能であることを意味する。

(1)存在を直観主義論理のもとでも証明可能な自然数

例: ふぃっしゅ数ver6など、計算可能な手段で求められるもの

(2)存在を証明可能だが、直観主義論理のもとでは証明不能な自然数

例: ある程度大きな入力に対するビジービーバー関数やラヨ関数、
その他の計算不能関数の出力?

(2)の数は、さっきの※みたいな、任意のn∈{0,1,2,...}についてnより大きい
としても無矛盾、といったやや奇妙な性質をもつようになると思われる。

続く

46132人目の素数さん2017/12/13(水) 20:09:06.97ID:iZ+rAmTJ
(3)存在を仮定するとω矛盾であることが導ける、したがって自然数論からは
おそらく存在が証明不能であるが、無矛盾性は強くしない自然数

おそらく、としたのは自然数論が矛盾していれば何でも証明可能であるため。

例: 「自然数論の矛盾の導出を試みて、導出したら停止する計算機械」
が停止するまでにかかるステップ数

自然数論 + (自然数論は矛盾)という公理を採用すれば停止することを証明可能で、
自然数論が無矛盾ならば(自然数論は無矛盾)は導出できないため、
自然数論が無矛盾ならば、自然数論 + (自然数論は矛盾)もまた無矛盾
よって無矛盾性は強くなっていない。

(4)存在を仮定すると、ω矛盾になるうえ、無矛盾性も強くなるが、
矛盾はしないような自然数

集合論では、大きすぎて存在を仮定すると無矛盾性が強くなるような
濃度のことを巨大基数と呼ぶのだった。いわば、(4)は自然数論版の
巨大基数である。ただしこれについての研究はほとんど無いから、
具体例を挙げるのは難しい。

(3),(4)に属する自然数は超準数で、したがって(1),(2)に属するどの自然数よりも大きい。
(1),(2)は存在を証明できる自然数で、(3),(4)は存在しないとは証明できない自然数である。
(4)に属する自然数はおそらく(3)に属する自然数よりも大きい。

47132人目の素数さん2017/12/13(水) 20:17:08.41ID:iZ+rAmTJ
ちなみに>>39にあるような u * 0 = 1となるuについては、実数0は加法の単位元で、
実数1は乗法の単位元なので、1 + 0 = 1と分配法則から
u = u * 1 = u * (1 + 0) = u * 1 + u * 0 = u + 1
よって u = u + 1 両辺からuを引いて 0 = 1 実数の0と1は等しくないので矛盾
だからこのような u は、(1)から(4)のどれにも属さない、
存在を仮定すると矛盾が導ける数、ということになる。

48132人目の素数さん2017/12/13(水) 22:50:14.62ID:iZ+rAmTJ
あっ、そうだ。
>>39
さすがに0の逆数っていうのは先述の通り矛盾するからないけど、
どんな実数よりも大きい超実数という数の存在を仮定して色々する
超準解析っていうのがあるよ。

49132人目の素数さん2017/12/13(水) 23:29:01.97ID:gNGMfg74
>>47
通常の算術が成り立たなくなることは理解しました。ありがとうございます。
スレチってこともあるのであまり深くは掘り下げないことにします。
そういえばu=u+1って式はuが可算集合濃度だと成立する式ですね。この場合は辺々uを引く操作に意味がないわけですが。

50132人目の素数さん2017/12/13(水) 23:30:52.41ID:Tekttjs5
>>45
ビジービーバー関数が存在することに疑問の余地がある?

51132人目の素数さん2017/12/13(水) 23:33:28.79ID:Tekttjs5
>>45
ビジービーバー関数の何が証明不可能だと言ってる?
Σ(9^9^9)が明確に定義されていて存在することは明らかだよね?

52132人目の素数さん2017/12/13(水) 23:45:13.01ID:Tekttjs5
少なくとも、存在することが証明できる数でないと探索にならないのでは?

到達不可能基数のような、巨大基数を仮定すると定義できる巨大自然数
みたいなのがあるの?
関数であればそういう物もあるような気がするけど、
単なる1個の自然数にそういうのがある?
自然数に計算可能も計算不可能も無いよね?

53132人目の素数さん2017/12/13(水) 23:48:18.54ID:r64hvitv
スレを計算可能レベルと不可能レベルに別けるのは構わないっちゃあ構わないけど、
不可能レベルだけでそんなに話題があるだろうか? と思って前スレみてみたらそこそこあるな

54132人目の素数さん2017/12/13(水) 23:57:54.92ID:r64hvitv
>>24からどうも引っかかるので整理

"ω矛盾とは、自然数 n によって定まる論理式 Q(n) が存在して、次を満たすことをいう。
Q(0), Q(1), Q(2), …が全て証明可能であるが、「∃n: ¬Q(n) 」も証明可能である"

これは正しい

"公理系が無矛盾であれば、対偶を取る事により、ω矛盾の概念が次と同値である事を示せる:
「∃n: Q(n) 」が証明可能であるが、Q(0), Q(1), Q(2), … のいずれも証明可能ではない。"

これは確かにおかしいと思う、Q(0), Q(1), Q(2), … のいずれも証明可能ではないというのは統語論的に
決定できないと言うだけで、Q(0), Q(1), Q(2), … のいずれも反証可能ということではないので

55132人目の素数さん2017/12/14(木) 03:21:49.88ID:ba2R7XSw
スレの統一ルールはないので、計算可能でも不可能でも、自分が好きな話題を出せばいい

56132人目の素数さん2017/12/14(木) 03:25:27.76ID:ba2R7XSw
数年に1スレ消費するような閑散としたスレッドで、前スレは久々に1年以内に消費した
程度なんだから、話題なんてごった煮でよくて、巨大数に関することは基本的になんでもあり

57132人目の素数さん2017/12/14(木) 18:51:13.15ID:OUBB90zM
公理 A に対して、※を満たすくらい十分に大きな定数 M を用意して、
A に可算無限個の式を加えた以下のような公理
A + (0 < BB(M)) + (1 < BB(M)) + (2 < BB(M)) + ...
を A* として、コンパクト性定理より A が無矛盾なら A* も無矛盾
A から ∃n (n = BB(M)) を証明可能とすると、 A のモデルはすべて
BB(M)に該当する数を含む。 一方で A* のモデルではBB(M)は必ず
超準数である。A* が A を含むから、A* のモデルは A のモデルでもあり、
したがって採用する A のモデルによってはBB(M)は超準数になる。
さらに A がω無矛盾であるとすると、 A のモデルには標準モデルもあるため、
採用する A のモデルによってはBB(M)は標準数∈{0,1,2,...}になる。
したがってBB(M)の値はモデルの選び方に依存して変わる。

f が自然数上の計算可能関数とすると、n∈{0,1,2,...}について
0 = f(n), 1 = f(n), 2 = f(n), ...のうちのいずれかは証明可能である。
証明可能な式はどんなモデルを採用しても真なので、標準数を入力したときの
計算可能関数の出力する値はモデルの選び方に依存しない。
当然、0 = BB(M), 1 = BB(M), 2 = BB(M), ...のうちのいずれも証明不能である。
これは、任意の n∈{0,1,2,...} について n < BB(M) としても無矛盾である
ことによる。(n < BB(M) ならば n ≠ BB(M)である)

さっきは暗黙的に標準モデルで考えたために(2)の具体例が(3)の具体例
よりも小さいって言ったけど、超準モデルの中にあるBB(M)だったら
(3)の具体例を超えることも十分に考えられるな。

58132人目の素数さん2017/12/14(木) 18:59:44.90ID:SmK0uiXp
一年後にはここに書いてあること全部理解したい

59132人目の素数さん2017/12/14(木) 20:35:31.66ID:uaaeAmZt
順序数や基数は整列集合だから
○○を満たす最小
みたいなのがあるわけで

整数だと
nが○○を満たせばn-1も満たすから
そういう形で大きな数を定義するのは無理では?

60132人目の素数さん2017/12/14(木) 20:42:18.13ID:uaaeAmZt
>>57
公理系によってBBの値は変わらんよ

公理系で証明可能だろうが不可能だろうが
BBの値に影響無い
単に選んだ公理系に証明の能力が無いだけ

61132人目の素数さん2017/12/14(木) 20:43:56.64ID:uaaeAmZt
選んだ公理でマシンの動きが変わるなんて事はあり得ない

62132人目の素数さん2017/12/14(木) 21:09:09.43ID:uaaeAmZt
BB(M)の大きさを語るのに
その大きさをまともに扱えない公理系を使うのが間違い

幼稚園児がBB(4)=14の矛盾を導けないからといって
BB(4)=14と教えれば幼稚園児にとってはBB(4)=14である

と言ってるようなもの

63132人目の素数さん2017/12/14(木) 21:19:41.01ID:uaaeAmZt
計算可能な関数も
公理によって値を返すかどうか証明不可能なものがあったと思うけど

64132人目の素数さん2017/12/14(木) 21:58:06.67ID:9TwIcPNq
公理系の強さが順序数で表されるというのは興味深い。
深く勉強してみたいものだ。

65132人目の素数さん2017/12/14(木) 22:21:38.42ID:a1kx2fsY
1月発売の数セミが外史特集

66132人目の素数さん2017/12/15(金) 00:48:21.45ID:gG6rttTC
二階部分を量化して任意の部分集合は最小値をもつと言えば自然数論の超準モデルと区別できるようになる

67132人目の素数さん2017/12/15(金) 13:16:52.80ID:CF3vb9NM
>>64
公理系の強さは全順序じゃないけど

68132人目の素数さん2017/12/15(金) 18:42:15.17ID:0zA6t2JR
>>62
少なくともZFCにおいては、BB(4) = 13 が証明されているから、
ZFCのもとで 4 は※をみたすほど大きな数ではない。
無数にある無矛盾な公理系のうちどれを採用すべきかは数学の範囲内
じゃ答えられないし、ある公理がもつ無数のモデルのうちのどのモデル
を採用すべきかも数学の範囲内じゃ答えられない。
しかも、ビジービーバー関数の出力をすべて決定できる無矛盾な公理は必ず
帰納的公理化不能になるから、そんな公理の採用を強制されても神様にしか
扱いきれない。
数学の範囲内で答えられないなら哲学の出番になるけど、俺は哲学的議論
なんてしたくない。決着がつくことはほとんどありえないからだ。
俺はそんな哲学的議論をするより、あくまで数学の範囲内で、
そして人間が扱える公理の範囲内で、考察対象がもつ性質について
述べる方がずっと面白いと思う。

69132人目の素数さん2017/12/15(金) 20:02:31.79ID:yReWMSiw
BB(M)が扱える公理系ならどの公理系を選んでも値は同じ
どの公理系を選ぶかなんて考える必要は無い

その辺はBB(4)となんら変わらない

70132人目の素数さん2017/12/15(金) 20:12:48.76ID:yReWMSiw
定義自体は非常に簡単

71132人目の素数さん2017/12/15(金) 20:22:15.10ID:yReWMSiw
大きい数を競うのに、
実際に値を求める必要は全くなくて、
大小を比較する手段があれば十分

72132人目の素数さん2017/12/15(金) 21:49:38.87ID:mHxNdm4K
どんな公理を選んでも「決定できない」ものを「定義された」とみなすかどうかの話。
定義できたとみなしたときに、それを「チューリングジャンプ」とか「神託機械によって
計算された」と表現するので、計算可能性理論の領域に入ってくる。

73132人目の素数さん2017/12/15(金) 22:28:52.18ID:gG6rttTC
>>25
>「十分大きな自然数Mについて、0 < BB(M), 1 < BB(M), 2 < BB(M), ...が証明可能」
>は証明できてないけど、もっと弱い主張である※ならば簡単に証明できる。

これがおかしい。ビジービーバー関数はFOSTで記述可能、
よって1階述語論理の完全性により、任意の自然数nにつきあるaがただひとつ存在し、BB(n)=aを
証明可能

74132人目の素数さん2017/12/15(金) 22:33:27.27ID:gG6rttTC
超準モデルは>>66で否定できる。よってビジービーバー関数の値が超準的自然数にならないように
定義することもできる、というかそういう定義だよな?

75132人目の素数さん2017/12/16(土) 04:23:58.74ID:zeGJu5wf
P(n)はn番目の素数
(sin(1/2)+sin(1/3)+sin(1/5)+sin(1/7)+sin(1/11)+sin(1/13)+・・・+sin(1/P(n)))^2+(1+cos(1/2)+cos(1/3)+cos(1/5)+cos(1/7)+cos(1/11)+cos(1/13)+・・・+cos(1/P(n)))^2≒(n+1)^2

76132人目の素数さん2017/12/16(土) 11:18:04.65ID:qKav/W7S
>>66 もっと詳しく。urlでもいい。
>>69 公理とモデルごっちゃにしてない?
>>73 >>25は別に∃a(BB(n)=a)が証明不能とは言ってない。
BB(n)=0,BB(n)=1,...の内のいずれも証明不能なのは>>57の通り>>25の※から導けるけど。

77132人目の素数さん2017/12/16(土) 12:52:27.54ID:Es/6tyQF
そろそろスレチだ

78132人目の素数さん2017/12/16(土) 12:55:59.67ID:Es/6tyQF
https://ja.m.wikipedia.org/wiki/%E3%83%93%E3%82%B8%E3%83%BC%E3%83%93%E3%83%BC%E3%83%90%E3%83%BC

ビジービーバー関数がちゃんと定義できてないなんて言ってるのは>>76だけ

79132人目の素数さん2017/12/16(土) 13:30:05.26ID:gmpfSCpV
>>76
∃a(BB(n)=a)ではなくBB(n)=aが証明可能、つまりBB(n)=0,BB(n)=1,...の内のいずかが証明可能
であり※は誤り、という主張です

80132人目の素数さん2017/12/16(土) 13:45:05.46ID:gmpfSCpV
>>26はMがどこまでも大きくなればBB(M)もどこまでも大きくなる、ということを証明しているんじゃ? あと

>N個を超える1を出力した時点でそのチューリングマシンは停止しないと判定できる。

N個を超える1を出力した後にその1を消して停止することも考えられるのではないでしょうか?

81132人目の素数さん2017/12/16(土) 14:25:13.18ID:gmpfSCpV
>Mがどこまでも大きくなればBB(M)もどこまでも大きくなる、ということを証明しているんじゃ?

これはこちらの勘違いでした、スマン

82132人目の素数さん2017/12/16(土) 15:51:25.46ID:uVM5P2Vx
>>79
BB(n) = 0, BB(n) = 1, ...のいずれかが(帰納的公理化可能な公理から)証明可能なら、
>>26と似たような計算機械、すなわち
BB(n) = 0の証明を試みる子プロセス、BB(n) = 1の証明を試みる子プロセス、...
を次々生成する親プロセスを作り、子プロセスが一個でも証明完了すれば
得られたBB(n)を出力して全プロセスを終了、とすれば子プロセスの1つは証明完了
することは確実なので、BB(n)を計算できる機械が作れ、BB(n)の計算不能性と矛盾

83132人目の素数さん2017/12/16(土) 16:32:01.68ID:uVM5P2Vx
>>80
優勝者よりも多くの1を書きながらそれを消して停止するマシンの存在は
確かにありそうで、その点で>>26には問題があるけど、
「N個を超える」のところは「N*2個」とか「N^2個」、はたまた「2^N個」
「Ackをアッカーマン関数としてAck(N, N)個」と置き換えても停止性問題を
解ける機械が作れるという結論に変わりなく、わざわざAck(N, N)個以上書いた1を
N個未満になるまで消してから停止するマシンがあるのに優勝マシンにはたったの
N個しかテープに1が無い、っていうのは(証明はしてないが)考えにくい。
だから結論は疑っていない。

84132人目の素数さん2017/12/16(土) 17:06:04.26ID:uVM5P2Vx
あ、テープにある1の総数は増やさないけど停止しないものもあるじゃん。
例えば0を読み取ったら状態も文字も変えずただ右にシフトするだけだったら、
空のテープをずっと右に行くだけで停止しないのに1の数は0個のままだから
停止しないと判定されることもない。
>>26 はまずいな... ビジービーバー関数じゃなくて最大ステップ数関数に
譲歩したほうがより安全か。

85132人目の素数さん2017/12/16(土) 18:36:31.02ID:1A9y1fOT
>>26については>>35でおしまいじゃないの?
どこまで計算しても「計算がいずれは終了するのか永遠に終了しないのかを判定する
一般的アルゴリズムは存在しない」ことが停止性問題。最大値を確実に見積もれたら、
その最大値まで計算すれば判定ができてしまうので停止性問題が解決してしまう。
つまり、>>26の仮定がおかしいということ。

86132人目の素数さん2017/12/16(土) 19:31:17.51ID:uVM5P2Vx
まあ背理法で示す訳だから矛盾を導くためのおかしい仮定をするのは当然だが、
>>35では>>84の例で出した1を出力しないのに停止しないマシンには対処できてない。
いましがた、詳細は省くが、任意のn状態数チューリングマシンに対して、
少なくとも21n状態数チューリングマシンなら1ステップごとに1の数が少なくとも1つは
増えていく、つまりステップ数を数えながら動くマシンを作れることが分かった。
これより、最大ステップ数関数S(n)
= "n状態数チューリングマシンが停止するまでにかかるステップ数の最大値+1"
とすれば、 BB(n) ≦ S(n) ≦ BB(21n) となる。
あとは>>26を改造して n ≧ S(M)が導けたときに n ステップまで動かせば停止性問題解消、
とすれば、あるMが存在し 0 < BB(21M), 1 < BB(21M), ...を加えても無矛盾と言える
ので、∀n (BB(n) < BB(n+1))から、結局は※と同じことを導出できるな。

87132人目の素数さん2017/12/16(土) 22:46:14.10ID:qKav/W7S
>>66の任意の部分集合が最小値をもつのと、
超準モデルを否定できるのとのつながりが分からない。

88132人目の素数さん2017/12/17(日) 00:32:50.97ID:AtDSd9G4
>>26
子プロセスの「矛盾を導出する」のはチューリングマシンと同じ能力の計算機械で出来るの?

89132人目の素数さん2017/12/17(日) 01:50:02.89ID:I7x5AqJ7
停止性問題は任意のチューリングマシンの停止性を判定するアルゴリズムは存在しないというだけで
特定のチューリングマシンの停止性を判定できても矛盾はない・・・よな

超準モデルは必ず無限下降列をもってたと思う

90132人目の素数さん2017/12/17(日) 01:56:49.18ID:I7x5AqJ7
それぞれのMにつき、状態数Mのチューリングマシンの停止性を判定するチューリングマシンが
それぞれに存在するだけなら停止性問題に触れない

91132人目の素数さん2017/12/17(日) 04:20:26.30ID:hGoCNWLo
>>86
なるほど。「詳細は省くが」のところが、けっこうすごいことやったのでは?

92132人目の素数さん2017/12/17(日) 09:56:47.49ID:9SSnit6T
>>88
一階述語論理の健全性と完全性より証明可能⇔恒真
帰納的公理化可能な公理から証明可能な式は枚挙可能
よって証明可能な式を枚挙していれば必ず恒真な式は証明される
>>89
ZFCの無限公理が存在を保証する集合をNとして、ZFCが無矛盾なら、
ZFCに定数記号 v を加え、ZFCに v ∈ N という式を加えても無矛盾
{} ∈ v, {{}} ∈ v, {{}, {{}}} ∈ v , ...の式を有限個加えても無矛盾
よってコンパクト性定理より、
ZFC + (v ∈ N) + ({} ∈ v) + ({{}} ∈ v) + ({{}, {{}}} ∈ v) + ...もまた無矛盾
これをZFC*とすれば、ZFC*のモデルはZFCのモデルでもあるが、超準モデルである。
ZFC*は正則性公理を含むので、ZFC*のモデルの中の集合は∈の無限降下列を持たない。
よって無限降下列が有無を根拠に超準モデルを排除できる訳ではない。
この事実をあえて解釈するなら、超準モデルの中では超準数は有限にしか見えない、
だから自分が超準モデルの中にいるのか標準モデルの中にいるのか分からない、
といったところか。

93132人目の素数さん2017/12/17(日) 10:22:52.46ID:9SSnit6T
>>90
自然数Mを入力として与えれば、論理式 n < BB(M)の構成自体は計算可能な手段
で出来るから、 >>26の計算機械は任意のMを入力にとることができる。
だから任意のチューリングマシンの停止性を判定できる一つの計算機械になって矛盾を導ける。
>>91
そんなに気になるか〜。仕方がない。省いた部分を書いてあげる。
テープを 3k, 3k + 1, 3k + 2 番目のセルの3つに分割して、
3k 番目のセルはエミュレート用に、3k + 1, 3k + 2 番目のセルはステップ数の
カウントと制御用に使う。
n状態数マシンのエミュレートを行い、エミュレータが
1ステップ進むたびそこのセルの1つ右と2つ右のセルに合わせて10と書いて、
そこがエミュレータの現在のヘッドの場所だと示す。そして右に進み、3k + 1, 3k + 2
番目のセルが合わせて00になってるところを見つけたら01にして左に戻り、10の
エミュレータの現在ヘッド位置まで戻りエミュレートを再開する。
このようなマシンの構成のために、まずエミュレート用の状態数n個を用意して、
エミュレータのヘッドの状態と読み取った文字(0 or 1)を記憶するための状態として
2n個、今いるセルがエミュレータのヘッド位置から右に 1, 2, 3k, 3k + 1, 3k + 2番目
なのかを記憶するため2n個の5倍、そして往路なのか復路なのかを記憶するのにさらに2倍
よって n + n * 2 * 5 * 2 = 21n 個の状態数があれば足りる。
省いた理由が分かってくれるとうれしいな。

94132人目の素数さん2017/12/17(日) 10:33:10.44ID:9SSnit6T
さて、書きたいことは書いたし、もうスレからおいとまするか。
あ、巨大数探索スレだから一つ巨大数を提示してからにしよう。
X = "「自然数論から矛盾の導出を試みて導出したら停止する計算機械」が
停止するまでにかかるステップ数"

自然数論が無矛盾ならXの存在を証明できないし、ゲーデルの不完全性定理より
Xの存在の否定も証明できない。
そして、任意の n ∈ {0, 1, 2, ...}について、 n < X が証明可能、すなわち
0 < X, 1 < X, 2 < X, ... がいずれも証明可能である。
これを巨大数と認めるかどうかは哲学の問題だから俺は言及しない。

95132人目の素数さん2017/12/17(日) 11:45:14.13ID:fCl1boMi
>>94
定義が曖昧過ぎませんかねえ
哲学とか言う前に

96132人目の素数さん2017/12/17(日) 11:49:34.78ID:fCl1boMi
>>91
別にそこはどうでも良いよ
21倍も状態を持てば押さえ込むのは簡単だし

そんなことをしなくとも
シフト関数と大差ないわけだし

97132人目の素数さん2017/12/17(日) 12:38:16.78ID:fCl1boMi
自然数論が無矛盾なら停止しない
矛盾していれば停止する

無矛盾を前提にすると停止しないので値は存在しない

98132人目の素数さん2017/12/17(日) 15:02:03.84ID:I7x5AqJ7
任意の超準数uにつき、0でない限りひとつ前の数が存在するのでu-1が存在する。
u-1も超準数である。
以下u-2,u-3,・・・とつづき無限下降列となる

コンパクト性と相いれないのは変だな、自分がどっかで何かを勘違いなり間違いなりしてるんだろう

99132人目の素数さん2017/12/17(日) 15:08:07.97ID:I7x5AqJ7
任意のチューリングマシンは有限時間で停止するかしないかのどちらか
有限個のチューリングマシンの中には有限時間で停止するチューリングマシンが有限個存在する。
有限時間で停止するチューリングマシンの出力する情報の容量なり停止するまでのステップ数なりは有限
有限個の値の中には最大値が存在する。

ビジービーバー関数がこれ以上公理を仮定する必要が無くwell-definedであり、
普通の自然数を返すこと自体は明らかじゃないか?

100132人目の素数さん2017/12/17(日) 15:23:23.46ID:I7x5AqJ7
根本的にビジービーバー関数が定義で標準モデルを指定してないと考えてること自体が間違いかもしらん。

101132人目の素数さん2017/12/17(日) 15:28:19.75ID:I7x5AqJ7
無限下降列をもたないというのは2階の性質になるからコンパクト性と相容れなくていいってことか?

102132人目の素数さん2017/12/17(日) 15:33:25.51ID:I7x5AqJ7
>>26は最大シフト関数に置き換えて考えるとして、Mの値が限りなく大きくなれば子プロセス
のプログラムも限りなく複雑になる、ということはない、という証明が必要では

103132人目の素数さん2017/12/19(火) 22:59:07.47ID:bKNhEdtX
ビジービーバー関数
を越えるには
チューリングマシンに神託を加えれば良い
どんどん加えていくことでチューリング次数による
順序構造が出来る

計算可能関数の時と同じように
大きな順序数を作ることで大きな関数が出来る

104132人目の素数さん2017/12/19(火) 23:00:33.46ID:XZsHzoQ6
チューリング次数が自然数の時はイメージ湧くけど
チューリング次数がωとかε_0とかも考えられるの?

105132人目の素数さん2017/12/19(火) 23:36:30.85ID:4sDUq0m/
全ての有限次チューリングマシンの停止性判定が出来るのがω次チューリング機械とか?

106132人目の素数さん2017/12/19(火) 23:47:10.92ID:4sDUq0m/
ふぃっしゅ氏はビジービーバー関数のチューリング次数を数え上げてたけど、それとω次TMとはちょっと違う気もする。チャーチクリーネ順序数上では同じ表記になりそう。

ラヨ数とふぃっしゅ数v4の間の構造の関係もも知りたい。
ふぃっしゅ数v4から何が起こるとラヨに到達するのか。
ラヨ数をチャーチクリーネ順序数表記するとどうなるのか

107132人目の素数さん2017/12/20(水) 06:35:10.70ID:4LAaCJuh
https://ja.m.wikipedia.org/wiki/%E3%83%81%E3%83%A5%E3%83%BC%E3%83%AA%E3%83%B3%E3%82%B0%E6%AC%A1%E6%95%B0

自然数の集合に対してチューリング次数が決まる
ビジービーバー関数の値となる自然数だけ集めた自然数の集合はチューリング次数0^(1)
この集合を利用できるチューリングマシンのビジービーバー関数の値だけ集めた自然数の集合はチューリンク次数0^(2)
集合0^(n)の情報を全て集めたのが0^(ω)
情報の集め方は、f : N^2 --> N の単射から作れる

当然0^(チャーチクリーネ)等も作れる

108132人目の素数さん2017/12/20(水) 06:44:21.72ID:4LAaCJuh
可算順序数は基本列が存在するので
全ての可算順序数に対応するチューリング次数である自然数の集合が存在する

チューリング次数は全順序ではなくて、0^(0)と0^(1)の中間のような中途半端な物も存在するが
巨大数探索の為には順序数に対応するチューリング次数だけ考えれば良いような気がする

109132人目の素数さん2017/12/20(水) 07:06:12.79ID:4LAaCJuh
0^(1)を使えばチャーチクリーネ順序数の基本列が作れるし、
より次数が大きければ、より大きな可算順序数が作れる

大きな順序数から次数の大きな集合を作り
次数の大きな集合から大きな順序数を作る
これを繰り返すことで到達する順序数は非常に大きいが
名前はついているんだろうか

110132人目の素数さん2017/12/20(水) 07:17:10.94ID:4LAaCJuh

111132人目の素数さん2017/12/20(水) 08:20:33.67ID:4LAaCJuh
recursively inaccessible ordinals
recursively Mahlo ordinals
nonprojectible ordinals
stable ordinals
...

いろいろな巨大可算順序数が書いてありますね

112132人目の素数さん2017/12/20(水) 19:01:39.06ID:Xx22uQKo
http://cantorsattic.info/Lower_attic

Stable ordinal の中に色々ある

113132人目の素数さん2017/12/20(水) 19:26:41.38ID:4LAaCJuh
大きな可算順序数αが定義出来たら
巨大数を定義するために
チューリング次数0^(α)の集合たちの中から1個を選ぶ必要があるが、
簡単に1個を選択(定義)することが可能だろうか?

チューリング次数0^(α)の集合たちは可算個存在する
適当に順序を付けて最小が決まれば良いのだが、
最小値があるように順序を決めるのは難しそう

決まらないのであれば、αの基本列を構成して行かねばならない
これは定義が非常に複雑になるので、避けられるなら避けたい

114132人目の素数さん2017/12/20(水) 21:59:57.12ID:lQTb+mO5
計算不能領域の話題が盛り上がるとは思ってなかったわ。
正直スマンかった。

115132人目の素数さん2017/12/20(水) 22:00:16.83ID:vjMfu1Ma
wikipediaからコピペ

恒真論理式全体の集合は(言語にアリティ 2 以上の述語が一つでも含まれていると)決定可能でない。つまり、
任意に論理式が与えられたとき、それが恒真であるか否かを判定するアルゴリズムは存在しない(「チューリング
マシンの停止問題」を参照)。この結果はアロンゾ・チャーチとアラン・チューリングがそれぞれ独立に導き出した。
正確には、恒真論理式のゲーデル数全体の集合は帰納的でないということである。
それでも、与えられた論理式が恒真であるとき、かつそのときにのみ 1 (yes) を出力して停止するアルゴリズムは
存在する。ただし、恒真でない論理式を入力した場合はこのアルゴリズムは停止しないかもしれない。これを、
恒真論理式全体の集合は準決定可能であるという。これは正確に述べれば、恒真論理式のゲーデル数全体の
集合が帰納的可算であるということである。

ビジービーバー関数の値は決定しているけど計算不可能であるというのはこれで説明できるんじゃないだろうか

116132人目の素数さん2017/12/20(水) 22:15:10.22ID:vjMfu1Ma
上のは恒真式の集合が決定可能である、すなわちアルゴリズムが存在しなければ証明不可能
としていたのが誤りだったということだろうか

117132人目の素数さん2017/12/21(木) 23:52:02.38ID:XL1eRCWZ
だれもついてこれてないぞ

118132人目の素数さん2017/12/22(金) 14:12:05.29ID:QPzIcLJV
なんか理解できないのでとりあえずビジービーバー関数の強化版を置いときますね。

Σ^[0](n)=Σ(n)
Σ^[a+1](n)=Σ(Σ^[a](n))
Σ^[0,a](n)=Σ^[a](n)
Σ^[b+1,0](n)=Σ^[b,n](n)
Σ^[b+1,a+1](n)=Σ^[b,Σ^[b+1,a](n)](Σ^[b+1,a](n))

119132人目の素数さん2017/12/24(日) 17:17:46.57ID:qhx5j1er
>>118
そのような「”Σ” を使ったあらゆるチューリング計算」の中で最強を指示したのがふぃっしゅ数バージョン4の第1段階目であるs’(1)f(x)。この時点で>>118よりも大きい。

第2段階は「”s’(1)f” を使ったあらゆるチューリング計算」の最強を指示するs’(1)^2f。第3段階、第4段階…と行き、段階を対角化する事で有限段階では辿り着けない第ω段階目のs’(2)fに達する。

「s‘(2)fを使った」が第ω+1段階目のs’(1)s’(2)f。第ω+2のs’(1)^2s’(2)f、第ω+3のs’(1)^3s’(2)f、を対角化した第ω×2のs(2)^2f、それもさらに対角化した第ω^2がs’(3)f。

それをさらに対角化したのが第ω^ωのs’(x)f、そしてさらにそれを63回ss’(x)変換した第(ω^ω)×63の先がふぃっしゅ数バージョン4。

120132人目の素数さん2017/12/24(日) 17:23:47.97ID:qhx5j1er
と書いてて思ったこと。こんな風にふぃっしゅ数バージョン4はビジービーバー関数とふぃっしゅ数バージョン3を組み合わせて作られてる。

でもせっかくビジービーバー関数という「あらゆる計算の中で最強の手順を探してくれる」機構があるのに、再帰部分はふぃっしゅ数バージョン3っていう「手作り」機構なんだよね。ここもビジービーバーライズできないものか。

121132人目の素数さん2017/12/25(月) 05:15:29.46ID:YHXaiKR8
>>109 で recursively inaccessible ordinal 相当の関数が作れる

122132人目の素数さん2017/12/25(月) 15:30:04.40ID:xd5jT2mw
>>119
こういうイメージ?

Σ(x)は、ビジービーバー関数
「f→g(x)」=「『fを使ったあらゆるチューリング計算』の中で最強を指示したものをg(x)とする。」

Σ→Σ^[0](x)
Σ^[a]→Σ^[a+1](x)
Σ^[ω]→Σ^[0,0](x)
Σ^[b,a]→Σ^[b,a+1](x)
Σ^[b,ω]→Σ^[b+1,0](x)
Σ^[ω,ω]→Σ^[0,0,0](x)
Σ^[c,b,a]→Σ^[c,b,a+1](x)
Σ^[c,b,ω]→Σ^[c,b+1,0](x)
Σ^[c,ω,ω]→Σ^[c+1,0,0](x)
Σ^[ω,ω,ω]→Σ^[0,0,0,0](x)
...........
Σ^[ω,...n個...,ω]→Σ^[0,...n+1個...,0](x)
Σ^[ω,...ω個...,ω]→Λ(x)

Λ(Λ(Λ(...63回...Λ(x)...)))

123132人目の素数さん2017/12/25(月) 15:44:24.41ID:QB27v7Nc
全く違う件

124132人目の素数さん2017/12/25(月) 19:53:29.39ID:YHXaiKR8
ビジービーバー関数みたいな強力な関数に対して
ゴミみたいな量を増やして喜んでるのって
どういう心理?

>>118とかふぃっしゅV4とか

125132人目の素数さん2017/12/25(月) 20:34:13.32ID:gp6rhPE8
もう再帰の時代は終わったの

126132人目の素数さん2017/12/25(月) 20:47:37.18ID:YHXaiKR8
その通り
もうっていうか、50年前に

127132人目の素数さん2017/12/25(月) 21:33:28.05ID:KTF4IPXK
階級が違うだけで再帰もまだまだ面白い話題あるだろ

128132人目の素数さん2017/12/25(月) 21:40:46.34ID:lL5Q9RV5
とんでもなく収束速度が遅い数列を作りたい

129132人目の素数さん2017/12/25(月) 22:17:28.82ID:um2IuHsX
ふぃっしゅ数V7はゴミじゃないということでおk?

130132人目の素数さん2017/12/26(火) 00:47:26.73ID:6t1yKs73
巨大数を生成するシステムが最終的に何を出力するか、計算可能か計算不可能かというのは表層上の
問題な気がする。オラクル無しの1階述語論理の対角化でラヨ関数(本当はFOSTだけど)になる一方で、
1階述語論理よりもはるかに強い高階述語論理を計算可能レベルで実装したCoCの対角化したloader.c
というものもある。

Little Biggedonとか計算可能レベルに応用できそうだがな、どうだろう
真理述語を限定的な停止性の判定に置き換える感じで

131132人目の素数さん2017/12/26(火) 02:44:16.13ID:ZMM98NSr
>>128
どういうとんでもなさを想定してる?
単にa_n=a^nとしてもaを1か-1に近づければ望みの遅さで収束・発散する数列が作れるけどそれじゃ満足しないんだよね?

132132人目の素数さん2017/12/26(火) 03:00:35.51ID:F2YLCYJx
>>131
そうですね
グッドスタイン数列を越えたいです

133132人目の素数さん2017/12/26(火) 06:45:41.79ID:gNMyYWbP
>>129
V7も同じ
強力な武器に対して+1しただけ

そもそも、これらは細部が書いてない為定義として完成してない

134132人目の素数さん2017/12/26(火) 06:53:17.99ID:gNMyYWbP
>>128
増加度の大きな関数の逆関数もどきを使えば作れる

例えば
f(n) を Σ(m)≧nとなる最小のmとして
a[n] = 1 / f(n) みたいな

135132人目の素数さん2017/12/26(火) 07:03:54.50ID:gNMyYWbP
コルモゴロフ複雑度Kを用いて
a[n] = 1 / K(n)
とすると>>134とほぼ同じ

136132人目の素数さん2017/12/26(火) 14:47:56.64ID:F2YLCYJx
増加度の大きな関数の値が分母にくるようにするわけですか?
すると数列は0に収束する事になるわけですが、分母がすぐ大きくなるから収束速度がとんでもなく早くなる気がします

137132人目の素数さん2017/12/26(火) 15:33:55.33ID:6t1yKs73
>>133「これら」ってことはラヨ関数も完成してないってこと?

138132人目の素数さん2017/12/26(火) 15:37:43.72ID:gNMyYWbP
は?

>>134のfも>>135のKも
非常に増加度が遅く、無限大に発散する関数
だから、その逆数であるa[n]は非常にゆっくり0に収束する

139132人目の素数さん2017/12/26(火) 15:40:40.73ID:gNMyYWbP
>>137
ふぃっしゅ数V4とV7のこと

140132人目の素数さん2017/12/26(火) 16:10:13.47ID:6t1yKs73
今のところ計算不可能レベルで何が完成していると見なされているのか聞きたいです

141132人目の素数さん2017/12/26(火) 16:16:22.72ID:F2YLCYJx
>>138
そうなんですね!
ごめんなさいよく知らずに
精進します

142132人目の素数さん2017/12/26(火) 16:36:09.37ID:gNMyYWbP
>>140
一番簡単なのだとビジービーバー関数

ふぃっしゅ数V4は機械の定義が一切無い
こんなんで「定義」として本まで出しちゃうとか
なかなか想像を絶する

143132人目の素数さん2017/12/26(火) 18:49:51.59ID:zA1onuj1
>>142
2番目に簡単なのだと何があります?

144132人目の素数さん2017/12/26(火) 19:50:18.30ID:6t1yKs73
V4はオラクルの具体的な実装が定義されてないということでわかる。
でもV7はちゃんとwell definedになってないか?

あとΞ関数はごみではない?

145132人目の素数さん2017/12/26(火) 20:57:39.66ID:CHcBNL+d
ゲーデル数化の具体的な方法とか書いてない

146132人目の素数さん2017/12/26(火) 21:29:15.43ID:6t1yKs73
定義自体にゲーデル数化は必要なくない? ほかの言語で定義する際に必要になるだけで

147132人目の素数さん2017/12/26(火) 21:47:03.68ID:fyHppNkr
>>144
具体的な実装が書いてないのはむしろ「ビジービーバー関数」の方に文句言わなきゃ。それがありならこれもありでしょ的カウンターでしょF4は

148132人目の素数さん2017/12/26(火) 22:39:53.40ID:CHcBNL+d
>>146
そうなのか
良く読んで無かった

>>147
ビジービーバー関数はちゃんと定義されてる
機械の動作の細部まで

149132人目の素数さん2017/12/26(火) 22:41:18.30ID:CHcBNL+d
いずれにしろ
V4やV7は強力な武器に対して+1しただけ
全く価値がない
ゴミ

150132人目の素数さん2017/12/27(水) 18:55:14.47ID:wg0qySbo
全ての実数の個数

151132人目の素数さん2017/12/27(水) 20:39:35.89ID:J7o9BVBH
>>150
大きな実数を探索するスレッドです。

152132人目の素数さん2017/12/27(水) 22:58:03.44ID:/77Tx/YX
ふぃっしゅ数V7はラヨ階層を定義したのならそれを言語の中にぶっこんで対角化した強さを
とればよかったんじゃって思う。適当な見積もりだけどBIG FOOTくらいになるんじゃなかろうか

153132人目の素数さん2017/12/27(水) 23:24:04.88ID:+Bp6Txzy
>>148
いや、定義されてない。
ビジービーバー関数の中で具体的な実装が定義されているのは候補となるチューリングマシンの動作までであって、
どのチューリングマシンがビジービーバーであって最大の出力をするのかを選ぶというビジービーバーの本質部分の方法についてはv4のオラクル同様具体的な実装が定義されていない。

154132人目の素数さん2017/12/28(木) 04:10:01.04ID:HwYuqv+8
>>153
「どのチューリングマシンがビジービーバーであって最大の出力をするのかを選ぶ」
ための手順がわかってしまったら、それは計算可能だということになってしまう。
それができないというのが停止性問題。

155132人目の素数さん2017/12/28(木) 06:54:56.61ID:89xdXX9n
>>153
君の中では円周率も定義されてないって言うのかな?
値を正確に計算する方法が無いわけだけど

156132人目の素数さん2017/12/28(木) 08:22:47.56ID:hz15My1N
>>154
そんなことは知ってる

157132人目の素数さん2017/12/28(木) 08:31:42.66ID:hz15My1N
>>155
それこそv4でオラクルの具体的な実装の定義がなされてないからダメって言ってる>>144に言ってやれよ。

俺は「そこはビジービーバー関数も同じだろ、だからv4だけが責められるのはおかしい」って言ってるだけ。

158132人目の素数さん2017/12/28(木) 08:42:22.26ID:hz15My1N
計算不可能関数なんだからビジービーバー関数もオラクルをひとつ持っているんだよ
F4がオラクルをはじめて使い出したんじゃない

159132人目の素数さん2017/12/28(木) 09:46:47.71ID:mkVRgNSD
V4はマシンの動きが定義されてない
普通のチューリングマシンは動きが定義されている

160132人目の素数さん2017/12/28(木) 10:32:37.32ID:qNA/GRr/
>>153
「定義されていない」の主張ではなく「計算できない」ことを懸命に主張してるようにしか見えないんだけど

161132人目の素数さん2017/12/28(木) 11:52:10.31ID:c3eIYj0W
ビジービーバー関数は定義されている。
ふぃっしゅ数V4はオラクルがどう引数を受け取ってどう関数fの値を返すのかって部分が曖昧。

たとえばそのオラクル状態に入ると、その時点でテープに入力されている1の数をnとし、
その時点のヘッダの位置から右に向かって1をf(n)個上書きするとか1マスおきに上書きするとか
f(n-1)+1個上書きしてヘッダの位置を1番左の1まで移動させるとか考えられる。

162132人目の素数さん2017/12/28(木) 13:24:17.20ID:mkVRgNSD
曖昧とかそういうレベルじゃない
一切定義が書いてない

「関数fを神託として持つチューリングの神託機械を考え」
これだけ

163132人目の素数さん2017/12/28(木) 13:34:36.33ID:mkVRgNSD
チューリング完全を保ったままfを実行出来れば動作は何でも良い

決めるべきは
fを実行する条件
fのパラメータの受け取りかた
fの返し方

もしかしたら、
fの取りうる値の位置だけ値が1
それ以外が0
をテープの初期状態として動作するだけでも良いのかもしれない

164132人目の素数さん2017/12/28(木) 14:31:33.75ID:mkVRgNSD
オラクルの渡し方は>>163のテープの初期状態だけで良さそうだね
これでチューリング次数を1個上げられる

チューリング次数が0でなければ
fの値が偶数になるもの、奇数になるもの
いずれかは無限に存在する
fがオラクルチューリングマシンのビジービーバー関数であれば
無限に存在する方(のうちの一方)の情報だけでもチューリング次数は変わらない
無限に存在する方(のうちの一方)を保存しておいて
他方を制御に使えば良い

165132人目の素数さん2017/12/28(木) 14:37:18.14ID:c3eIYj0W
fを実行する条件は普通の状態と同じように外部変数に委託していいだろう。
A状態で1を読み取ったらヘッダを右に移動させてオラクル状態に入るとか

しかしオラクルを重ねるとかしない限りV4の本質的な強さは決まっているものかと。

166132人目の素数さん2017/12/28(木) 14:49:53.27ID:c3eIYj0W
Ξ関数の強さはω^CK__1なのか、それとももっと強いのか?
前者ならふぃっしゅ数V4より弱い

167132人目の素数さん2017/12/28(木) 14:56:50.75ID:c3eIYj0W
訂正
ω^CK__1→ω^CK__ω

168132人目の素数さん2017/12/28(木) 17:08:16.60ID:mkVRgNSD
オラクル状態って何だ?
いちいちマシンの状態を分けるのか?

>>164が一番シンプルだと思うが
決めるべきことが一番少ない

----
自然数全体の集合の部分集合Sをオラクルとしてマシンに与える
通常のチューリングマシンはテープが全て0の状態で動作を開始するが、
オラクルマシンは集合に含まれる自然数に対応する位置を1にして動作を開始する
開始時のヘッドの位置は最小の自然数に対応する所とする

このマシンにたいするビジービーバー関数を
Σ[S](n) とする
これでオラクル付きビジービーバー関数の定義は終わり

関数fに対しては
Σ[f](n) = Σ[f(自然数全体)](n)
と定義すれば良い

169132人目の素数さん2017/12/28(木) 17:54:31.24ID:89xdXX9n
おっと
停止時の1の数だと無限になってしまう
1の増分にしないと

あまり美しい定義じゃなくなっちゃうので
最大シフト関数でいいか

170132人目の素数さん2017/12/28(木) 18:01:15.22ID:89xdXX9n
まあそんな+1を考えてもしょうがなくて
素直にビジービーバー関数をも定義出来る言語n文字で定義可能な最大の整数
で良いわけで

そのひとつがラヨ関数

言語の自由度をどんどん上げていって
矛盾スレスレにすれば自然と大きな数が定義出来る

171132人目の素数さん2017/12/28(木) 18:23:21.26ID:HwYuqv+8
チューリングの神託機械自体はすでに定義されているものなので、
どうせ計算しないんだから複雑度がわかればよくて実装はなんでもよくて、
wikipediaのoracle machineにはvan Melkebeekの実装が書かれている

172132人目の素数さん2017/12/28(木) 19:55:02.60ID:c3eIYj0W
>>169 1の増分だと|ω+n|=|ω|で濃度は変わらない、が、言わんとしていることは分かる。

>素直にビジービーバー関数をも定義出来る言語n文字で定義可能な最大の整数

>言語の自由度をどんどん上げていって
>矛盾スレスレにすれば自然と大きな数が定義出来る
オラクルの追加も言語の自由度を上げていくことになるし、このやりかた自体を否定しちゃうと
BIG FOOT やLittle Bigeddonもごみ認定されかねない。されてるのかもしれないけど

>>168の定義でω^CK__2に達しているのかどうかがちょっと気になる。

173132人目の素数さん2017/12/28(木) 20:11:42.71ID:c3eIYj0W
複雑度は変わらないから実装は何でもいいって言っちゃうと、急増加関数+順序数で定義しても
いいってことになっちゃうと思う。それはそれでありだけど数と言うよりは指標って感じ。

オラクル状態ってのは>>161の動作をした後ヘッダの位置と次の状態で定義される。オラクル状態に
入った瞬間のテープの読み取り方にいくらかパターンを与えてもいいだろう。
>>171で調べてみたけど実装の仕方いくらか考えられているのね

174132人目の素数さん2017/12/28(木) 20:21:27.73ID:89xdXX9n
>>171
どう定義してもいいけど、定義されてないと定義にならんでしょ

175132人目の素数さん2017/12/28(木) 20:25:53.45ID:89xdXX9n
>>172
変化するのは有限個だから増分と言えば意味はわかるでしょ

>>168の定義でいいのは>>164で説明したつもり
不足なら説明を追加するけど

176132人目の素数さん2017/12/29(金) 10:30:22.02ID:iHY5Bfej
>>86
どうやっても21倍もかからない
とりあえず8倍では出来た

177132人目の素数さん2017/12/29(金) 15:10:22.00ID:iHY5Bfej
>>164
テープのプラス側はオラクル情報として残しておいて
テープのマイナス側だけ制御に使えば良いのか

こっちの方がチューリング次数的には明確
オラクルに制限を付ける必要が無く
自然数の集合であれば何でも良い

178132人目の素数さん2017/12/29(金) 15:11:52.46ID:iHY5Bfej
てことで、
オラクルはテープの初期状態で渡せば良い
これが一番定義がシンプル

179132人目の素数さん2017/12/29(金) 15:29:00.33ID:iHY5Bfej
>>177
テープのマイナス側の適当な所にプラス側の情報をコピーしながら動作する

適当な所とは例えばオラクル情報のコピーはマイナスの偶数位置
制御情報はマイナスの奇数位置とか

オラクル情報が必要な時に、
必要に応じてコピーして使う

これで、チューリング完全を保ったままfを好きな時にコールする仕組みが出来た

180132人目の素数さん2017/12/30(土) 11:53:27.06ID:Vmivil2g
ビジービーバー関数とラヨ関数しか認められないのか

181132人目の素数さん2017/12/30(土) 17:55:25.13ID:JLOT3Gfz
リトルビッゲドンもいっとこう

182132人目の素数さん2017/12/30(土) 18:09:33.00ID:Vmivil2g
せめて歴史的経緯も考慮しておかないと最新最強以外は全部ごみになると思うわ

183132人目の素数さん2017/12/30(土) 19:38:09.56ID:uzijZQ02
ふぃっしゅに歴史的価値は全く無いと思う

184132人目の素数さん2017/12/30(土) 19:40:16.78ID:uzijZQ02
ビジービーバー関数やオラクルは基本単語という感じ
当然知っておくべき
順序数やハーディーも基本単語

185132人目の素数さん2017/12/30(土) 19:55:28.72ID:Vmivil2g
あんまり結果ばかり追求して過程を省みないと「すごいこと知ってるんだね、でも中身スッカスカだね」
てなるわ

186132人目の素数さん2017/12/30(土) 20:00:23.24ID:Vmivil2g
計算可能レベルの階層と理論の証明論的強さの研究くらい認めてもいいだろう。

187132人目の素数さん2017/12/30(土) 20:02:04.27ID:uzijZQ02
中身がスッカスカで結果を出せると思ってるのか

188132人目の素数さん2017/12/30(土) 20:04:19.97ID:uzijZQ02
>>186
巨体数に結びつかない屁理屈は続けてほしくない

189132人目の素数さん2017/12/30(土) 20:04:38.90ID:uzijZQ02
結び付くなら大歓迎

190132人目の素数さん2017/12/30(土) 22:28:36.30ID:XBtvaWiR
お気付きまでで、つまらないわ

191132人目の素数さん2018/01/01(月) 02:14:55.86ID:TReCHDa2
計算不可能関数使って巨大数の結果を出せても計算可能性のすべてを理解できたということにはならないし、
それって計算複雑性の研究を屁理屈言ってるようなもんだ

192132人目の素数さん2018/01/01(月) 02:20:53.14ID:TReCHDa2
結局どんなに有限の巨大数を探索しても「それってωよりも小さいじゃん、下らない」って言ってるのと
同じじゃ

193132人目の素数さん2018/01/01(月) 08:03:31.61ID:R/IfTFcF
大きな実数を探索するスレッドです。

194132人目の素数さん2018/01/01(月) 08:31:42.62ID:R/IfTFcF
計算可能性のすべてを理解したい人
有限の巨大数の探索は下らないと思う人
は他のスレに

195132人目の素数さん2018/01/01(月) 11:13:38.44ID:j85j4B2n
明けましておめでとうございます

196132人目の素数さん2018/01/01(月) 11:20:34.99ID:Ld0lhoua
今年こそは超巨大な実数を定義しましょう!

197132人目の素数さん2018/01/01(月) 12:31:56.15ID:BGapMpoo
計算可能性を解りたいので他所に奨めるは分かる

198132人目の素数さん2018/01/01(月) 12:39:54.03ID:BGapMpoo
計算可能関数を通じて個人的にも巨大数の理解に深めたい人はスレに歓迎したいと思う。

199132人目の素数さん2018/01/01(月) 15:21:52.37ID:TReCHDa2
将来的に、ある強力な言語で記述できてしまうということでビージービーバー関数はおろかラヨ関数、
リトルビッゲドンまでゴミ認定されてしまいそうなのが嫌だったんだ、そういう人間も出てくるんだろうけど

200132人目の素数さん2018/01/01(月) 19:40:10.47ID:R/IfTFcF
圧倒的に大きい数が出てくれば、
それまで大きかった数がゴミになるのはしょうがないかと

大きさ的にゴミの中でも、
アッカーマン関数、ビジービーバー関数のように、
巨大数の基礎として知っておくべきものと
単なる価値の無いゴミとに別れる

グラハム数の階乗、ビジービーバー関数のアッカーマン関数的拡張、
オラクルビジービーバー関数のふぃっしゅ数V3的拡張など、
強力なアイデアに対して+1しただけの数は
単なるゴミ

201132人目の素数さん2018/01/01(月) 19:57:31.22ID:AL8QMibO
桃白白みたいなもんやな

202132人目の素数さん2018/01/01(月) 20:03:36.02ID:bQXehnPI
τΠπってどんな数です?

203132人目の素数さん2018/01/01(月) 20:05:48.40ID:BGapMpoo
捨てる選択に意味があるとは思えない。

204132人目の素数さん2018/01/01(月) 20:25:20.12ID:R/IfTFcF
>>203
じゃあ>>118みたいなのも含めて全部大事にしてください

205132人目の素数さん2018/01/01(月) 20:26:36.04ID:R/IfTFcF
私には>>118の価値は全くわかりませんが

206132人目の素数さん2018/01/01(月) 20:33:46.81ID:BGapMpoo
指す程の事は無い。

207132人目の素数さん2018/01/01(月) 22:24:35.72ID:j85j4B2n
サラダはダメだな

208132人目の素数さん2018/01/01(月) 22:29:09.41ID:AL8QMibO
とりあえずビジービーバーとラヨの間はマイルストーンが何個か飛んでる気はする
外伝でいいからしっくりくる何かで埋めたい

209132人目の素数さん2018/01/01(月) 23:03:53.09ID:zpC+5cHe
何かがつまらないと思う人は、そう思っていれば構わない。
自分が面白いネタをいくらでも投稿してくれ。
ただつまらないというだけの投稿は一番つまらない。

210132人目の素数さん2018/01/02(火) 08:20:52.68ID:Fava7qj/
>>208
両方とも、
ある言語n文字で定義可能な最大の数
ということで非常に似てると思う

211132人目の素数さん2018/01/02(火) 18:40:58.81ID:OMBprySm
「大きな実数を探索するスレッドです」
感覚麻痺しちゃってるかもしれないけどグラハム数だってものすごく大きな実数だからな、一般的な感覚からすれば

212132人目の素数さん2018/01/02(火) 18:51:26.85ID:OMBprySm
古くなったものをそう簡単にゴミゴミいうのも失礼だと思うし、自分の価値観を押し付けて他人の価値観を
見下すのもどうかと

213132人目の素数さん2018/01/02(火) 18:52:39.72ID:OMBprySm
ふぃっしゅ数V4がサラダ的と言うのは正直、同意できる

214132人目の素数さん2018/01/02(火) 21:13:24.40ID:EaZ13/eu
タワーは神だけどチェーンはゴミ

215132人目の素数さん2018/01/02(火) 21:25:02.20ID:Fava7qj/
タワーって?

216132人目の素数さん2018/01/02(火) 21:28:49.28ID:Fava7qj/
チェーンはコンウェイのチェーン表記かな

タワー表記
日本語ウィキぺディアに書いてあるけど
英語のウィキの誤訳か?

217132人目の素数さん2018/01/02(火) 21:30:19.05ID:Fava7qj/

ウィキの上矢印表記の所

218132人目の素数さん2018/01/02(火) 21:32:10.62ID:Fava7qj/
アッカーマンに比べたらチェーンは良いところが無い

219132人目の素数さん2018/01/02(火) 21:49:07.30ID:ZmfEXWLb
いやいやいやクヌース矢印の自然な拡張になってて結構いいよコンウェイチェーンは
ここの(5)→(6)の流れを読んでごらにょ
https://ja.wikipedia.org/wiki/%e3%82%b3%e3%83%b3%e3%82%a6%e3%82%a7%e3%82%a4%e3%81%ae%e3%83%81%e3%82%a7%e3%83%bc%e3%83%b3%e8%a1%a8%e8%a8%98

220132人目の素数さん2018/01/02(火) 22:18:41.77ID:Fava7qj/
いやいやいや、巨大数を生成する上での話
自然な拡張とかはこのスレ的にはどうでもいい

221132人目の素数さん2018/01/02(火) 22:22:49.30ID:Fava7qj/
巨大数を作る効率以外で言うと
チェーンは演算子のように見えて
演算子じゃないところがダメ

222132人目の素数さん2018/01/02(火) 22:26:06.62ID:Fava7qj/
>>219にもタワー表記とか書いてあるな
完全に意味を間違ってる

223132人目の素数さん2018/01/02(火) 22:40:07.74ID:ZmfEXWLb
自然な拡張かどうかは結構巨大数を生成する上で大事だと思う人なので別に>>218と話が合わなくてもいいと思いました。
はい、だれか話したい人次どうぞw

224132人目の素数さん2018/01/02(火) 23:19:48.63ID:Fava7qj/
いずれにしろ、
チェーンもアッカーマンも上矢印表記も大きさ的にはゴミなのでどうでも良い

225132人目の素数さん2018/01/03(水) 00:39:37.64ID:WyU6bXou
冒涜される神性

226132人目の素数さん2018/01/03(水) 01:16:04.75ID:w/S+hBoR
2^s*3^s*5^s*{1/2^s+1/3^s+1/5^s} < 7^2
s=x+iy
15^x*cos(y*log15)+10^x*cos(y*log10)+6^x*cos(y*log6)+i*{15^x*sin(y*log15)+10^x*sin(y*log10)+6^x*sin(y*log6)}
√{[15^x*cos(y*log15)+10^x*cos(y*log10)+6^x*cos(y*log6)]^2+[15^x*sin(y*log15)+10^x*sin(y*log10)+6^x*sin(y*log6)]^2}

√{[3^2x+2^2x]+2*[6^x*cos(y*log(3/2))]} < 25
√{[15^2x+10^2x+6^2x]+2*[150^x*cos(y*log(3/2))+60^x*cos(y*log(5/3))+90^x*cos(y*log(5/2))]} < 49

Πp(n)は1番目からn番目までの素数のみの積
0<k<n+1 a≠bのとき
√{Σ{[Πp(n)]^2x*Σ1/p(k)^2x}+2*{Σ[Πp(n)/(p(a)*p(b))]^x*cos(y*logp(a)/p(b))}} < p(n+1)^2

{Σ[Πp(n)/(p(a)*p(b))]^x*cos(y*logp(a)/p(b))}が最小値をとるyのとき
√{Σ{[Πp(n)]^2x*Σ1/p(k)^2x}+2*{Σ[Πp(n)/(p(a)*p(b))]^x*cos(y*logp(a)/p(b))}}は素数になる

227132人目の素数さん2018/01/03(水) 02:52:57.64ID:w/S+hBoR
((7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2)+2*(7*5*3*2)^2*(-1/(2*3)+1/(2*5)-1/(2*7)-1/(3*5)+1/(3*7)-1/(5*7)))^(1/2)=47

((7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2)+2*(7*5*3*2)^2*(-1/(2*3)+1/(2*5)-1/(2*7)+1/(3*5)-1/(3*7)+1/(5*7)))^(1/2)=103

((7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2)+2*(7*5*3*2)^2*(1/(2*3)-1/(2*5)+1/(2*7)+1/(3*5)-1/(3*7)+1/(5*7)))^(1/2)=187

((7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2)+2*(7*5*3*2)^2*(1/(2*3)-1/(2*5)+1/(2*7)+1/(3*5)-1/(3*7)-1/(5*7)))^(1/2)=173

228132人目の素数さん2018/01/03(水) 02:54:43.83ID:w/S+hBoR
((7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2)+2*(7*5*3*2)^2*(1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))^(1/2)=247

229132人目の素数さん2018/01/03(水) 03:02:32.59ID:w/S+hBoR
((11*7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2+1/11^2)+2*(11*7*5*3*2)^2*(1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)+1/(2*11)+1/(3*11)+1/(5*11)+1/(7*11)))^(1/2)=2927
((13*11*7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2+1/11^2+1/13^2)+2*(13*11*7*5*3*2)^2*(1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)+1/(2*11)+1/(3*11)+1/(5*11)+1/(7*11)+1/(2*13)+1/(3*13)+1/(5*13)+1/(7*13)+1/(11*13)))^(1/2)=40361

230132人目の素数さん2018/01/03(水) 03:17:51.54ID:w/S+hBoR
((11*7*5*3*2)^2*(1/2^2+1/3^2+1/5^2+1/7^2+1/11^2)+2*(11*7*5*3*2)^2*(1/(2*3)-1/(2*5)-1/(2*7)-1/(3*5)-1/(3*7)+1/(5*7)-1/(2*11)-1/(3*11)+1/(5*11)+1/(7*11)))^(1/2)=923

231132人目の素数さん2018/01/03(水) 11:12:53.60ID:P/ExIS0m
巨大数の構成法に興味がある勢と、構成法なんか興味まるでなくてとにかく巨大でありさえすれは良しとする勢
噛み合わなくて当然か

232132人目の素数さん2018/01/03(水) 13:48:56.83ID:cOPgBkrL
構成法に興味が無いやつなんていないと思う
ゴミに興味が無いだけで

233132人目の素数さん2018/01/03(水) 13:57:08.04ID:P/ExIS0m
構成法って言い方はよくなかったか
求める方法はあるが現実的な時間で計算できないものと、定義があっても求める方法が見つかっていないものとの違い、と言ってみるか

234132人目の素数さん2018/01/03(水) 15:14:37.25ID:cOPgBkrL
9^9^9^9だって求める方法は無い
時間だけの問題じゃない

235132人目の素数さん2018/01/03(水) 15:17:02.73ID:cOPgBkrL
「計算可能」な関数は計算が可能だと思ってるのか?

236132人目の素数さん2018/01/03(水) 15:18:19.85ID:cOPgBkrL
まあそれなら計算可能な巨大数を探索してくださいな

237132人目の素数さん2018/01/03(水) 15:32:29.61ID:P/ExIS0m
>>234-236
連投ご苦労
そういうのを引っくるめて「時間的に」と書いた
空間的に困難なものは時間的にも困難なもの
あと何故カリカリしてるのかわからんが落ち着け

238132人目の素数さん2018/01/03(水) 16:21:08.08ID:/gS1Yyo1
求める方法が見つかってないだけなのか、求める方法が原理的に存在しないことが
示されているのか、の違いは大きいと思う

239132人目の素数さん2018/01/03(水) 16:21:25.79ID:cOPgBkrL
どうせ計算なんか出来ないのに、そこに線引きする意味がわからんね

240132人目の素数さん2018/01/03(水) 16:23:09.11ID:cOPgBkrL
このスレ的には線引きは「計算可能」ではなくて「実数」
それがイヤなら別にスレを立てれば良い
バイバイ

241132人目の素数さん2018/01/03(水) 16:48:37.35ID:9fUzUJOP
巨大数の探索って言うけどただ単に大きけりゃいいんでしょうかね?
古典的なフェルマー数は素数がどうかが興味の対象だし
大きい以外に特徴のない数を挙げるだけってのも意味がないんじゃないかと

242132人目の素数さん2018/01/03(水) 16:52:36.68ID:cOPgBkrL
ここはそういうスレ

243132人目の素数さん2018/01/03(水) 16:58:09.49ID:cOPgBkrL
今まで意味が多少でもある数なんて
グラハム数位では?
他に何かあった?

244132人目の素数さん2018/01/03(水) 16:58:20.86ID:ktuKwed6
計算できるかできないかという問題は有理数時間で解けるか否かってところに落ち着くと思うんだけど、どうですか?

245132人目の素数さん2018/01/03(水) 17:08:56.20ID:P/ExIS0m
>>241
大きい数の生成方法のほうに意味がある場合もあるから一概に言えんね
ただ、全体を表記できないほど巨大な数なのに、その特徴がわかっている、ということに興味を覚える人もいるから人それぞれかな

246132人目の素数さん2018/01/03(水) 17:12:08.69ID:P/ExIS0m
>>244
有理数時間ってどういうもの?

247132人目の素数さん2018/01/03(水) 19:16:15.11ID:KFp8nmTR
>>244
有限時間の間違いですね

248132人目の素数さん2018/01/03(水) 20:16:23.41ID:c2BeZcr0
誰がどういう立場で何を主張しているのか分からなくなってきた。

>>241
巨大数の意味は難しいけど、関数の強さならけっこう意味を見いだせると思う。

249132人目の素数さん2018/01/03(水) 22:00:50.17ID:Ew7IilmX
>>248
匿名掲示板なんだから「誰が」とかどうでも良いんだよ

250132人目の素数さん2018/01/03(水) 22:38:54.10ID:Ew7IilmX
>>248
関数の強さの意味は
それに対応する順序数の意味
になるだけかと

251132人目の素数さん2018/01/03(水) 22:57:26.72ID:c2BeZcr0
その順序数が証明論的強さや計算支援システムの強さを表したりするんで

252132人目の素数さん2018/01/03(水) 23:27:15.70ID:Ew7IilmX
で?

253132人目の素数さん2018/01/04(木) 04:17:51.17ID:G5JlVO68
順序数の意味がわかってない馬鹿じゃん

254132人目の素数さん2018/01/04(木) 11:35:45.92ID:R7f2LYNd
巨大数で重要なターニングポイントは、タワー演算子、アッカーマン関数、ビジービーバー関数、ラヨ関数

255132人目の素数さん2018/01/04(木) 12:45:59.70ID:Sf9Cdlaq
タワー演算子とはあまり言わない。ハイパー演算子

256132人目の素数さん2018/01/04(木) 12:47:11.09ID:Sf9Cdlaq
急増加関数もターニングポイントに入れておいていいのでは

257132人目の素数さん2018/01/04(木) 16:59:44.88ID:Xi3pVvVj
急増加関数やハーディ階層は
順序数によっていくらでも大きくなるから
書く順番に困るね

258132人目の素数さん2018/01/04(木) 17:27:33.91ID:CTA4bp5+
同列でいいんじゃ

259132人目の素数さん2018/01/04(木) 17:30:53.52ID:Xi3pVvVj
急増加とハーディ2つの順番じゃなくて
>>254にある全ての関数に対しての急増加関数の位置

260132人目の素数さん2018/01/04(木) 17:55:05.37ID:C7qqGfS/
全順序なんだっけ?

261132人目の素数さん2018/01/04(木) 18:17:48.34ID:Sf9Cdlaq
アッカーマン関数からビジービーバー関数くらいの関数の増大度をあらわすのに
急増加関数は便利なので(アッカーマン関数以下、ビジービーバー関数以上にも
使われるとはいえ)、そのあたりに入れておけばいいと思う

262132人目の素数さん2018/01/04(木) 18:25:14.95ID:Sf9Cdlaq
あと、フリードマンもかなり面白い巨大数をたくさん作っていて、知名度からは
TREEとかSCGあたりだけれど、個人的には「超越整数」を重要なターニング
ポイントとして挙げたい。ZFC以上の「理論」を巨大数作成の「道具」にして
しまうというのは、かなり画期的。

263132人目の素数さん2018/01/04(木) 18:27:22.29ID:Xi3pVvVj
計算可能かどうかに関わらず
増大度を1個の順序数で表せるから非常に強力だよね
増大度の物差しになる

264132人目の素数さん2018/01/04(木) 18:27:57.91ID:Xi3pVvVj
>>263は急増加関数のこと

265132人目の素数さん2018/01/04(木) 18:29:45.87ID:yeWMC60F
繰り返しを繰り返すという発想ではせいぜい計算可能レベルということだろうか?

266132人目の素数さん2018/01/04(木) 18:30:19.84ID:Sf9Cdlaq
ハイパー演算子、アッカーマン関数、急増加関数、超越整数、ビジービーバー関数、ラヨ関数

267132人目の素数さん2018/01/04(木) 18:37:57.70ID:Sf9Cdlaq
>>265
計算可能な計算を有限回数繰り返したものは計算可能

268132人目の素数さん2018/01/04(木) 18:43:58.21ID:Xi3pVvVj
>>167
ダウト

269132人目の素数さん2018/01/04(木) 18:58:41.19ID:Xi3pVvVj
>>265
そういう発想だとせいぜいε_0くらいじゃないか

270132人目の素数さん2018/01/04(木) 19:26:03.85ID:Xi3pVvVj
超越整数って何?

271132人目の素数さん2018/01/04(木) 21:26:52.14ID:yeWMC60F
多変数アッカーマンは割と好き

272132人目の素数さん2018/01/05(金) 00:34:17.99ID:TGuiDxd2
>>270
>>1 の巨大数論PDFもしくは巨大数研究Wikiを参照

273132人目の素数さん2018/01/05(金) 02:36:38.93ID:6PJPjRZE
純粋な理論の強さは全順序でなくとも証明論的順序数で整列できるのだ

274132人目の素数さん2018/01/05(金) 03:16:12.48ID:jlrDiAIe
やっと順序数が理解できていない状態じゃなくなった
つかれた

275132人目の素数さん2018/01/05(金) 07:38:50.24ID:Doe87enW
>>272
超越整数は計算不可能だと思うのだけど
なんで計算可能な所に載ってるの?

276132人目の素数さん2018/01/05(金) 08:39:53.03ID:TGKQ32RY
とある有限の記号内で停止性の証明ができる最大の1の数を出すTMの出す1の数、っていうことだから計算可能だよ。
ひとつの証明と有限個のTMの組み合わせでその停止性が証明出来てるかどうかは有限ステップの背理法で証明出来るし、候補の証明も有限個しかない

277132人目の素数さん2018/01/05(金) 10:53:23.01ID:AeWsYSiq
「史上最大の素数」約2年ぶりに更新、50番目のメルセンヌ素数で桁数は2324万9425桁
http://gigazine.net/news/20180105-largest-known-prime-number/

278132人目の素数さん2018/01/05(金) 13:29:08.18ID:Doe87enW
>>276
「ひとつの証明と有限個のTMの組み合わせでその停止性が証明出来てるかどうかは有限ステップの背理法で証明出来るし」

検証をを行うアルゴリズムが存在するってこと?
全てのTMと全ての証明に対して同一の

279132人目の素数さん2018/01/10(水) 19:43:59.97ID:I5VQkuat
どんな順序数でも+1はできるよね。
ということはどんな順序数でも+ωできるよね?
ってやっていくと限界はいつか来る?

280132人目の素数さん2018/01/10(水) 20:21:06.97ID:Gj4Zhq9p
来ない

281132人目の素数さん2018/01/10(水) 20:29:48.85ID:I5VQkuat
まじで

282132人目の素数さん2018/01/13(土) 00:26:17.51ID:Z5QuF+UV
全ての可算な順序数と実数を1対1に対応付ける全単射は構成可能?

283132人目の素数さん2018/01/13(土) 00:33:15.02ID:Z5QuF+UV
計算可能な全単射は無理かな?多分

284132人目の素数さん2018/01/13(土) 02:39:24.38ID:j2cCRYH6
つ連続体仮説

285132人目の素数さん2018/01/13(土) 11:14:42.92ID:U2ER9VDb
どっちかって言うと

つカントールの対角線論法

286132人目の素数さん2018/01/13(土) 13:57:05.31ID:jN69zw/O
えっ?

287132人目の素数さん2018/01/13(土) 19:02:23.16ID:Z5QuF+UV
実数は連続的で順序数は離散的なんでしょ
それが一対一に対応付けられるって矛盾しないんだろか
などと思ったり

288132人目の素数さん2018/01/13(土) 19:26:12.18ID:qu21oNoK
矛盾しないなんて誰か言った?

289132人目の素数さん2018/01/13(土) 19:47:16.57ID:Z5QuF+UV
濃度が等しいなら全単射が存在するんでしょ?

290132人目の素数さん2018/01/13(土) 20:10:14.30ID:qu21oNoK
存在するなんて誰が言ったのよ?

291132人目の素数さん2018/01/13(土) 20:11:20.39ID:Z5QuF+UV
ベルンシュタイン

292132人目の素数さん2018/01/13(土) 21:06:08.55ID:Z5QuF+UV
濃度が等しいってところから怪しいのか…

293132人目の素数さん2018/01/13(土) 22:46:49.96ID:NKBohCFN
自然数から順序数への写像で
大きな順序数までカバーしてるもの
を使えば巨大数が定義出来るが

実数と可算順序数の全単射で巨大数が定義出来る?

294132人目の素数さん2018/01/13(土) 22:47:32.70ID:Z5QuF+UV
ZFCから独立とか言われてもよくわからん。
連続的なものと離散的なものが一対一に対応付けられても矛盾が導き出せないってほんまかいな。

295132人目の素数さん2018/01/13(土) 22:50:54.49ID:Z5QuF+UV
>>293
なんとなく出来そうな気がする。
とはいっても俺には具体的なアイディアはないけどね。
頭のいい人ならなんかひねり出してくれるんじゃないか。

296132人目の素数さん2018/01/13(土) 22:56:22.85ID:NKBohCFN
>>295
何も条件が無くて、ただ単に全単射を1個定義出来ただけじゃそのまま巨大数にはつながらない気がするよ

297132人目の素数さん2018/01/13(土) 22:59:45.86ID:NKBohCFN
>>287
もっと矛盾ぽいことは色々とあるよ
線で面を埋められたり
有限個に分割して組み立てるだけで体積が変わったり

298132人目の素数さん2018/01/13(土) 23:51:57.13ID:Z5QuF+UV
とにかく非可算なものを制御する方法が知りたい。
可算順序数と実数の全単射はその第一歩となる。

それがひいてはなにがしかの巨大数のブレークスルーにもつながると思う。
まあイメージだけでしゃべってるが。

299132人目の素数さん2018/01/13(土) 23:53:20.03ID:vSdE68T7
構成可能であることと存在することは同値ではない

300132人目の素数さん2018/01/14(日) 00:00:29.14ID:jZNqTC5m
>>294
対角線論法と連続体仮説を混同してると思う

「実数の濃度は可算順序数の濃度と同じ」や「実数から可算順序数への全単射写像が存在する」は、対角線論法で反証できる。

「実数の濃度より小さく可算順序数の濃度より大きな濃度を持つ集合が存在する」は、連続体仮説であって、ZFCから独立で、ZFCの下では証明も反証もできない

https://ja.wikipedia.org/wiki/%E3%82%AB%E3%83%B3%E3%83%88%E3%83%BC%E3%83%AB%E3%81%AE%E5%AF%BE%E8%A7%92%E7%B7%9A%E8%AB%96%E6%B3%95

301132人目の素数さん2018/01/14(日) 00:12:25.24ID:GlpnHNbW
実数の濃度より小さく可算順序数の濃度より大きな濃度を持つ集合が存在しない⇔実数の濃度=可算順序数の濃度
これが違うといってる?

302132人目の素数さん2018/01/14(日) 00:17:20.83ID:QZS2nyEG
>>301
むしろなぜ同値と思ったのか

303132人目の素数さん2018/01/14(日) 00:28:16.32ID:GlpnHNbW
可算順序数全体の集合は可算集合ってこと?

304132人目の素数さん2018/01/14(日) 01:12:55.17ID:QZS2nyEG
>>303
連続体仮説が扱うのは連続体濃度と可算集合の濃度
可算集合の濃度と可算順序数全体の集合の濃度を混同していると思いますがどうでしょうか?

305132人目の素数さん2018/01/14(日) 01:42:46.89ID:zRu2kQVy
自然数全体の集合 ω は可算無限となる。
可算順序数全体の集合 ω_1 は非可算となる。
それぞれ、全体の集合を考えると濃度が上がるね。

306132人目の素数さん2018/01/14(日) 05:29:25.25ID:jZNqTC5m
>>305
濃度が上がるのは冪集合を取った時で
全体の集合を考えた時に上がるとは限らない

307132人目の素数さん2018/01/14(日) 07:45:34.78ID:ZEpbJsii
可算順序数全体の順序数は可算じゃない

308132人目の素数さん2018/01/14(日) 11:51:05.87ID:I+QAPHMF
巨大な実数につながらない話題はスレチ

309132人目の素数さん2018/01/14(日) 13:29:39.94ID:jZNqTC5m
一応>>293で繋がってるだろ。スレチはおまえ。自己紹介乙wwww

310132人目の素数さん2018/01/14(日) 13:47:31.00ID:QZS2nyEG
そろそろスレチガー君がお出ましの頃と思ったよw
まあ無限を扱うスレは他にもあるからそっちに移っても良いは良いんだが

311132人目の素数さん2018/01/14(日) 13:53:41.93ID:I+QAPHMF
>>309
つながってない
つながる見込みもない

312132人目の素数さん2018/01/14(日) 14:41:02.13ID:zRu2kQVy
>>306
濃度ξの順序数全体の集合は濃度ξ+1にならないか?
そうならないξの例はある?

313132人目の素数さん2018/01/14(日) 14:45:24.89ID:zRu2kQVy
濃度ω_ξの順序数全体の集合の濃度がω_{ξ+1}だった

314132人目の素数さん2018/01/14(日) 15:08:27.39ID:z7KOqged
全単射があったとしてもZFCの範囲外なんだよねぇ
非可算を制御なんて無理な気がして来た

315132人目の素数さん2018/01/14(日) 15:14:44.83ID:EMGyTylA
ZFCの範囲外だと実数は定義できない?

316132人目の素数さん2018/01/14(日) 15:40:13.95ID:wJ2d9429
濃度と言うのはモデル相対的な面があり、モデルによってω_1^CKの濃度がωになったりω_1になったりする。
具体的にはモデルの関数部分が関係する

317132人目の素数さん2018/01/15(月) 22:47:06.53ID:2FCj5ese
>「実数の濃度は可算順序数の濃度と同じ」や「実数から可算順序数への全単射写像が存在する」は、対角線論法で反証できる。

詳しく

318132人目の素数さん2018/01/16(火) 07:54:39.80ID:iAtEX6Ci
「ω_1^CKの濃度がω_1になる」も

319132人目の素数さん2018/01/17(水) 18:33:36.27ID:7ianClRO
1対1に対応する写像が存在するかどうかで濃度が等しいかどうかが決まる。
計算可能な写像しか構成できない言語では、関数部分に計算可能な関数しか持たないモデルも考えられる。
そのようなモデルの中では自然数からω_1^CKへの写像が存在しない(計算不可能なため)
よってそのようなモデルの中ではω_1^CKがω_1のように見える。

という理屈だろうか

320132人目の素数さん2018/01/19(金) 19:39:46.85ID:5GfiHYrN
耳栓をしたら世界が変わってワロタ

321◆2VB8wsVUoo 2018/01/22(月) 07:06:24.22ID:vBTdEgh5

322◆2VB8wsVUoo 2018/01/22(月) 07:06:42.87ID:vBTdEgh5

323◆2VB8wsVUoo 2018/01/22(月) 07:06:59.28ID:vBTdEgh5

324◆2VB8wsVUoo 2018/01/22(月) 07:07:16.73ID:vBTdEgh5

325◆2VB8wsVUoo 2018/01/22(月) 07:07:35.63ID:vBTdEgh5

326◆2VB8wsVUoo 2018/01/22(月) 07:07:52.71ID:vBTdEgh5

327◆2VB8wsVUoo 2018/01/22(月) 07:08:11.18ID:vBTdEgh5

328◆2VB8wsVUoo 2018/01/22(月) 07:08:34.02ID:vBTdEgh5

329◆2VB8wsVUoo 2018/01/22(月) 07:08:54.50ID:vBTdEgh5

330◆2VB8wsVUoo 2018/01/22(月) 07:09:17.07ID:vBTdEgh5

331132人目の素数さん2018/01/22(月) 13:07:30.88ID:Df2n+TON
耳栓をしたら世界が変わってワロタ

332132人目の素数さん2018/01/23(火) 19:03:43.23ID:ITNodgCC
質問なんですが
巨大数研究wikiのBEAF入門(http://ja.googology.wikia.com/wiki/BEAF%E5%85%A5%E9%96%80)のページで

新しい2行配列への拡張を今まで(線形配列)のルール(おそらく破滅ルール)に適用させると
{b,p(1)1,1,2} = {b,b,b, ... (1)b,{b,p-1(1)1,1,2},2}
となり、一行目が無限要素となることを問題としています

しかし、線形配列のルールによれば

副操縦士 : パイロットの1つ前の引数
乗客 : 副操縦士より前のすべての引数
破滅ルール :
(1)副操縦士を元の配列のプライムを1減らしたものに置き換える
(2)パイロットの値を1減らす
(3)すべての乗客をプライムにする

とあり、乗客の数が増えそうな表現はどこにもありません

何か別のルールを使っているのでしょうか?

333132人目の素数さん2018/01/24(水) 16:16:45.83ID:Md9xJOxY
BEAFでは一行目の{b,p}は、無限の1が続く{b,p,1,...}が省略されているものとみなされるので、
「副操縦士よりも前のすべての引数を乗客」という定義だと、1行目のすべてが乗客になってしまう。
そこで、次に「プライムブロック」を「その行の中の最初の p 個の要素、つまりプライムの個数の要素」
と定義して、そこから飛行機、乗客と定義することで乗客をを1行目の中でp個に限定している。
BEAF入門には
「配列の最後が1だけであれば切り落とすことができます」
と書いてあり、切り落としたものが「無限の1がその後に続いているものが省略されている」という
見方が書かれていないので、その点はあまりクリアでないかもしれない。

334132人目の素数さん2018/01/24(水) 16:30:45.29ID:Md9xJOxY
と、思ったけど書いてあった。ここに

これを1行で書く時には、{b,p (1) 1,1,2} と書きます。ここで、 (1) は行と行の間を示します。
ここでまた、各行は(可算)無限個の1で自動的に満たされるため、この配列は
{b,p,1 (1) 1,1,2} や {b,p,1,1,1 (1) 1,1,2,1,1} と同じことになります。

「各行は(可算)無限個の1で自動的に満たされる」と書いてある。

335132人目の素数さん2018/01/24(水) 17:02:40.83ID:BYFaJ3sD
あっ書いてありましたね
すると、{b,p(1)1,1,2}を破滅ルールで変形させるときは必ず{b,p,1,1, ... (1)1,1,2}としなくてはいけないんですね

336132人目の素数さん2018/01/24(水) 21:11:26.58ID:Md9xJOxY
「する」というよりは{b,p(1)1,1,2}と書いてあっても{b,p,1,1, ... (1)1,1,2}と同じだよ、というのがBEAFの考え方。

337132人目の素数さん2018/01/26(金) 11:35:42.69ID:FBJorFde
再度質問すみません
BEAF入門のページによると
これがb&1,2aの定義ですか?

338132人目の素数さん2018/01/26(金) 14:04:49.30ID:FBJorFde
あれ、計算してみたら違いました
2行配列の場合の変形ルールを用いた場合が、「rを配列の値にしてしまうのが一番効果的です」「いっそのこと、これをb回繰り返してしまいましょう」とかかれてある部分の式において誤魔化されてるんですね
混乱しちゃってました

339132人目の素数さん2018/01/26(金) 21:24:02.48ID:HTuzqqvL
一般的にレベル 1,n は、n > 1 の時にこのようになります。

のところに書かれている式がそんな感じなのでたぶんそれでいいけれど、
ここに書かれている式が文字が重なっていて読みにくくなっているのも、
わかりにくい原因かも。

340132人目の素数さん2018/01/28(日) 22:27:44.83ID:NP6DbHaN
Σ1/n^s=1/1^s+1/2^s+1/3^s+1/4^s+1/5^s+・・・
Σ1/n^s=(1+cos(y*log2)/√2+cos(y*log3)/√3+cos(y*log4)/√4+・・・)+i*(sin(y*log2)/√2+sin(y*log3)/√3+sin(y*log4)/√4+・・・)
X=(1+Σcos(y*logk)/√k) Y=(Σsin(y*logk)/√k)
(X-1/2)^2+Y^2=R^2
(Σcos(y*logk)/√k)+(Σcos(y*logk)/√k)^2+(Σsin(y*logk)/√k)^2=(R-1/2)*(R+1/2)
(Σ1/n)+(Σcos(y*logk)/√k)+(Σcos(y*logl/m)/√(lm))=(R-1/2)*(R+1/2)

341132人目の素数さん2018/01/30(火) 15:57:18.46ID:ZdAW/70D
テトレーション配列って
(X↑↑2m)&n と (X↑↑(2m+1))&n
で微妙に重ね方が違うんだね
なんか気に入らん

342132人目の素数さん2018/02/03(土) 18:17:06.16ID:AK5x2W0M
ダブチ   わかる
ダブダブチ まぁわかる
トリトリチ !?

343132人目の素数さん2018/02/04(日) 02:39:53.78ID:W400W2BT
俺の資産100倍にならねーかなー
たった100倍でいいんだけどなー
グラハム数倍とはいわないからさ

344132人目の素数さん2018/02/04(日) 03:19:34.07ID:6GQj5zIf
借金が膨れ上がって楽しいのかい

345132人目の素数さん2018/02/05(月) 20:20:44.97ID:GXfQM7x8
年利20%を25年続ければ100倍行くしまんざら不可能ってわけでもない。

346132人目の素数さん2018/02/08(木) 22:45:24.01ID:bWLJ5iCe
ペンテーション配列定義できそう

347132人目の素数さん2018/02/18(日) 03:58:17.04ID:VUYWWKNW
ブーフホルツのヒドラ実装したよ!
https://ideone.com/fvSyq4

348132人目の素数さん2018/02/19(月) 00:31:17.05ID:ck8U60fr
>>347

349132人目の素数さん2018/02/19(月) 00:38:32.40ID:ck8U60fr
BH(3)とかBH(4)というのは急増加関数でいうとどれくらいなん?

350132人目の素数さん2018/02/19(月) 20:26:31.20ID:ck8U60fr
ブーフホルツのヒドラの順序数の収束列ってどっかに載ってる?

351132人目の素数さん2018/02/20(火) 02:10:27.19ID:FqQRQcJy
TFB は ψ_0(ε_{Ωω+1}) で、巨大数論 p.186 にあるように
ε_{Ω+1} の収束列が Ω, Ω^Ω, Ω^Ω^Ω, ... なのだから、
当然 ε_{Ωω+1} の収束列は Ωω, Ωω^Ωω, Ωω^Ωω^Ωω, ... で、
あとは、それにψ_0 をかぶせればいいだけ

352132人目の素数さん2018/02/20(火) 21:03:11.83ID:ogan+TRw
Y=(7*5*3*2)*((f(1)^2/2^2+f(2)^2/3^2+f(3)^2/5^2+f(4)^2/7^2+x^2)+2*(-x*(f(1)/2+f(2)/3+f(3)/5+f(4)/7)+f(1)/2*(f(2)/3+f(3)/5+f(4)/7)+f(2)/3*(f(3)/5+f(4)/7)+(f(3)/5)*(f(4)/7)))^(1/2)
xに2,3,5,7で構成された分数をいれるときYは整数になる
x=(f(1)/2+f(2)/3+f(3)/5+f(4)/7)のときY=0
f(1)からf(4)に整数をいれ原点からの位置を調整しxに分数を代入すると任意の小さな整数になる

353132人目の素数さん2018/02/22(木) 03:25:40.38ID:BFl11xHa
(11*7*5*3*2)*((1/(2*cos(x*log2))^2+1/(3*cos(x*log3))^2+1/(5*cos(x*log5))^2+1/(7*cos(x*log7))^2+1/(11*cos(x*log11))^2+y^2)+
2*(-y*(1/(2*cos(x*log2))+1/(3*cos(x*log3))+1/(5*cos(x*log5))+1/(7*cos(x*log7))+1/(11*cos(x*log11)))+
1/(2*cos(x*log2))*(1/(3*cos(x*log3))+1/(5*cos(x*log5))+1/(7*cos(x*log7))+1/(11*cos(x*log11)))+1/(3*cos(x*log3))*(1/(5*cos(x*log5))+
1/(7*cos(x*log7))+1/(11*cos(x*log11)))
+1/(5*cos(x*log5))*(1/(7*cos(x*log7))+1/(11*cos(x*log11)))+1/(7*cos(x*log7))*1/(11*cos(x*log11))))^(1/2)

354132人目の素数さん2018/02/22(木) 03:56:49.18ID:BFl11xHa
Y=(n*・・・*6*5*4*3*2)^(1/2)*
((1/(2^(1/2)/cos(x*log2))^2+1/(3^(1/2)/cos(x*log3))^2+1/(4^(1/2)/cos(x*log4))^2+1/(5^(1/2)/cos(x*log5))^2+1/(6^(1/2)/cos(x*log6))^2+・・・+1/(n^(1/2)/cos(x*logn))+y^2)+
2*(-y*(1/(2^(1/2)/cos(x*log2))+1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
+1/(2^(1/2)/cos(x*log2))*(1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(3^(1/2)/cos(x*log3))*(1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(4^(1/2)/cos(x*log4))*(1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(5^(1/2)/cos(x*log5))*1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn))+・・・+
1/((n-1)^(1/2)/cos(x*logn-1))*1/(n^(1/2)/cos(x*logn))))^(1/2)



y=Σ1/k^(X+i*y)(X=1/2)の実部のみの合計値のときY=0
y=YとなるときXが1/2以外の値をとらないことを示す
y=Y=(n*・・・*6*5*4*3*2)^(1/2)*
((1/(2^(1/2)/cos(x*log2))^2+1/(3^(1/2)/cos(x*log3))^2+1/(4^(1/2)/cos(x*log4))^2+1/(5^(1/2)/cos(x*log5))^2+1/(6^(1/2)/cos(x*log6))^2+・・・+1/(n^(1/2)/cos(x*logn))+y^2)+
2*(-y*(1/(2^(1/2)/cos(x*log2))+1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
+1/(2^(1/2)/cos(x*log2))*(1/(3^(1/2)/cos(x*log3))+1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(3^(1/2)/cos(x*log3))*(1/(4^(1/2)/cos(x*log4))+1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(4^(1/2)/cos(x*log4))*(1/(5^(1/2)/cos(x*log5))+1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn)))+
1/(5^(1/2)/cos(x*log5))*1/(6^(1/2)/cos(x*log6))+・・・+1/(n^(1/2)/cos(x*logn))+・・・+
1/((n-1)^(1/2)/cos(x*logn-1))*1/(n^(1/2)/cos(x*logn))))^(1/2) 👀
Rock54: Caution(BBR-MD5:0be15ced7fbdb9fdb4d0ce1929c1b82f)

355132人目の素数さん2018/02/22(木) 04:20:07.65ID:BFl11xHa
y'=Y=(n*・・・*6*5*4*3*2)^(x)*
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2+y'^2)+
2*(-y'*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
+1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn))))^(1/2)

y'=Σcos(y*logk)/k^xのときY=0

356132人目の素数さん2018/02/22(木) 04:20:46.21ID:BFl11xHa
y'=Yのときy'=Y=0になる
y'^2*(1-1/(n*・・・*6*5*4*3*2)^(x))-y'*2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))
+2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)=0
y'=0となるとき
[2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2-
-4*[2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)]
x≠1/2のときy'=0にならないためx=1/2になる

357132人目の素数さん2018/02/22(木) 04:30:50.26ID:BFl11xHa
y'=0となるとき
a*y'^2+b*y'+c=0
y'=-b±√(b^2-4ac)/(2a)

√(b^2-4ac)=[2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2-
-4*(1-1/(n*・・・*6*5*4*3*2)^(x))*[2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)]
x≠1/2のとき分母の次数がずれるため√(b^2-4ac)=0とならないためy'が0にならない

358132人目の素数さん2018/02/23(金) 04:40:45.44ID:VxTXFxVp
√(b^2-4ac)=[2*(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2-
-4*(1-1/(n*・・・*6*5*4*3*2)^(2x))*[2*(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))+
((1/(2^(x)/cos(y*log2))^2+1/(3^(x)/cos(y*log3))^2+1/(4^(x)/cos(y*log4))^2+1/(5^(x)/cos(y*log5))^2+1/(6^(x)/cos(y*log6))^2+・・・+1/(n^(x)/cos(y*logn))^2)]

√(b^2-4ac)=(8/(n*・・・*6*5*4*3*2)^(2x))-4)*[1/(2^(2x)/cos(y*log2)^2)+1/(3^(2x)/cos(y*log3)^2)+1/(4^(2x)/cos(y*log4)^2)+1/(5^(2x)/cos(y*log5)^2)+1/(6^(2x)/cos(y*log6)^2)+・・・+1/(n^(2x)/cos(y*logn)^2)]
+8/(n*・・・*6*5*4*3*2)^(2x))*[(1/(2^(x)/cos(y*log2))*(1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(3^(x)/cos(y*log3))*(1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(4^(x)/cos(y*log4))*(1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))+
1/(5^(x)/cos(y*log5))*1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn))+・・・+
1/((n-1)^(x)/cos(y*logn-1))*1/(n^(x)/cos(y*logn)))]

√(b^2-4ac)=(4/(n*・・・*6*5*4*3*2)^(2x))-4)*[1/(2^(2x)/cos(y*log2)^2)+1/(3^(2x)/cos(y*log3)^2)+1/(4^(2x)/cos(y*log4)^2)+1/(5^(2x)/cos(y*log5)^2)+1/(6^(2x)/cos(y*log6)^2)+・・・+1/(n^(2x)/cos(y*logn)^2)]
+4/(n*・・・*6*5*4*3*2)^(2x))*[(1/(2^(x)/cos(y*log2))+1/(3^(x)/cos(y*log3))+1/(4^(x)/cos(y*log4))+1/(5^(x)/cos(y*log5))+1/(6^(x)/cos(y*log6))+・・・+1/(n^(x)/cos(y*logn)))]^2

359132人目の素数さん2018/02/23(金) 04:58:55.26ID:VxTXFxVp
[1/(2^(2x)/cos(y*log2)^2)+1/(3^(2x)/cos(y*log3)^2)+1/(4^(2x)/cos(y*log4)^2)+1/(5^(2x)/cos(y*log5)^2)+1/(6^(2x)/cos(y*log6)^2)+・・・+1/(n^(2x)/cos(y*logn)^2)]=0となるとき2x=1でなければならない
Σcos(y*logk)/k^x+i*Σsin(y*logk)/k^x=0となるとき
Σcos(y*logk)^2/k^2x+i*Σsin(y*logk)^2/k^2x=0
Σcos(y*logk)^n/k^nx+i*Σsin(y*logk)^n/k^nx=0となるときnx=1でなければならない



[Σcos(y*logk)/k^x]^2+[Σsin(y*logk)/k^x]^2=0
(Σ(1/k^(2x))+2*(Σcos(y*log(l/m))/(lm)^x))=0
(Σcos(y*log(l/m))/(lm)^x)=-1/2*(Σ(1/k^(2x))

360132人目の素数さん2018/02/23(金) 05:08:36.63ID:VxTXFxVp
Σcos(y*logk)^n/k^nx+i*Σsin(y*logk)^n/k^nx=0となるときnx=1でなければならないとすると
n→∞
1^∞/1^(∞/2)+cos(y*log2)^∞/2^(∞/2)+cos(y*log3)^∞/3^(∞/2)+・・・
1^∞/1^(∞/2)+sin(y*log2)^∞/2^(∞/2)+sin(y*log3)^∞/3^(∞/2)+・・・
cos(y*logk)=1,sin(y*logk)=1いがいのとき∞乗されると0になるため
y*logkが2nπ,(2n+1/4)π,(2n+2/4)π,(2n+3/4)π,のいずれかになるkのみを全整数から抜き出す
k=e^((2n+(m/4))π/y)


lim(n→∞) Σ1/e^((2n)π/y)^(nx)+i*Σ1/e^((2n+1/2)π/y)^(nx)=0になるときx=1/2になることをしめす

361132人目の素数さん2018/02/25(日) 15:02:23.31ID:KFauwVE9
リーマン予想?

362132人目の素数さん2018/02/25(日) 19:27:58.45ID:w6qiz8EJ
>>361
ζ(s)=1+1/2^s+1/3^s+1/4^s+1/5^s+・・・
s=x+i*y
ζ(s)=(1+cos(y*log2)/2^x+cos(y*log3)/3^x+・・・)+i*(sin(y*log2)/2^x+sin(y*log3)/3^x+・・・)
ζ(s)のすべての項を2πで割った際のあまりが小さくなった順に並べ替える
0 < (y*logk(1)) mod 2π < (y*logk(2)) mod 2π < (y*logk(3)) mod 2π < ・・・ < 2π

k(1)からk(n)までの成分を足したものは複素数平面状でx=1/2に中心をもつ円周上に並ぶ
X(n)=(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x)
Y(n)=(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x)
(X-1/2)^2+Y^2=R^2
k1からk(n+1)についても同様にx=1/2に中心をもつ円周上に並ぶとき
X(n+1)=(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x+cos(y*logk(n+1))/k(n+1)^x)
Y(n+1)=(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x+sin(y*logk(n+1))/k(n+1)^x)
((1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x)-1/2)^2+(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x)^2=R^2
((1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n+1))/k(n+1)^x)-1/2)^2+(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n+1))/k(n+1)^x)^2=R^2

cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x)
=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x)

cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*X(n)=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*Y(n)
cos(y*logk(n+1)^2)/k(n+1)^2x+2*(cos(y*logk(n+1))*X(n)-sin(y*logk(n+1))*Y(n))/k(n+1)^x=0
k(n+1)^x=cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*X(n)-cos(y*logk(n+1))*Y(n))
x=log[cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*X(n)-cos(y*logk(n+1))*Y(n))]/log[k(n+1)]
x=log[cos(y*logk(2)^2)/2*(sin(y*logk(2))*X(1)-cos(y*logk(2))*Y(1))]/log[k(2)]=1/2

363132人目の素数さん2018/02/26(月) 00:06:02.39ID:jH/tpWUa
(X-1/2)^2+(Y-R)^2=R^2+1/2^2

cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*(1+cos(y*logk(1))/k(1)^x+cos(y*logk(2))/k(2)^x+・・・+cos(y*logk(n))/k(n)^x-1/2)
=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*(sin(y*logk(1))/k(1)^x+sin(y*logk(2))/k(2)^x+・・・+sin(y*logk(n))/k(n)^x-R)


cos(y*logk(n+1))^2/k(n+1)^2x+2*cos(y*logk(n+1))/k(n+1)^x*(X(n)-1/2)=sin(y*logk(n+1))^2/k(n+1)^2x+2*sin(y*logk(n+1))/k(n+1)^x*(Y(n)-R)
cos(y*logk(n+1)^2)/k(n+1)^2x+2*(cos(y*logk(n+1))*(X(n)-1/2)-sin(y*logk(n+1))*(Y(n)-R))/k(n+1)^x=0
k(n+1)^x=cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2))
x=log[cos(y*logk(n+1)^2)/2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2))]/log[k(n+1)]
x=log[cos(y*logk(1)^2)/2*(sin(y*logk(1))*(Y(0)-R)-cos(y*logk(1))*(X(0)-1/2))]/log[k(1)]
x=log[-cos(y*logk(1)^2)/(2*sin(y*logk(1))*R+cos(y*logk(1)))]/log[k(1)]
y*logk(1)→0 R→∞
x=log[-cos(y*logk(1)^2)/(2*sin(y*logk(1))*R+cos(y*logk(1)))]/log[k(1)]

-cos(y*logk(1)^2)/(2*sin(y*logk(1))*R+cos(y*logk(1)))=(k(1))^x
0=2R*sin(y*logk(1))/(k(1))^x+cos(y*logk(1))/(k(1))^x+cos(y*logk(1)^2)/(k(1))^2x

cos(y*logk(1))/(k(1))^x+cos(y*logk(1)^2)/(k(1))^2x→0

364132人目の素数さん2018/02/26(月) 01:38:57.43ID:jH/tpWUa
cos(y*logk(1))/(k(1))^x+cos(y*logk(1)^2)/(k(1))^2x→0
θ→0
y*logk(1)=2nπ+θ
cos(θ)/e^((2nπ+θ)*x/y)+cos(2θ)/e^((2nπ+θ)*2x/y)→0
x=y/(2nπ+θ)*log[-cos(2θ)/cos(θ)]
log[-cos(2θ)/cos(θ)]→i*(2m+1)π
x=y*i*(2m+1)/2n
cos(θ)/k(1)^x+cos(2θ)/k(1)^2x→0
log[cos(y*logk(n)^2)/(2*(sin(y*logk(n))*(Y(n-1)-R)-cos(y*logk(n))*(X(n-1)-1/2)))]/log[cos(y*logk(n+1)^2)/(2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2)))]=log[k(n)]/log[k(n+1)]
{log[cos(y*logk(n)^2)]-log[2*(sin(y*logk(n))*(Y(n-1)-R)-cos(y*logk(n))*(X(n-1)-1/2))]}/{log[cos(y*logk(n+1)^2)]-log[2*(sin(y*logk(n+1))*(Y(n)-R)-cos(y*logk(n+1))*(X(n)-1/2))]}=log[k(n)]/log[k(n+1)]

k(n+1)*cos(y*logk(n)^2)=k(n)*cos(y*logk(n+1)^2)

365132人目の素数さん2018/02/26(月) 04:37:55.40ID:jH/tpWUa
x=log[cos(y*logk(1)^2)/2*(sin(y*logk(1))*(Y(0)-R)-cos(y*logk(1))*(X(0)-1/2))]/log[k(1)]
x=log[cos(y*log1^2)/2*(sin(y*log1)*(0-R)-cos(y*log1)*(0-1/2))]/log[1]=log[cos(y*log1^2)/cos(y*log1)]/0=1/2
log[cos(y*log1^2)/cos(y*log1)]=log[2cos(y*log1)-1/cos(y*log1)]=0/2
lim y*logk(1)→2nπ log[cos(y*logk(1)^2)/cos(y*logk(1))]/log[k(1)]  → 1/2

366132人目の素数さん2018/02/27(火) 00:51:21.37ID:0SJhKoA+
続けんのかい。
スレ違いじゃないの?

367132人目の素数さん2018/02/27(火) 01:01:25.69ID:LJffKOFh
だな
自分の力で何か見つけて興奮する気持ちは分からんでもないが

368132人目の素数さん2018/02/27(火) 03:26:51.38ID:g2jJh3ER
X=cos(y*log2)/2^x+cos(y*log3)/3^x+cos(y*log4)/4^x+cos(y*log5)/5^x+・・・
Y=sin(y*log2)/2^x+sin(y*log3)/3^x+sin(y*log4)/4^x+sin(y*log5)/5^x+・・・
xとyがゼロ点を通るときX=-1 Y=0
√(X^2+Y^2)=√((1/2^2x+1/3^2x+1/4^2x+1/5^2x+・・・)+2*(cos(y*log(3/2))/(2*3)^x+cos(y*log(4/2))/(2*4)^x+cos(y*log(5/2))/(2*5)^x+cos(y*log(6/2))/(2*6)^x+cos(y*log(7/2))/(2*7)^x+cos(y*log(8/2))/(2*8)^x+・・・))=1

cos(y*log(4/2))/(2*4)^x+cos(y*log(6/2))/(2*6)^x+cos(y*log(8/2))/(2*8)^x+cos(y*log(10/2))/(2*10)^x+・・・=1/2^2x*(cos(y*log(2))/(2)^x+cos(y*log(3))/(3)^x+cos(y*log(4))/(4)^x+cos(y*log(5))/(5)^x+・・・)
cos(y*log(6/3))/(3*6)^x+cos(y*log(9/3))/(3*9)^x+cos(y*log(12/3))/(12*3)^x+cos(y*log(15/3))/(3*15)^x+・・・=1/3^2x*(cos(y*log(2))/(2)^x+cos(y*log(3))/(3)^x+cos(y*log(4))/(4)^x+cos(y*log(5))/(5)^x+・・・)
cos(y*log(8/4))/(4*8)^x+cos(y*log(12/4))/(4*12)^x+cos(y*log(16/4))/(16*4)^x+cos(y*log(20/4))/(4*20)^x+・・・=1/4^2x*(cos(y*log(2))/(2)^x+cos(y*log(3))/(3)^x+cos(y*log(4))/(4)^x+cos(y*log(5))/(5)^x+・・・)

√(X^2+Y^2)=√((1/2^2x+1/3^2x+1/4^2x+1/5^2x+・・・)*(1+X)+2*(cos(y*log(3/2))/(2*3)^x+cos(y*log(5/2))/(2*5)^x+cos(y*log(7/2))/(2*7)^x+cos(y*log(9/2))/(2*9)^x+cos(y*log(11/2))/(2*11)^x+cos(y*log(13/2))/(2*13)^x+・・・))=1
(1+X)=0になるため
√(2*(cos(y*log(3/2))/(2*3)^x+cos(y*log(5/2))/(2*5)^x+cos(y*log(7/2))/(2*7)^x+cos(y*log(9/2))/(2*9)^x+cos(y*log(11/2))/(2*11)^x+cos(y*log(13/2))/(2*13)^x+・・・))=1
(Σcos(y*log(m/n))/(n*m)^x=1/2 (1<m<n) nはmを因数に持たない

√(X^2+Y^2)=√((1+1/2^2x+1/3^2x+1/4^2x+1/5^2x+・・・)*(1+X)-X)=1=√(1+X+X^2)
√(X^2+X)=0
Y^2=X+1

369132人目の素数さん2018/02/27(火) 03:52:56.46ID:g2jJh3ER
ζ(s)=1+1/2^s+1/3^s+1/4^s+1/5^s+1/6^s+・・・=1+cos(y*log2)/2^x+cos(y*log3)/3^x+・・・+i*(sin(y*log2)/2^x+sin(y*log3)/3^x+・・・)
Im(ζ(s))=Re(ζ(s))^(1/2)
ζ(s)=Re(ζ(s))+i*Re(ζ(s))^(1/2)=√(Re(ζ(s))^2+Re(ζ(s)))*e^(i*arctan[1/Re(ζ(s))^(1/2)])
Re(ζ(s))=0のとき
ζ(s)=Re(ζ(s))+i*Re(ζ(s))^(1/2)=0*e^(i*arctan[1/(0)^(1/2)])=0

370132人目の素数さん2018/03/01(木) 02:41:31.10ID:2slr/wrK
ζ(s)=√Re(ζ(s))*√(Re(ζ(s))+1)*e^(i*arctan[1/√(Re(ζ(s))])
√Re(ζ(s))=0
ζ(s)=√Re(ζ(s))*√(Re(ζ(s))+1)*e^(i*arctan[1/√(Re(ζ(s))])=0*e^(i*arctan[1/0])=0
√(Re(ζ(s))+1)=0
ζ(s)=√Re(ζ(s))*√(Re(ζ(s))+1)*e^(i*arctan[1/√(Re(ζ(s))])=0*e^(i*arctan[1/i])=0*∞≠0


Y=(2*3)*√((x^2+1/2^(2)+1/3^(2))+2*(x/2+x/3+1/(2*3)))
x=0 Y=5
x=1 Y=11
x=2 Y=17
x=3 Y=23


Y=(2*3*5)*√((x^2+1/2^(2)+1/3^(2)+1/5^(2))+2*(x/2+x/3+x/5+1/(2*3)+1/(2*5)+1/(3*5)))
x=0 Y=31
x=1 Y=61

Y=(2*3*5*7)*√((x^2+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(x/2+x/3+x/5+x/7+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))
x=-1 Y=37
x=-2 Y=173

(2*3*5*7)*√((2^2+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(-2*(1/2+1/3+1/5+1/7)-1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=23

(2*3*5*7)*|(1/2^(i*y)+1/3^(i*y)+1/5^(i*y)+1/7^(i*y)+x^(n+i*y))|
Y=(2*3*5*7)*√((cos(y*log2))/2+cos(y*log3))/3+cos(y*log5))/5+cos(y*log7))/7+cos(y*logx))*x^n)^2+(sin(y*log2))/2+sin(y*log3))/3+sin(y*log5))/5+sin(y*log7))/7+sin(y*logx))*x^n)^2)
xとnが整数かつcos(y*logk)とsin(y*logk)がすべて1のときは必ず整数になる
7の次の素数の二乗より小さくなるようにnとxとyを調整し素数を作る 👀
Rock54: Caution(BBR-MD5:0be15ced7fbdb9fdb4d0ce1929c1b82f)

371132人目の素数さん2018/03/01(木) 05:07:58.33ID:2slr/wrK
(2*3*5*7)*√((i^(2)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(1)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247+210i
(2*3*5*7)*√((i^(4)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(2)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=37
(2*3*5*7)*√((i^(6)+1/2^(2)+1/3^(3)+1/5^(2)+1/7^(2))+2*(i^(3)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247-210i
(2*3*5*7)*√((i^(8)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(4)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=457
(2*3*5*7)*√((i^(10)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(5)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247+210i
(2*3*5*7)*√((i^(12)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(6)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=37
(2*3*5*7)*√((i^(14)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(7)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247-210i
(2*3*5*7)*√((i^(16)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(8)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=457


(2*3*5*7)*√((i^(2+8n)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(1+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247+210i
(2*3*5*7)*√((i^(4+8n)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(2+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=37
(2*3*5*7)*√((i^(6+8n)+1/2^(2)+1/3^(3)+1/5^(2)+1/7^(2))+2*(i^(3+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=247-210i
(2*3*5*7)*√((i^(8+8n)+1/2^(2)+1/3^(2)+1/5^(2)+1/7^(2))+2*(i^(4+4n)*(1/2+1/3+1/5+1/7)+1/(2*3)+1/(2*5)+1/(2*7)+1/(3*5)+1/(3*7)+1/(5*7)))=457

372132人目の素数さん2018/03/01(木) 05:21:03.25ID:2slr/wrK
(2^(2^(n-1))*3*5*7)*√(((i)^(4)+1/(2i)^(2^n)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^(2^(n-1))+1/3+1/5+1/7)+1/(2i)^(2^(n-1))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))
(2^2*3*5*7)*√(((i)^(4)+1/(2i)^(4)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^2+1/3+1/5+1/7)+1/(2i)^2*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=241
(2^4*3*5*7)*√(((i)^(4)+1/(2i)^(8)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^(2^(3-1))+1/3+1/5+1/7)+1/(2i)^(2^(3-1))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=439
(2^8*3*5*7)*√(((i)^(4)+1/(2i)^(16)+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2i)^8+1/3+1/5+1/7)+1/(2i)^8*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=8599
nに数値を入れると必ず素数になる

373132人目の素数さん2018/03/01(木) 05:43:26.84ID:2slr/wrK
(2*3*5*7*・・・*S(n))*√((i^(2)+1/(2i)^(2x1+8y1)+1/3^(2x2+8y2)+1/5^(2x3+8y3)+1/7^(2x4+8y4)+・・・・S(n)^(2xn+8yn))+2*(i^(1)*(1/(2i)^(x1+4y1)+1/(3i)^(x2+4y2)+1/(5i)^(x3+4y3)+・・・+S(n)^(xn+4yn))+Σ1/(S(k)^(xk+4yk)S(l)^(xl+4yl))))

Y=ΠS(n)*√(i^(4x0+8y0)+Σ1/(S(k)*i)^(4xk+8yk)+2*(i^(2x0+4y0)*Σ1/(S(k)*i)^(2xk+y4)+Σ1/((S(k)*i)^(2xk+4yk)*(S(l)*i)^(2xl+4yl))))

ΠS(n)は1からn番目までの素数積
Σ1/(S(k)*i)^(4xk+8y4)は1からn番目の素数の(4xk+8y4)乗した逆数和
Σ1/((S(k)*i)^(2xk+4yk)*(S(l)*i)^(2xl+4yl))は互いに異なる素数の逆数和
xk,yk,xl,ylに整数を代入しえられる値がS(n+1)^2よりもちいさくなるとき必ず素数になる

374132人目の素数さん2018/03/02(金) 00:24:58.20ID:1PwnSkT4
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(2+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(1+4n))+1/3+1/5+1/7)+1/(2*i^(1+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=68+105i
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(4+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(2+4n))+1/3+1/5+1/7)+1/(2*i^(2+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=173
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(6+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(3+4n))+1/3+1/5+1/7)+1/(2*i^(3+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=68-105i
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8+8n))+1/3^(2)+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4+4n))+1/3+1/5+1/7)+1/(2*i^(4+4n))*(1/(3)+1/(5)+1/(7))+1/(3*5)+1/(3*7)+1/(5*7)))=37

(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(2+8n))+1/(3*i^(2))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(1+4n))+1/(3*i^1)+1/5+1/7)+1/(2*i^(1+4n))*(1/(3*i^1)+1/(5)+1/(7))+1/(3*i^1)*(1/5+1/7)+1/(5*7)))
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(4+8n))+1/(3*i^(4))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(2+4n))+1/(3*i^2)+1/5+1/7)+1/(2*i^(2+4n))*(1/(3*i^2)+1/(5)+1/(7))+1/(3*i^2)*(1/5+1/7)+1/(5*7)))
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(6+8n))+1/(3*i^(6))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(3+4n))+1/(3*i^3)+1/5+1/7)+1/(2*i^(3+4n))*(1/(3*i^3)+1/(5)+1/(7))+1/(3*i^3)*(1/5+1/7)+1/(5*7)))
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8+8n))+1/(3*i^(8))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4+4n))+1/(3*i^4)+1/5+1/7)+1/(2*i^(4+4n))*(1/(3*i^4)+1/(5)+1/(7))+1/(3*i^4)*(1/5+1/7)+1/(5*7)))



(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(1))+1/(3*i^1)+1/5+1/7)+1/(2*i^(1))*(1/(3*i^1)+1/(5)+1/(7))+1/(3*i^1)*(1/5+1/7)+1/(5*7)))=138+175i
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(4))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^2)+1/5+1/7)+1/(2*i^(4))*(1/(3*i^2)+1/(5)+1/(7))+1/(3*i^2)*(1/5+1/7)+1/(5*7)))=103
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/5^(2)+1/7^(2))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/5+1/7)+1/(2*i^(4))*(1/(3*i^4)+1/(5)+1/(7))+1/(3*i^4)*(1/5+1/7)+1/(5*7)))=37

375132人目の素数さん2018/03/02(金) 00:47:34.09ID:1PwnSkT4
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/(5^2*i^(4))+1/7^(2))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/(5*i^(2))+1/7)+1/(2*i^(4))*(1/(3*i^4)+1/(5*i^(2))+1/(7))+1/(3*i^4)*(1/(5*i^(2))+1/7)+1/(5*i^(2)*7)))=47
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/(5^2*i^(4))+1/(7^2*i^(4)))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/(5*i^(2))+1/(7*i^(2)))+1/(2*i^(4))*(1/(3*i^4)+1/(5*i^(2))+1/(7*i^(2)))+1/(3*i^4)*(1/(5*i^(2))+1/(7*i^(2)))+1/(5*i^(2)*7*i^(2))))=107
(2*3*5*7)*√(((i)^(4)+1/(2^2*i^(8))+1/(3^2*i^(8))+1/(5^2*i^(8))+1/(7^2*i^(8)))+2*((i)^(2)*(1/(2*i^(4))+1/(3*i^4)+1/(5*i^(4))+1/(7*i^(4)))+1/(2*i^(4))*(1/(3*i^4)+1/(5*i^(4))+1/(7*i^(4)))+1/(3*i^4)*(1/(5*i^(4))+1/(7*i^(4)))+1/(5*i^(4)*7*i^(4))))=37
虚数の乗数をいじり11^2より小さな整数になるとき必ず素数

376132人目の素数さん2018/03/02(金) 00:57:02.52ID:1PwnSkT4
(2*3*5*7)*√(((i)^(6)+1/(2^2*i^(10))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6)))+2*((i)^(3)*(1/(2*i^(5))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3)))+1/(2*i^(5))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3)))+1/(5*i^(3)*7*i^(3))))=173i
(2*3*5*7)*√(((i)^(6)+1/(2^2*i^(10))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(10)))+2*((i)^(3)*(1/(2*i^(5))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(5)))+1/(2*i^(5))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(5)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(5)))+1/(5*i^(3)*7*i^(5))))=233i
(2*3*5*7)*√(((i)^(6)+1/(2^2*i^(10))+1/(3^2*i^(10))+1/(5^2*i^(6))+1/(7^2*i^(10)))+2*((i)^(3)*(1/(2*i^(5))+1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5)))+1/(2*i^(5))*(1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5)))+1/(3*i^5)*(1/(5*i^(3))+1/(7*i^(5)))+1/(5*i^(3)*7*i^(5))))=373i

377132人目の素数さん2018/03/03(土) 00:37:42.23ID:voEvlhiZ
(2*3*5*7*11)*√(((i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6))+1/(11^2*i^(6)))+2*((i)^(3)*(1/(2*i^(3))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(2*i^(3))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+
1/(11*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(5*i^(3))*(1/(7*i^(3))+1/(11*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))))))=617i
(2*3*5*7*11)*√(((i)^(10)+1/(2^2*i^(6))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6))+1/(11^2*i^(6)))+2*((i)^(5)*(1/(2*i^(3))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(2*i^(3))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+
1/(11*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3)))+1/(5*i^(3))*(1/(7*i^(3))+1/(11*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))))))=5237i

(2*3*5*7*11)*√((2^16*(i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(10))+1/(5^2*i^(6))+1/(7^2*i^(10))+1/(11^2*i^(10)))+2*(2^8*(i)^(3)*(1/(2*i^(3))+1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(2*i^(3))*(1/(3*i^5)+1/(5*i^(3))+
1/(7*i^(5))+1/(11*i^(5)))+1/(3*i^5)*(1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(5*i^(3))*(1/(7*i^(5))+1/(11*i^(5)))+1/(7*i^(5))*(1/(11*i^(5))))))=591053i


(2*3*5*7*11)*√((2^(4n)*(i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(10))+1/(5^2*i^(6))+1/(7^2*i^(10))+1/(11^2*i^(10)))+2*(2^(2n)*(i)^(3)*(1/(2*i^(3))+1/(3*i^5)+1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(2*i^(3))*(1/(3*i^5)+1/(5*i^(3))+
1/(7*i^(5))+1/(11*i^(5)))+1/(3*i^5)*(1/(5*i^(3))+1/(7*i^(5))+1/(11*i^(5)))+1/(5*i^(3))*(1/(7*i^(5))+1/(11*i^(5)))+1/(7*i^(5))*(1/(11*i^(5))))))
nに整数をいれると素数になる

378132人目の素数さん2018/03/03(土) 00:55:17.90ID:voEvlhiZ
(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(2))+1/(11^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(1)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+
1/(11*i^(1)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(1)))+1/(5*i^(1))*(1/(7*i^(1))+1/(11*i^(1)))+1/(7*i^(1))*(1/(11*i^(1))))))=617i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(2))+1/(11^2*i^(6)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+
1/(11*i^(3)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3)))+1/(5*i^(1))*(1/(7*i^(1))+1/(11*i^(3)))+1/(7*i^(1))*(1/(11*i^(3))))))=197i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(6))+1/(11^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(1)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+
1/(11*i^(1)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(1)))+1/(5*i^(1))*(1/(7*i^(3))+1/(11*i^(1)))+1/(7*i^(3))*(1/(11*i^(1))))))=43i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(6))+1/(7^2*i^(2))+1/(11^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(3))+1/(7*i^(1))+1/(11*i^(1)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(3))+1/(7*i^(1))+
1/(11*i^(1)))+1/(3*i^1)*(1/(5*i^(3))+1/(7*i^(1))+1/(11*i^(1)))+1/(5*i^(3))*(1/(7*i^(1))+1/(11*i^(1)))+1/(7*i^(1))*(1/(11*i^(1))))))=307i


(2*3*5*7*11)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(6))+1/(11^2*i^(6)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(3)))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(3))+
1/(11*i^(3)))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(3))+1/(11*i^(3)))+1/(5*i^(1))*(1/(7*i^(3))+1/(11*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))))))=463i

379132人目の素数さん2018/03/03(土) 15:47:13.65ID:voEvlhiZ
(2*3*5*7*11*13)*√(((i)^(2)+1/(2^2*i^(2))+1/(3^2*i^(2))+1/(5^2*i^(2))+1/(7^2*i^(2))+1/(11^2*i^(6))+1/(13^2*i^(2)))+2*((i)^(1)*(1/(2*i^(1))+1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3))+1/(13*i))+1/(2*i^(1))*(1/(3*i^1)+1/(5*i^(1))+1/(7*i^(1))+
1/(11*i^(3))+1/(13*i))+1/(3*i^1)*(1/(5*i^(1))+1/(7*i^(1))+1/(11*i^(3))+1/(13*i))+1/(5*i^(1))*(1/(7*i^(1))+1/(11*i^(3))+1/(13*i))+1/(7*i^(1))*(1/(11*i^(3))+1/(13*i))+1/(11*i^(3))*(1/(13*i))))=4871i
(2*3*5*7*11*13)*√(((2i)^(6)+1/(2^2*i^(6))+1/(3^2*i^(6))+1/(5^2*i^(6))+1/(7^2*i^(6))+1/(11^2*i^(6))+1/(13^2*i^(6)))+2*((i)^(3)*(1/(2*i^(3))+1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3))+1/(13*i^(3)))+1/(2*i^(3))*(1/(3*i^3)+1/(5*i^(3))+1/(7*i^(3))+
1/(11*i^(3))+1/(13*i^(3)))+1/(3*i^3)*(1/(5*i^(3))+1/(7*i^(3))+1/(11*i^(3))+1/(13*i^(3)))+1/(5*i^(3))*(1/(7*i^(3))+1/(11*i^(3))+1/(13*i^(3)))+1/(7*i^(3))*(1/(11*i^(3))+1/(13*i^(3)))+1/(11*i^(3))*(1/(13*i^(3))))=10331i

380132人目の素数さん2018/03/05(月) 01:09:12.96ID:Y6NrPjUM
ブーフホルツのヒドラのωはトリオ数列の(0,0,0)(1,1,1)くらい?

381132人目の素数さん2018/03/05(月) 01:22:08.46ID:pFxeRBah
+, 0, ω が ψ_0(Ω_ω) つまり (0,0,0)(1,1,1) と同じ

382132人目の素数さん2018/03/05(月) 21:18:39.57ID:YYUj4K2s
BM2非標準形で意図したように機能せず弱体化してたからBM2.1が作られたというだけで、
BM2が破綻していたという話ではないのでは

383132人目の素数さん2018/03/05(月) 21:41:04.41ID:YYUj4K2s
標準形ではΔの足し方が変わるものの、全体の強さに影響はないような

384132人目の素数さん2018/03/06(火) 03:02:40.43ID:gG1tzZlj
うん

385132人目の素数さん2018/03/07(水) 00:36:31.97ID:6Ur9pomD
BM2は難解なので2.1で同じ強さならそっちの方がいい

386132人目の素数さん2018/03/08(木) 23:42:41.08ID:48wNFlQI
BM2.1はBM1のペア数列のバグが直っただけ。
トリオからはまた同じバグが起こる。
BM2.1はどちらかというとBM1.1くらい。
BM2がやっぱり完全。

387132人目の素数さん2018/03/09(金) 19:13:36.30ID:itbuTyBS
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=167
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(-1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=107
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=47
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)-1/(5-2)+1/(3-2))*1/4=127
(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(7-5)-1/(7-3)-1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/4=113

388132人目の素数さん2018/03/10(土) 00:31:00.58ID:LsHrYkQg
(11-7)*(11-5)*(11-3)*(11-2)*(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(11-7)+1/(11-5)+1/(11-3)+1/(11-2)+1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/128*1/9=1237
(11-7)*(11-5)*(11-3)*(11-2)*(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(11-7)+1/(11-5)+1/(11-3)+1/(11-2)+1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)-1/(5-2)+1/(3-2))*1/128*1/9=997
(11-7)*(11-5)*(11-3)*(11-2)*(7-5)*(7-3)*(7-2)*(5-3)*(5-2)*(3-2)*(1/(11-7)+1/(11-5)+1/(11-3)+1/(11-2)-1/(7-5)+1/(7-3)+1/(7-2)+1/(5-3)+1/(5-2)+1/(3-2))*1/128*1/9=877

389132人目の素数さん2018/03/10(土) 01:18:44.99ID:fxPOdUgu
勘弁してくれ

390132人目の素数さん2018/03/13(火) 06:26:32.01ID:t9Hso2e0
■表記
x#
意味: xを使って関数x#を作る
関数適用は左結合 (w#x#y = (w#x)#y)、#も左結合 (x## = (x#)#)

定義
z = x#y
y : Tと置く
x : Ord (順序数)ならz : T (つまりx# : T -> T)
x : Ord -> Ord (順序数から順序数への関数)ならz : T -> T
x : (Ord -> Ord) -> Ord -> Ordならz : (T -> T) -> T -> T

0#y < 0#(0#y) < (0#0#)y < (0#(0#0#))y < ((0#0#)0#)y < 1#y < ω#y < (0##0)y
となるように適当な順序数を割り当てる

0#0 = 1
0#1 = 2
0#0#0 = ω

C表記と同じ強さになれたらいいな・・・

391132人目の素数さん2018/03/19(月) 16:01:25.95ID:McF10Gdu
なんか最近レベルが低いな

392132人目の素数さん2018/03/20(火) 00:15:04.03ID:UZkizLXW
そういえば前すれいろいろ謎を残したまま終わってたな

393132人目の素数さん2018/03/20(火) 04:26:25.65ID:1RCoMHwH
ビジービーバーの定義域も値域も自然数だ、という当然の主張に対して、
そうではないという謎の書き込みで終わってるね。値域の意味が曖昧なので、
codomain は自然数だけど image は自然数の部分集合である、で終わりでは。

394132人目の素数さん2018/03/20(火) 09:40:14.42ID:ZloKWRZh
藤林丈司

395132人目の素数さん2018/03/21(水) 11:50:21.68ID:LNHsiggq
貧弱な公理だとビジービーバー関数の値を適当に決めても矛盾を示すことが出来ないから
ビジービーバー関数の値は公理依存

とかいう主張をしてた人がいた

396132人目の素数さん2018/03/21(水) 14:12:01.99ID:1KrOAAlL
公理というか、外部変数に依存するようじゃwell definedじゃないと思う

397132人目の素数さん2018/03/21(水) 14:26:25.61ID:jsIzyjVR
>>395
ある意味ではその通りだと言えますね

但し、ビジービーバー関数値を決められないその貧弱な公理系に具体的なビジービーバー関数値を与える公理群
(個々の具体的な自然数nに対して BB(n)=具体的な自然数 という形の公理の集まり)を追加した公理系は無矛盾ではあっても
殆どの場合(つまり、我々が普段利用している数学の公理系に基づいて求められるビジービーバーの個々の関数値と一致しない限り)は
その公理系から生み出し得る内容は「数学モドキ」と呼ぶことすら躊躇われるような非常に貧弱なものでしかないから、それらの公理系は誰も相手にしないだけ

このことは、かつて竹内外史さんがゲーデルの不完全性定理に関しての解説で述べた次のような話と同様だろう

ペアノの公理系ではペアノの公理系の無矛盾性は証明できない、ということは言い換えればペアノの公理系とペアノの公理系の無矛盾性を表すある算術の等式とは独立だということである
そうすると、ペアノの公理系の拡張として次の2つの公理系を考えることが可能だ

 1.ペアノの公理系にペアノの公理系の無矛盾性を表す算術の等式を公理として追加した公理系

 2.ペアノの公理系にペアノの公理系の無矛盾性を表す算術の等式の否定を公理として追加した公理系

これら2つの公理系はどちらも無矛盾だが、1の公理系が豊かな世界(つまり我々が普段使っている数学へと続く世界)を与えてくれるのに対して
2の公理系は我々の馴染んでいる数学とは矛盾し従って非常に貧弱な内容しか含まない世界になってしまう


ビジービーバー関数の値の「公理系依存性」というのも上の話と同様に理解すれば良いと個人的には考えています

398132人目の素数さん2018/03/21(水) 14:35:14.26ID:LNHsiggq
バカは矛盾を示せないからバカの世界では値はなんでもいい

って言ってるのと同じ

わざわざ
「巨大数をまともに扱える公理系」
って限定しないとダメなのか?

399132人目の素数さん2018/03/21(水) 18:46:29.84ID:N7Hb8Jka
終わった話を蒸し返すなよ

400132人目の素数さん2018/03/21(水) 19:48:45.85ID:W+DVu+yL
>>388>>390が貼られるよりはマシ

401132人目の素数さん2018/03/22(木) 06:06:32.67ID:EVwpAXGY
小さい話なんだろうけどちょっと質問

階冪の増加率ってどんなものです?
階乗の冪版で、4!なら4^3^2^1ってなるやつ

402132人目の素数さん2018/03/22(木) 16:13:15.02ID:5sBZ4wTS
どんなものって?
何と比較して欲しい?

403132人目の素数さん2018/03/22(木) 17:58:21.83ID:EVwpAXGY
>>402
取り敢えず急増加関数? で
アレって物差し的な何かだってネットで読んだから

404132人目の素数さん2018/03/22(木) 20:36:12.39ID:YeZd2Jlx
テトレーションくらいじゃね

405132人目の素数さん2018/03/22(木) 22:56:11.82ID:cnWiJbcd
>>403
F_3 (n) くらい

406132人目の素数さん2018/03/23(金) 16:48:27.88ID:16xIb13L
>>405
ありがとうございます
急増加関数で書くとかわいい数になっちゃった

407132人目の素数さん2018/03/23(金) 22:02:07.27ID:6VZ6Cepb
順序数全体って全順序なの?
それとも比較できないものもあるの?

408132人目の素数さん2018/03/23(金) 22:28:51.72ID:CHEwcSHA
そりゃ当然全順序だ

409132人目の素数さん2018/03/23(金) 22:48:30.04ID:6VZ6Cepb
全順序ってことは本質的には順序数を大きくする方法は一つしかないってこと?

410132人目の素数さん2018/03/23(金) 22:49:39.99ID:6VZ6Cepb
ん、なんかおかしいな。
全順序だからといって一列に並ぶとは限らないってことかなぁ

411132人目の素数さん2018/03/23(金) 22:52:26.55ID:CHEwcSHA
自然数も全順序の一本道だが
大きな数を作る手法は様々

それと同じ

412132人目の素数さん2018/03/23(金) 22:53:54.63ID:mFV/F4eg
何がどうおかしいと思うのかは気になるね

413132人目の素数さん2018/03/23(金) 23:05:20.59ID:6VZ6Cepb
自然数は無限に大きくなる一本道だけど自然数の列にはωはいないでしょ?
順序数は全順序でも一本道とは言えないんじゃない?

414132人目の素数さん2018/03/24(土) 06:48:31.82ID:nTchv+J9
俺もイメージとしてはそんな感じだったかも
沢山の集合の袋が重なりあいながらある感じ

415132人目の素数さん2018/03/24(土) 09:26:51.08ID:ewRWhwFh
全順序なのに一本道じゃないって
意味不明だ

一本道の定義は?

416132人目の素数さん2018/03/24(土) 12:54:21.84ID:ooyAEeN7
行きも分岐がない帰りも分岐がない
それが一本道

417132人目の素数さん2018/03/24(土) 12:56:46.78ID:Guf+oQQV
一本道であるかないかではなく、ωより小さい元が存在するのにωの前者が存在しない、というところに引っ掛かりを感じてるのかと思う

418132人目の素数さん2018/03/24(土) 13:39:01.67ID:8uEaoB62
>>416
じゃあ順序的には一本道なのは間違いない

>>417
それだと実数も引っ掛かるぞ

419132人目の素数さん2018/03/24(土) 14:36:14.01ID:cbsv4Yfi
やっぱペンテーション配列作るのむずいね
単純にテトレーション配列のシステムを拡張させるだけだと
(X↑↑X)&n , ((X↑↑X)↑↑X)&n , ...ってつづいてペンテーションにならないのか

420132人目の素数さん2018/03/25(日) 19:34:25.93ID:UTejVIgW
でかい数やろ?
そんなもん
(99999999999999999!×999999999999999!)^9999999999999999999!
くらいでええやろ

421132人目の素数さん2018/03/25(日) 19:56:26.06ID:bkf4eUxK
お前がええやろとおもうならそうなんだろう。お前の中ではな

422132人目の素数さん2018/03/26(月) 11:56:56.65ID:0rnSSgUz

423132人目の素数さん2018/03/26(月) 18:51:20.14ID:jwJz+ne3
ペンテーション配列を具体的に定義することは不可能なのに、どうしてあると思って議論しているのか分からない

424132人目の素数さん2018/03/26(月) 19:33:54.45ID:jwJz+ne3
テトレーション配列では、Y&n について1≦Y<(X↑↑X) であり、くまなく表現可能だった
つまりYの部分はXに関するカントール標準形に相当していた

だからペンテーション配列についても1≦Y<(X↑↑↑X)の範囲をくまなく表現可能にしたいんだけれど、そうなるとカントール標準形をテトレーションまで拡張したものが必要になる

このようなカントール標準形の拡張が存在しないならペンテーション配列の定義は不可能だと思う

425132人目の素数さん2018/03/26(月) 21:34:28.35ID:mhpZXbRa
不可能ってどういうこと?
計算不能ってこと?

426132人目の素数さん2018/03/26(月) 22:05:53.25ID:mhpZXbRa
ペンテーション配列はビジービーバーと同等以上の大きさがある??

427132人目の素数さん2018/03/26(月) 22:52:05.19ID:jBS3FqIZ
ゴミ

428132人目の素数さん2018/03/26(月) 22:56:42.85ID:jwJz+ne3
定義不能だとシステムとして不完全じゃないかなぁ
と思ってるだけ
計算不能てのは計算が終了しない事を意味するからテトレーション配列はそれに比べるとゴミ以下の存在

そもそもテトレーション配列表記の計算規則も全部明らかになってる訳じゃないよね確か

429132人目の素数さん2018/03/26(月) 22:57:04.37ID:jwJz+ne3
あっペンテーション配列だったな

430132人目の素数さん2018/03/26(月) 23:01:36.54ID:jBS3FqIZ
定義不可能と計算不可能って全く違う概念だが

431132人目の素数さん2018/03/26(月) 23:12:20.84ID:mhpZXbRa
全く違うというほど違わないと思うが。
計算可能なら定義可能だろう。

432132人目の素数さん2018/03/26(月) 23:26:44.84ID:mhpZXbRa
対偶を取れば、定義可能でないなら計算可能でない、だな

433132人目の素数さん2018/03/26(月) 23:29:45.67ID:jBS3FqIZ
全く違う

434132人目の素数さん2018/03/26(月) 23:31:13.80ID:mhpZXbRa
>>433
>>431-432にはどう反論する?

435132人目の素数さん2018/03/26(月) 23:32:17.55ID:jBS3FqIZ
定義可能と微分可能
くらい違う

436132人目の素数さん2018/03/26(月) 23:32:32.52ID:jwJz+ne3
432は言ってて変だと思わないか?
ラヨとかは計算不可能関数だから無論計算不可能だが定義出来てるぞ

437132人目の素数さん2018/03/26(月) 23:33:50.13ID:jwJz+ne3
あっもっとよく考えてレスしないと恥ずかしいな笑
ごめんね

438132人目の素数さん2018/03/26(月) 23:34:22.54ID:jBS3FqIZ
うん、これは恥ずかしい

439132人目の素数さん2018/03/26(月) 23:34:35.02ID:mhpZXbRa
ちょw

440132人目の素数さん2018/03/26(月) 23:35:33.05ID:jwJz+ne3
恥ずかしすぎて死にそう

441132人目の素数さん2018/03/26(月) 23:38:20.92ID:jBS3FqIZ
定義可能かが話題なところに
急に「微分可能という意味か?」という質問がでたところを想像してみよう

442132人目の素数さん2018/03/26(月) 23:53:13.24ID:mhpZXbRa
>>441
しかし、
「計算可能なら定義可能」が真でかつ
「ペンテーション配列が計算可能」が真なら当然
「ペンテーション配列は定義可能」となるよね?

443132人目の素数さん2018/03/26(月) 23:54:56.92ID:7D0z/uWt
なんかさっきから会話がずれてるような。言葉のあやの問題だろう

444132人目の素数さん2018/03/26(月) 23:58:56.32ID:jBS3FqIZ
「複素数って素数のこと?」
っていうくらい関係無い

>>442
素数は複素数だから関係あるよね?
っていうのと同じ

445132人目の素数さん2018/03/27(火) 00:01:20.80ID:L2GKkfHe
>>444
じゃあ聞くけどペンテーション配列は定義可能なの?

446132人目の素数さん2018/03/27(火) 00:02:27.28ID:KmrQcoUn
なにが「じゃあ聞くけど」だか

447132人目の素数さん2018/03/27(火) 21:02:38.33ID:jdu4JBBr
つかペンテーション配列相当の急増加関数における順序数ってなんだっけ?

448132人目の素数さん2018/03/27(火) 21:12:41.54ID:KmrQcoUn
中二みたいなゴミ表記どうでもいい

巨大数を語ろうよ

449132人目の素数さん2018/03/27(火) 21:28:56.71ID:ymTk+712
ジョナサンに失礼だな

450132人目の素数さん2018/03/27(火) 21:31:34.56ID:d00wO1wi
中二的とえば、無量大数がどうの不可説不可説転がどうのっていう東洋の桁の名前コンベンションがあるじゃん?あれ、実にくだらないよね。
桁ごとに全然関連性のない名前を用意する時点でバカげてるし、特に合理的な理由もない桁の名前をたくさん覚えて得意になってる精神が実にアホくさい。

451132人目の素数さん2018/03/27(火) 21:34:21.98ID:jdu4JBBr
ん、一意に識別するためには一意な名前がいるのと違うか?

452132人目の素数さん2018/03/28(水) 15:49:10.18ID:RbRn2uPl
語ろうと言いながら自分からは語らずに、他人が語り始めたらゴミと言うのはどうだか

453132人目の素数さん2018/03/28(水) 18:45:18.68ID:p4fmPnxk
ゴミなら語らない方が良い

454132人目の素数さん2018/03/28(水) 18:56:20.96ID:YV90iBHf
どんぐらいの強さから興味湧く?

455132人目の素数さん2018/03/28(水) 18:58:56.70ID:02dEWDX/
急増関数で F_[ℵ_1](n)

456132人目の素数さん2018/03/28(水) 19:05:37.24ID:p4fmPnxk
そりゃ定義不可能だ

457132人目の素数さん2018/03/28(水) 19:15:55.51ID:YV90iBHf
大きさだけで考えたら計算不可能なシステム一択
計算可能だと強配列表記の一連の流れに興味がある(絶対BEAFに対抗心燃やしてる)

458132人目の素数さん2018/03/28(水) 19:41:12.61ID:p4fmPnxk
当然計算可能な関数は越えないと

ビジービーバーより小さくてビジービーバーより複雑な定義の関数なんかには興味無い

459132人目の素数さん2018/03/28(水) 21:16:11.27ID:Gi/kCuwe
ε_0位が丁度いい。

460132人目の素数さん2018/03/28(水) 21:40:25.59ID:p4fmPnxk
ヒドラで遊んでなさい

461132人目の素数さん2018/03/28(水) 21:46:24.33ID:YV90iBHf
やっぱり計算可能と計算不可能でスレ分けた方が良いと思うんだよな
巨大数の世界に長く住むにつれて「この強さ以下はダメ」って閾値が生まれて、その値は理解するにつれてどんどん強くなるわけで

462132人目の素数さん2018/03/28(水) 21:47:16.88ID:p4fmPnxk
ふたつに分けても同じ事

463132人目の素数さん2018/03/28(水) 21:53:23.24ID:p4fmPnxk
ひたすら大きな帰納的順序数を追い求める人と>>459は理解しあえない

464132人目の素数さん2018/03/28(水) 21:55:19.50ID:RbRn2uPl
絶対BEAFに対抗心燃やしてるは言い過ぎでは。

プログラミングで必要な文字数で計ればビジービーバー関数は無限に複雑や

465132人目の素数さん2018/03/28(水) 21:59:03.92ID:p4fmPnxk
ビジービーバー関数が出来たのは1962年だぞ

466132人目の素数さん2018/03/28(水) 22:00:21.08ID:YV90iBHf
そうだよな
話振る人は誰かにゴミと言われてもめげないことが最終的に大事だし
ゴミだと言いたくなっても出来るだけ言ってあげないことも大事だ
巨大数論でこれまで議論されていた数の大きさのスケール全体がどれ程広いのか理解できてはじめて双方の理解につながる
(サラダなのはさすがに言語道断だが)

467132人目の素数さん2018/03/28(水) 22:01:39.33ID:RbRn2uPl
理解しあえないからと言って発言権まで剥奪せんでもええやろ。誹謗中傷でもないんだから。

468132人目の素数さん2018/03/28(水) 22:02:02.56ID:YV90iBHf
強配列表記の事についてはすまなかった
本人のページでBEAFは不完全だぽい事が書いてあってつい

469132人目の素数さん2018/03/28(水) 22:02:07.17ID:p4fmPnxk
一般的な感覚では大きいといえ、
指数関数について延々語られても迷惑だろ

そういうこと

470132人目の素数さん2018/03/28(水) 22:06:36.16ID:Gi/kCuwe
指数関数の大事さがわからんか

471132人目の素数さん2018/03/28(水) 22:08:31.23ID:p4fmPnxk
他のスレでやれ

472132人目の素数さん2018/03/28(水) 22:09:20.65ID:RbRn2uPl
loader.cなんかは指数タワーでコード化してますし。
指数関数レベルでもなにか新しいアイディアによるものであれば歓迎だし、今後の発展性とかも考えるとよい

473132人目の素数さん2018/03/28(水) 22:11:59.38ID:YV90iBHf
計算不可能関数の世界に到達して巨大数を眺めることに慣れてる人にしてみれば
多重リストアッカーマン関数やテトレーション配列が指数関数と同じようなものだと思ってもしょうがない
気持ちは分かる
用はそれを表に出すかどうかだ

474132人目の素数さん2018/03/28(水) 22:12:41.26ID:RbRn2uPl
煽りじゃなくて純粋に気になるんだけど、>>465の1962年ってなんなんだ。
あと>>463は帰納的順序数じゃなくて可算順序数では

475132人目の素数さん2018/03/28(水) 22:13:08.38ID:p4fmPnxk
指数関数で発展性なんか無い
このスレ的にはx+1と同じ

476132人目の素数さん2018/03/28(水) 22:16:13.71ID:Gi/kCuwe
+1の大事さがわからんか

477132人目の素数さん2018/03/28(水) 22:16:43.01ID:p4fmPnxk
>>474
>>462の続きのレスだから計算可能同士の例

478132人目の素数さん2018/03/28(水) 22:21:53.06ID:RbRn2uPl
ビジービーバー関数やラヨ関数もある意味指数関数の延長線上にあるやん。
loader.cみたいにコード化してメタな構造を作るのもよし

479132人目の素数さん2018/03/28(水) 22:25:32.05ID:RbRn2uPl
延長線上にある言ってもさすがに遠いな。適切な例ではなかった。すまん

480132人目の素数さん2018/03/28(水) 22:27:01.22ID:YV90iBHf
再帰で強くするシステムを作るときは弱いのから考えていく節あるし、指数関数レベルでも前者でも自分は興味ある
計算不可能関数の魅力の一つは「最初からめちゃ強い定義をこしらえて、再帰じゃ絶対に到達できないものを作る」ことだものね
いつかやってみたい

481132人目の素数さん2018/03/28(水) 22:28:26.57ID:p4fmPnxk
指数関数の延長線上にビジービーバー関数やラヨ関数があると思う頭の構造が理解不能

482132人目の素数さん2018/03/28(水) 22:34:39.31ID:RbRn2uPl
ビージービーバー関数を、n文字のプログラムで指数関数を強化して得られる関数と解釈することも可能ではある。

483132人目の素数さん2018/03/28(水) 22:42:01.91ID:p4fmPnxk
頭が悪いことを主張したいの?

484132人目の素数さん2018/03/28(水) 22:42:02.66ID:RbRn2uPl
>>482
ビージービーバー→ビジービーバー

計算不可能レベルはより強力な言語を開発して殴り合う戦いになるけど、それでできあがった言語って計算可能レベルでも
活躍できると思うし、計算可能レベルもある程度のレベルを超えると計算不可能レベルとやること変わらなくなってくると思う

485132人目の素数さん2018/03/28(水) 22:43:07.67ID:p4fmPnxk
ここはポエムを語るスレじゃないよ

486132人目の素数さん2018/03/28(水) 22:44:30.58ID:RbRn2uPl
同じ本質でもけっこう自由にいろんな解釈ができることを主張したい

487132人目の素数さん2018/03/28(水) 22:50:55.45ID:p4fmPnxk

488132人目の素数さん2018/03/28(水) 22:51:06.19ID:YV90iBHf
計算不可能なシステムを計算可能なシステムに組み込ませて(再帰させて)もサラダになるだけ

489132人目の素数さん2018/03/28(水) 22:54:51.12ID:p4fmPnxk
だれかそんな事書いてた?

490132人目の素数さん2018/03/28(水) 22:55:59.01ID:RbRn2uPl
CoCは高階述語論理を型を使って計算可能レベルに実装したものだし、loader.cはサラダではないと思う

491132人目の素数さん2018/03/28(水) 23:00:17.21ID:YV90iBHf
484の言ってることって可能なのかなと疑問に思った
まだ自分自身よく理解してない領域が残ってるから
「計算不可能レベルで開発された言語を計算可能レベルで使用する」
でも可能なんだね 面白い

492132人目の素数さん2018/03/29(木) 21:14:01.33ID:G56GwGu8
本質的には面白くないと思うよそれ

493132人目の素数さん2018/03/29(木) 22:43:46.91ID:mcfk4tOT
ある意味当たり前な部分もあるね

494132人目の素数さん2018/03/30(金) 01:43:11.95ID:QrQclctH
開発した言語を計算可能レベルに実装するかそのまま対角化して不可能レベルの関数を作るかは
好きにすればいいし、不可能レベルに縛る理由はないだろう

495132人目の素数さん2018/03/30(金) 01:44:58.92ID:QrQclctH
実用的になるかどうかは分からんが、派生して新しい証明支援システムやプログラミング言語ができるかもしれないし

496132人目の素数さん2018/03/30(金) 18:08:15.04ID:lteadd/m
想像するのは勝手だが

497132人目の素数さん2018/03/30(金) 19:28:28.42ID:QrQclctH
計算可能レベルの場合言語を強くしていく考え方よりも領域に関する理論をどんどん充実させていく
考え方のほうが本質に迫れるのかもしれない。
じゃあ不可能レベルは違うのかと言うと、高階の集合論でLに可測基数を追加した宇宙の対角化以上のことが
できるとか考えるだけなら考えられるが、自由度が高い分健全性にも気を遣わなければならなくなり、
計算可能レベルほど簡単にwell definedと言うことはできない。

という理屈だろうか。とりあえずそう簡単に新しくてより強力な言語を(健全性やら整合性やらどうでもいいというなら
ともかく)そう簡単に作れるものでもない、か。反省します

498132人目の素数さん2018/03/30(金) 19:33:26.81ID:QrQclctH
ある意味計算可能レベルのほうが自由で強力だったりするのね

499132人目の素数さん2018/03/30(金) 21:53:42.79ID:lteadd/m
巨大数の定義は矛盾スレスレ、矛盾との戦いだ

500132人目の素数さん2018/03/30(金) 21:54:05.84ID:lteadd/m
>>498
ある意味って?
どんな意味で?

501132人目の素数さん2018/03/30(金) 21:55:56.16ID:lteadd/m
計算可能レベルだってwell-defineかどうか容易にはわからない物もたくさんある

502132人目の素数さん2018/03/30(金) 22:19:44.11ID:zCVWJoTP
well-defined自体はwell-definedな概念なの?

503132人目の素数さん2018/03/30(金) 22:25:29.81ID:zCVWJoTP
well-defined自体がwell-definedだったら何か矛盾が起きるんだろうか?
でも自己複製するプログラムだって存在するし一概にはわからんか

504132人目の素数さん2018/03/31(土) 00:21:55.37ID:0Y4oyftq
ゲーデルの第二不完全性定理によりwell-definedそれ自体はwell-definedではない
と言ってみる。

505132人目の素数さん2018/03/31(土) 01:01:48.41ID:0Y4oyftq
メタwell-definedという概念を作ろうぞw

506132人目の素数さん2018/03/31(土) 18:46:45.47ID:Uy0dUw0j
>>500
その言語による再帰的な表現の範囲内だけで健全性やら完全性やらを考えればいい
という考えだったけど、再帰の存在の証明がどんどん難しくなっていって結局>>501みたいなな感じになるのね
「より自由で強力」は取り下げてお詫びします。

507132人目の素数さん2018/03/31(土) 18:49:17.50ID:Uy0dUw0j
誰がフォン・ノイマン宇宙の対角化と言ったのか知らないけど、ラヨ関数って構成可能宇宙の対角化
と言ったがいい気がする。
Little BigeddonでLに無数のウッディン基数を追加した世界の対角化か(適当)

508132人目の素数さん2018/04/01(日) 01:45:10.75ID:ESh4xB0q
新しく発見された物理現象でビジービーバーの値が計算できるようになったって。

509132人目の素数さん2018/04/01(日) 23:41:08.13ID:QlUDjk+R
>>507
いやフォンノイマン宇宙。
公理がなくて∈しかないから。
ウディンとか特定の基数の存在を仮定したら有り無しを問わないラヨ数より弱体化するがな

510132人目の素数さん2018/04/01(日) 23:54:28.56ID:SEMX/VMy
構成可能宇宙も公理はないけど。ただ1階述語論理に限定してるだけで。
というか公理があったらそのまんまモデルとして扱える。
それに可測基数以降は1階述語論理ではその性質を記述しきれないし、ウッディン基数レベルにもなってくると
高階化した程度じゃ相手にならない、ような。このへん自分もよく分かってない

511132人目の素数さん2018/04/02(月) 00:07:30.29ID:GVW9m/Rh
あぁ、モデルとしては扱えるか。

512132人目の素数さん2018/04/02(月) 00:15:35.93ID:GVW9m/Rh
特定の存在が非自明な巨大基数の存在を否定していない1階集合論のモデルとなりうる。
可測基数は含まれない。
ラヨ命名する式の中で、すくなくとも可測基数よりも強い性質を扱うことはできない。

513◆2VB8wsVUoo 2018/04/06(金) 01:53:35.42ID:I+Mybrk/

514◆2VB8wsVUoo 2018/04/06(金) 01:53:52.87ID:I+Mybrk/

515◆2VB8wsVUoo 2018/04/06(金) 01:54:11.13ID:I+Mybrk/

516◆2VB8wsVUoo 2018/04/06(金) 01:54:28.75ID:I+Mybrk/

517◆2VB8wsVUoo 2018/04/06(金) 01:54:47.99ID:I+Mybrk/

518◆2VB8wsVUoo 2018/04/06(金) 01:55:05.56ID:I+Mybrk/

519◆2VB8wsVUoo 2018/04/06(金) 01:55:26.10ID:I+Mybrk/

520◆2VB8wsVUoo 2018/04/06(金) 01:55:44.93ID:I+Mybrk/

521◆2VB8wsVUoo 2018/04/06(金) 01:56:05.80ID:I+Mybrk/

522◆2VB8wsVUoo 2018/04/06(金) 01:56:25.44ID:I+Mybrk/

523132人目の素数さん2018/04/06(金) 21:15:44.00ID:2UGSxNSH
勘弁してくれ

524132人目の素数さん2018/04/07(土) 19:13:20.76ID:NNMRscPu
耳栓をしたら世界が変わってワロタ

525132人目の素数さん2018/04/11(水) 14:03:26.15ID:TTGgVtpz
集合への入門[無限をかいま見る]
いいね

526132人目の素数さん2018/04/12(木) 22:33:31.99ID:Q/eEgP3i
>>525
本?
面白そう

527132人目の素数さん2018/04/12(木) 22:37:06.43ID:5+8zISos
amazonで垣間みようとしたら垣間見えませんでした

528132人目の素数さん2018/04/13(金) 13:48:34.75ID:05FB3c3d
集合への入門[無限をかいま見る]
福田拓生 培風館 2012年初版
2900円+税

三部構成
第一部は集合と写像について初学者にも理解できるように解説されてある。
ラッセルのパラドクスと選択公理についても章を分けて説明されてある。

第二部は無限集合、その大きさの比べ方(つまり濃度の性質)について書かれてある。カントールの対角線論法や連続体仮説といった巨大数論で用いる概念についても記されてある。
まとめに濃度に関するありがちな疑問への簡単な回答がまとめられている。

第三部は選択公理と濃度の比較可能定理に言及している。また、ツォルンの補題、整列集合について説明がなされている。

第一部から第三部にかけて定理と例題に証明が詳しくついていて読みやすい。
特に第一部、第二部においては初学者の学習を考慮してかさらに詳しく解説してあり、問題も設けられていてその解答も記されている。

付録として、集合論の歴史、連続体仮説、選択公理とバナッハタルスキーのパラドクスについての議論、解説が再度なされている。

529132人目の素数さん2018/04/13(金) 13:57:48.13ID:05FB3c3d
ただ、順序数に関する具体的な話題はほとんどないのが残念。理由はあとがきに書かれてあった。
あとがきの中で順序数に触れている集合論の良書が書かれてある。

530132人目の素数さん2018/04/13(金) 15:23:02.23ID:2dv7UoaQ
IJK(Infinity-Jumping-Kangaroo)関数

一階述語論理でn個以内の記号で表現できるいかなるFGHの階層よりも強い最弱の一変数関数にnを代入する関数である
IJK(888)をカンガルー数と呼ぶ

531132人目の素数さん2018/04/13(金) 15:48:28.03ID:2dv7UoaQ
IJK^888(888)に訂正

532132人目の素数さん2018/04/13(金) 20:58:54.39ID:+4pAHWhV
なぜ突然サラダ的な訂正を付け加えるんだ

533132人目の素数さん2018/04/13(金) 22:21:52.50ID:LHpTVbeQ
その+1が大きかったりすることもある
Σ(888)は計算可能な手続きでも越えられる可能性は有るかもしれないけど
Σ^888 (888)は無理だとわかる

って感じ?

534132人目の素数さん2018/04/15(日) 11:04:39.27ID:4U6dYKVP
ちょっと意味が分からない
n文字以内の一階述語論理で順序数を定義して、その順序数を添字とするFGHにnを代入した数がIJK(n)ってことか?

535132人目の素数さん2018/04/15(日) 11:16:42.29ID:z6U7zuiM
定義になってないものを定義風に書いてみました

536132人目の素数さん2018/04/15(日) 18:51:40.99ID:/Lrb2Uia
恐らく頭の中で描かれたであろう事
「急増加関数がモノサシに使われるって事は急増加関数こそ最強。なんか無限がいっぱい出てくるし」
「n文字を費やして定義されたfω究極なんちゃらかんちゃら(n)より強い関数IJK(n)は絶対最強。」
「n文字のあらゆる関数ではなく急増加関数のみをターゲットにしているのでパラドックスにならない。」
「無限がいっぱい出てくる急増加関数を踏み台にしてるけど増加率で勝ってるだけなので値はちゃんと有限。やばい」
「とりあえず雛型にwikiのラヨ数の定義コピペしとこう」

537132人目の素数さん2018/04/15(日) 23:17:05.80ID:2YfCeUEJ
最弱だからIJK(888)=0になる気がする
「強い」の定義にもよるけど

538132人目の素数さん2018/04/15(日) 23:25:22.67ID:2YfCeUEJ
一階述語論理n文字で定義出来る最大の自然数
とほぼ同じだな

一階述語論理
強い
最弱

の定義をしないと

539132人目の素数さん2018/04/15(日) 23:42:59.48ID:HpytqsdO
>>533
おっしゃる通りで念のための処置

>>536
メタでない(後述)一変数関数に任意の値を入れた時、定義にω、つまり極限を使えるFGHが最も大きな値を返すのは自明でしょう    
FωCK(n)をFω CK (n)にするだけで
  ω    εω 既存の巨大数を
         遥かに凌ぐ

IJKはFGHというゲタを履いた関数で、これを1次メタと呼ぶ
f(n)の増加率を競えば必ず勝つFGHに、見掛けはf(n)でf(f(n))をぶつけるのがIJK

ではIJKというゲタを履いたLMNなる関数があるとして、これは2次メタであるか?
答えはならない
ゲタを無限に履いてやっと2次メタ足り得るが、それは有限の数ではない
よって1次メタが巨大数探索の終点に最も近い概念となります

540132人目の素数さん2018/04/15(日) 23:51:05.35ID:aggHziCM
とりあえず収束列を明示しないとwell definedにならない

541132人目の素数さん2018/04/15(日) 23:52:06.39ID:2YfCeUEJ
1個に絞る最弱の定義

542132人目の素数さん2018/04/15(日) 23:52:53.38ID:2YfCeUEJ
定義によっては>>537

543132人目の素数さん2018/04/16(月) 00:15:59.59ID:Uj2oEkog
定義にFGHを使うのがよくわからない。順序数次第でどんなに強力な関数もとらえることができる。
というかFGH自体はただの「評価する順序数の扱い方」で強いも弱いもない

544132人目の素数さん2018/04/16(月) 00:54:48.00ID:HHKYza5t
知ってる人は多いかと思うけれど
到達不能数 エミールボレル 辻下徹訳
http://ac-net.org/tjst/borel-1950.pdf

545132人目の素数さん2018/04/16(月) 00:57:32.08ID:HHKYza5t
これも
再帰的関数論 照井一成
http://www.kurims.kyoto-u.ac.jp/~cs/cs2011_terui.pdf

546◆2VB8wsVUoo 2018/04/18(水) 16:13:11.21ID:yEKYziJ6

547◆2VB8wsVUoo 2018/04/18(水) 16:13:32.03ID:yEKYziJ6

548◆2VB8wsVUoo 2018/04/18(水) 16:13:52.80ID:yEKYziJ6

549◆2VB8wsVUoo 2018/04/18(水) 16:14:16.33ID:yEKYziJ6

550◆2VB8wsVUoo 2018/04/18(水) 16:14:45.21ID:yEKYziJ6

551◆2VB8wsVUoo 2018/04/18(水) 16:15:08.16ID:yEKYziJ6

552◆2VB8wsVUoo 2018/04/18(水) 16:15:31.17ID:yEKYziJ6

553◆2VB8wsVUoo 2018/04/18(水) 16:15:54.80ID:yEKYziJ6

554◆2VB8wsVUoo 2018/04/18(水) 16:16:16.59ID:yEKYziJ6

555◆2VB8wsVUoo 2018/04/18(水) 16:16:39.54ID:yEKYziJ6

556132人目の素数さん2018/04/21(土) 18:01:28.56ID:vvK/zpgn
ラヨ関数は公理を明らかにすべきというのが納得いかない。
すくなくとも自然数のクラスが共有できていればどこで比較する基準は明らかになるし、これはFOSTだけで可能。もっと突っ込めば、特定の値を比較するだけなら
それぞれの引数に対し十分大きな自然数までを空集合から定義すればよくてすべての自然数が共有できてなくてもいい。
それ以外の公理は、たとえばφを評価するのに公理Γが必要というのなら最初からその公理が指定されてなくてもΓ→φという式で無条件でwell definedになるはずだし、これは演繹定理と完全性から明らか。
というか「ZFCの式だけで評価できる」ってしちゃうと計算可能になるんじゃないのか

557132人目の素数さん2018/04/21(土) 18:35:05.49ID:vvK/zpgn
「最小の証明を書けなくても戦え数」はラヨ数と同じくらいっぽいし、書けるほうもだいたい同じじゃないかね、
証明に使う式を対角化しても>>556の理屈で結局定義文の対角化と同じだと思う

558132人目の素数さん2018/04/21(土) 19:07:15.00ID:vvK/zpgn
>>557
書ける方は証明の長さも対角化していたか。失念していた。なら計算可能だ。

559132人目の素数さん2018/04/21(土) 19:21:51.80ID:vvK/zpgn
定義する部分は1階述語論理だし、1階述語論理のコンパクト性からFOL_{論理式}は、無限集合であっても実際にはせいぜい有限部分しか使われない
ということにならないか?

560132人目の素数さん2018/04/21(土) 19:30:13.31ID:vvK/zpgn
あぁいや、定義する部分も2階述語論理か。となるとF7より大きくBIG FOOTより小さいってところか?

561132人目の素数さん2018/04/21(土) 19:36:19.56ID:NqLVEe4i
F7とは?

562132人目の素数さん2018/04/21(土) 20:39:08.13ID:vvK/zpgn
>>561 ふぃっしゅ数バージョン7です。

こいし数というものも見てみたけどあれはω階の集合論を対角化した関数を2回適用した感じの強さでBIG FOOTよりは小さい?

2階以降の推論規則をどうするのか、PAのようなちゃんと整合的に機能するかどうかを知りようがない
システムをただで使っていいのかとか、疑問や要望がある
まとめると有限の立場に還元できるのか?

有限の立場ってなんだよ

563132人目の素数さん2018/04/21(土) 22:08:40.67ID:tli2ZKYR
ふいっしゅ数みたいなサラダ
大きさの指標しなくていいよ

564132人目の素数さん2018/04/22(日) 00:37:44.75ID:2YkntYQd
他人に望むばかりでいざなにかでてきたらサラダ言って、自分からはなにも生み出さないってのはさ

565132人目の素数さん2018/04/22(日) 00:47:46.94ID:B+nUVPEb
サラダはサラダでもフィッシュ数は見て楽しい食べて美味しいサラダだよ

566132人目の素数さん2018/04/22(日) 01:10:44.30ID:Stsx4YzN
フィッシュさんも最初はそれほど知識なかったんだよね?
俺も追いつきたい

567132人目の素数さん2018/04/22(日) 01:34:53.75ID:B+nUVPEb
計算可能な巨大数論を学びながら数学的手法になれつつ計算不可能な巨大数論に手を出していく感じ

568132人目の素数さん2018/04/22(日) 11:25:57.64ID:2YkntYQd
肉も食えよ!
V4とV7は中途半端に再帰順序数使ってるところがサラダ感を否めない

569132人目の素数さん2018/04/22(日) 23:05:24.21ID:mTvNHRHO
順序数を使って定義しているのではなくて評価しているだけ(他の巨大数も大抵はそう)
ビジービーバーだって、順序数で「評価」されている
そして、V4の順序数は再帰順序数ではない

570132人目の素数さん2018/04/22(日) 23:14:51.11ID:v12xr+ol
V4なんてサラダそのものじゃん
何の目新しさもない
ただのゴミ

571132人目の素数さん2018/04/22(日) 23:18:35.84ID:v12xr+ol
それ以前に、
定義にすらなってない
神託機械の仕様が書いてない

572132人目の素数さん2018/04/22(日) 23:34:42.78ID:2YkntYQd
>>569
いや、神託機械の階層のようなものが再帰的に定義されていて計算不可能レベルじゃナンセンスという意味です。

573132人目の素数さん2018/04/22(日) 23:35:59.82ID:2YkntYQd
なんかもう全部ゴミって言ってない?

574132人目の素数さん2018/04/22(日) 23:37:16.36ID:B+nUVPEb
目新しさの点は時代背景から考察すべきだな

575132人目の素数さん2018/04/22(日) 23:39:21.62ID:2YkntYQd
それ言ったらLittle Bigeddonの真理述語も昔から知られているものでなんの目新しさもない

サスカッチ以外は全部サラダ(暴論)

576132人目の素数さん2018/04/22(日) 23:43:50.50ID:B+nUVPEb
もちろん巨大数論的な観点から見た目新しさ
(昔からあったけど)この道具使えば大きな数定義できるじゃん!
てのは巨大数論的に目新しいね

577132人目の素数さん2018/04/22(日) 23:48:28.19ID:2YkntYQd
バシク行列とか、HUGEの証明論的強さをもつ欲張りクリーク列とか、かえって計算可能レベルのほうが
なにかと新しいな

578132人目の素数さん2018/04/23(月) 03:31:44.89ID:fLVPPhcB
V4については、神託機械を使って巨大数を作ったというだけで、
「この道具使えば大きな数定義できるじゃん」という観点で、当時としては新しい
そもそも、このスレッドでは誰もが「計算不可能なんて意味ない」と言っていたわけで、
誰一人その巨大数が「定義される」とすら思っていなかった

579132人目の素数さん2018/04/23(月) 03:38:26.75ID:fLVPPhcB
「V4が定義されるのは当たり前だけど、そんなトリビアルな拡張は意味ないよ」
なんてことは、今だから言えることで、当時のログでそんなことを書いている人がいるかどうか
探してみればいい

580132人目の素数さん2018/04/23(月) 03:48:09.06ID:fLVPPhcB
たとえば、こんな感じで「神託機械そのものを認めようとしない」というレベルの
スレッドの中で、神託機械で階層を使って巨大数が定義できる、と一貫して主張していた、
というだけですごいものだと思う

http://www.geocities.co.jp/Technopolis/9946/log/ln034.html

265 名前:132人目の素数さん :02/11/07 08:11

当然でしょう。チューリングマシンにビジービーバー関数は取り込めません。

581132人目の素数さん2018/04/23(月) 04:02:47.15ID:fLVPPhcB
ふぃっしゅさんは神託機械を見てV4を作ったのだと思っていたけど、
当時のログをよく読むと、最初にアイデアがあって、ロバートさんとの
メールのやりとりの後に調べて神託機械 (O-machines) を見つけた、
という感じみたい

http://www.geocities.co.jp/Technopolis/9946/log/ln033.html

245 名前:ふぃっしゅっしゅ ◆/T2GtW187g :02/11/04 04:49

「そんなはずはなかろう、同じ発想をしている人はいるん
じゃないのか?」と思い、よく調べてみると、それがまさに
O-machinesだったわけです。

582132人目の素数さん2018/04/23(月) 06:09:10.32ID:EzIBhmfQ
V4よりずっと前から神託機械の概念があったし
実際V4の定義に「神託機械」と書いてある

V4が定義になってないことから
ふぃっしゅ氏が神託機械や機械自体をよく理解してない事がわかるわけだが
これを指摘した人はいなかったのかな?

583132人目の素数さん2018/04/23(月) 06:14:54.07ID:EzIBhmfQ
> チューリング次数はエミール・ポスト(1944)によって導入され、多くの基本的な結果はスティーヴン・コール・クリーネとポスト(1954)によって確立された。

584132人目の素数さん2018/04/23(月) 20:20:58.77ID:nbdS2X+d
神託機械の具体的な実装はO-machinesの原典に載っている通りにするってことじゃないの?
神託状態みたいなのを付加するやつ

585132人目の素数さん2018/04/23(月) 20:50:00.83ID:nbdS2X+d
ログ読んでみたけどふぃっしゅ氏の文面がなんか若さを感じる。
ビジービーバーから再帰的に新しい関数を作ったところで本質的な強さに寄与
できてないという意味でロバートさんの主張は正しい

586132人目の素数さん2018/04/23(月) 20:50:17.18ID:EzIBhmfQ
誰に聞いてるの?
答えはふぃっしゅしか知らないわけだが

587132人目の素数さん2018/04/23(月) 21:26:15.61ID:nbdS2X+d
ただ可能性を提示してみただけで・・・

588132人目の素数さん2018/04/23(月) 21:48:30.19ID:nbdS2X+d
1階述語論理の範囲では>>556でいいとして、2階述語論理以降ではある記述可能で非自明な定義文を評価するのに、どうしても記述不可能な(有限文字で表現できない)環境を必要とすることがあり、真理述語に頼らなければならなかったりする。
そう考えるとこいし数は高階述語論理を定義に使っていても実際には2階述語論理の域を出てないのでは?
真理述語の階層でいえばω*2の関数を2回適用したような

SOSTと同等?

589132人目の素数さん2018/04/23(月) 23:28:17.64ID:fLVPPhcB
やたらと再帰的再帰的という人がいるけど、2次ビジービーバー関数は
ビジービーバー関数から再帰的に作られた関数ではない

590132人目の素数さん2018/04/23(月) 23:34:31.64ID:FJwf6WR/
ふぃっしゅ7のことだろ

591132人目の素数さん2018/04/23(月) 23:35:01.33ID:FJwf6WR/
ん、4だったかな
あんま覚えてないorz

592132人目の素数さん2018/04/23(月) 23:47:00.40ID:EzIBhmfQ
チューリング次数を+1出来る手段を使って
たったの ω^(ω+1) x 63 増やしただけだからなあ

ふぃっしゅの拡張は誤差だろ

593132人目の素数さん2018/04/23(月) 23:54:47.52ID:nbdS2X+d
>2次ビジービーバー関数はビジービーバー関数から再帰的に作られた関数ではない

それはそうけどチューリング次数を再帰的に上げたところでという話で。
Ξ関数みたいにシンプルでよかったと思うわ

594132人目の素数さん2018/04/24(火) 00:46:50.23ID:QPCr4yQ7
そのチューリング次数を+1あげるという手段があることを、当時のスレッドでは
数学の専門家っぽい人もいろいろ書いている中で誰も指摘していなかったわけで、
それが指摘されていたらあんなに紛糾しなかった

595132人目の素数さん2018/04/24(火) 00:53:26.82ID:QPCr4yQ7
当時のネットにはあった O-machines は参照されているので、そのページを読んでも、
神託機械のビジービーバー関数を考えることをビジービーバー関数の「再帰的拡張」と
同一視しているような人たちしかいなかった、というのが当時のスレッドのレベル

596132人目の素数さん2018/04/24(火) 01:10:15.42ID:QPCr4yQ7
というか、当時のスレッドは「ビジービーバー関数は神聖不可侵な関数で、
これよりも大きな関数は存在しない」という意見が支配的だった

597132人目の素数さん2018/04/24(火) 06:09:42.42ID:ewc+sZDZ
そう考えると、今って界隈全体のレベル上がってるんだね

598132人目の素数さん2018/04/24(火) 07:10:04.02ID:B7uo9+Br
ふぃっしゅの井の中の蛙ぶりが半端無い
ってことだな
今そんなゴミ関数を取り上げる価値は無い

599132人目の素数さん2018/04/24(火) 10:48:14.74ID:HolZALmz
逆に取り上げる価値のある巨大関数って何なん?
FOSTも真理述語も昔から知られていて何の目新しさもないけど

600132人目の素数さん2018/04/24(火) 13:28:02.30ID:l8tdPw1n
ビジービーバー、チューリングマシン、神託機械
の考え方は巨大数を語る上で必須科目と言っても良いくらいに価値がある

これらの優れた概念に対して、ゴミみたいな方法で+1したのがV4
このゴミのせいで台無しになった
アッカーマン関数をただ100乗したようなトンチンカン具合

601132人目の素数さん2018/04/24(火) 13:41:48.33ID:ulEM+4Pt
優れた概念を上手く組み合わせた巨大数ってある?

602132人目の素数さん2018/04/24(火) 14:09:34.33ID:KTWMwh96
他人の既存の成果を叩いとけば自己満足できる安い人って何処でも居るよね

603132人目の素数さん2018/04/24(火) 14:52:26.75ID:03p/NWxh
ビジービーバーのテープをBEAFみたいに多次元に張り巡らせて交点でも何でも良いが上手くアレしたら単にくっつけた物を超える関数になりそう

604132人目の素数さん2018/04/24(火) 20:37:06.47ID:HolZALmz
チューリング次数を再帰的に上げたところ以外は評価できるということでいいのか?
以外のところも評価できないとなるとBIG FOOTもLittle Bigeddonもゴミということに

605132人目の素数さん2018/04/24(火) 20:39:52.57ID:HolZALmz
必須科目の基準はわからんが多分集合論や真理述語も必須科目

606132人目の素数さん2018/04/24(火) 20:52:13.33ID:ulEM+4Pt
巨大数を学ぶ上での前提知識がまとまってるいい本ない?
ふいっしゅっしゅさんが著した巨大数論以外で

607132人目の素数さん2018/04/24(火) 21:34:59.03ID:B7uo9+Br
>>604
評価も何も、
ただの神託機械によるビジービーバー
新規性が1個数も無い
半世紀も前に考えられていたものそのままだ

608132人目の素数さん2018/04/24(火) 22:09:33.09ID:dF5weMnJ
チューリング次数とかの周辺の話題についてやさしく書かれた和書ないですか?

609132人目の素数さん2018/04/24(火) 22:21:18.76ID:QPCr4yQ7
ふぃっしゅっしゅさんは、まさにその神託機械と同じアイディアに至ったということを
喜んでいるので、それだけのことという結論で十分では

269 名前:ふぃっしゅっしゅ ◆/T2GtW187g :02/11/07 10:40
>>265
>>245が O-machines と本質的に同じアイディアだということは
無理に否定していただかなくても、ロバートさんも認めていることです。

ロバートさんに、

It is my great honor that I reached the same idea as Turing before
knowing his work. :-)

というメールを送ったら、

Yes, I agree (-:

といっていただきました。

610132人目の素数さん2018/04/24(火) 23:31:56.17ID:B7uo9+Br
どうでもいい

611◆2VB8wsVUoo 2018/04/25(水) 00:55:54.77ID:q0XSqM74

612◆2VB8wsVUoo 2018/04/25(水) 00:56:19.90ID:q0XSqM74

613◆2VB8wsVUoo 2018/04/25(水) 00:56:43.17ID:q0XSqM74

614◆2VB8wsVUoo 2018/04/25(水) 00:57:09.74ID:q0XSqM74

615◆2VB8wsVUoo 2018/04/25(水) 00:57:35.58ID:q0XSqM74

616◆2VB8wsVUoo 2018/04/25(水) 00:57:59.25ID:q0XSqM74

617◆2VB8wsVUoo 2018/04/25(水) 00:58:17.85ID:q0XSqM74

618◆2VB8wsVUoo 2018/04/25(水) 00:58:36.24ID:q0XSqM74

619◆2VB8wsVUoo 2018/04/25(水) 00:59:01.06ID:q0XSqM74

620◆2VB8wsVUoo 2018/04/25(水) 00:59:28.80ID:q0XSqM74

621132人目の素数さん2018/04/25(水) 02:02:04.19ID:Y3ZN8WEc
なんかもうそう言っちゃったら全部ゴミやん
集合論も真理述語も型理論も昔から知られていてラヨ関数もLittle Bigeddonも新しいことはなにもない

622◆2VB8wsVUoo 2018/04/25(水) 02:46:47.77ID:q0XSqM74

623◆2VB8wsVUoo 2018/04/25(水) 02:47:11.41ID:q0XSqM74

624◆2VB8wsVUoo 2018/04/25(水) 02:47:31.08ID:q0XSqM74

625◆2VB8wsVUoo 2018/04/25(水) 02:47:51.81ID:q0XSqM74

626◆2VB8wsVUoo 2018/04/25(水) 02:48:12.34ID:q0XSqM74

627◆2VB8wsVUoo 2018/04/25(水) 02:48:36.79ID:q0XSqM74

628◆2VB8wsVUoo 2018/04/25(水) 02:49:05.52ID:q0XSqM74

629◆2VB8wsVUoo 2018/04/25(水) 02:49:23.98ID:q0XSqM74

630◆2VB8wsVUoo 2018/04/25(水) 02:49:44.74ID:q0XSqM74

631◆2VB8wsVUoo 2018/04/25(水) 02:50:09.69ID:q0XSqM74

632132人目の素数さん2018/04/25(水) 03:56:06.18ID:38pA3NKu
巨大数を通して、いろいろな数学の分野に興味を持つ人がいるというだけで
十分に意味はある。ここは学会じゃなくてネットの落書き場所

633◆2VB8wsVUoo 2018/04/25(水) 11:40:53.10ID:q0XSqM74

634◆2VB8wsVUoo 2018/04/25(水) 11:41:12.12ID:q0XSqM74

635◆2VB8wsVUoo 2018/04/25(水) 11:41:31.30ID:q0XSqM74

636◆2VB8wsVUoo 2018/04/25(水) 11:41:50.29ID:q0XSqM74

637◆2VB8wsVUoo 2018/04/25(水) 11:42:09.97ID:q0XSqM74

638◆2VB8wsVUoo 2018/04/25(水) 11:42:27.80ID:q0XSqM74

639◆2VB8wsVUoo 2018/04/25(水) 11:42:47.06ID:q0XSqM74

640◆2VB8wsVUoo 2018/04/25(水) 11:43:07.57ID:q0XSqM74

641◆2VB8wsVUoo 2018/04/25(水) 11:43:27.27ID:q0XSqM74

642◆2VB8wsVUoo 2018/04/25(水) 11:43:47.97ID:q0XSqM74

643132人目の素数さん2018/04/26(木) 10:20:53.58ID:XiiXBbX/
寿司虚空編?てどうなったのかな?
その後うやむや?

644◆2VB8wsVUoo 2018/04/26(木) 11:40:46.25ID:WnhrxnGP

645◆2VB8wsVUoo 2018/04/26(木) 11:41:06.43ID:WnhrxnGP

646◆2VB8wsVUoo 2018/04/26(木) 11:41:25.22ID:WnhrxnGP

647◆2VB8wsVUoo 2018/04/26(木) 11:41:46.97ID:WnhrxnGP

648◆2VB8wsVUoo 2018/04/26(木) 11:42:07.71ID:WnhrxnGP

649◆2VB8wsVUoo 2018/04/26(木) 11:42:31.06ID:WnhrxnGP

650◆2VB8wsVUoo 2018/04/26(木) 11:42:51.27ID:WnhrxnGP

651◆2VB8wsVUoo 2018/04/26(木) 11:43:11.18ID:WnhrxnGP

652◆2VB8wsVUoo 2018/04/26(木) 11:43:32.18ID:WnhrxnGP

653◆2VB8wsVUoo 2018/04/26(木) 11:43:54.43ID:WnhrxnGP

654132人目の素数さん2018/04/26(木) 23:20:08.16ID:RJvMDgwa
こんなサラダを額面1位のまま長時間放置しとくわけにはいかない、程度のモチベーションにはなっている。“前菜“っていうところかな。

655◆2VB8wsVUoo 2018/04/27(金) 07:38:40.72ID:HEiX2WEB

656◆2VB8wsVUoo 2018/04/27(金) 07:38:58.58ID:HEiX2WEB

657◆2VB8wsVUoo 2018/04/27(金) 07:39:17.46ID:HEiX2WEB

658◆2VB8wsVUoo 2018/04/27(金) 07:39:39.80ID:HEiX2WEB

659◆2VB8wsVUoo 2018/04/27(金) 07:40:01.20ID:HEiX2WEB

660◆2VB8wsVUoo 2018/04/27(金) 07:40:20.22ID:HEiX2WEB

661◆2VB8wsVUoo 2018/04/27(金) 07:40:40.53ID:HEiX2WEB

662◆2VB8wsVUoo 2018/04/27(金) 07:40:59.84ID:HEiX2WEB

663◆2VB8wsVUoo 2018/04/27(金) 07:41:16.99ID:HEiX2WEB

664◆2VB8wsVUoo 2018/04/27(金) 07:41:32.92ID:HEiX2WEB

665132人目の素数さん2018/04/27(金) 14:07:28.59ID:anD6rV0w
正しくサラダか

666◆2VB8wsVUoo 2018/04/27(金) 18:50:30.64ID:HEiX2WEB

667◆2VB8wsVUoo 2018/04/27(金) 18:50:49.75ID:HEiX2WEB

668◆2VB8wsVUoo 2018/04/27(金) 18:51:07.31ID:HEiX2WEB

669◆2VB8wsVUoo 2018/04/27(金) 18:51:25.77ID:HEiX2WEB

670◆2VB8wsVUoo 2018/04/27(金) 18:51:46.95ID:HEiX2WEB

671◆2VB8wsVUoo 2018/04/27(金) 18:52:06.50ID:HEiX2WEB

672◆2VB8wsVUoo 2018/04/27(金) 18:52:25.09ID:HEiX2WEB

673◆2VB8wsVUoo 2018/04/27(金) 18:52:44.37ID:HEiX2WEB

674◆2VB8wsVUoo 2018/04/27(金) 18:53:05.07ID:HEiX2WEB

675◆2VB8wsVUoo 2018/04/27(金) 18:53:27.65ID:HEiX2WEB

676132人目の素数さん2018/04/28(土) 16:09:58.87ID:XiETVnpY
BIG FOOT(真理述語の階層がω)<こいし数(真理述語の階層がω*2)<Little Bigeddon(FOST+真理述語)

677◆2VB8wsVUoo 2018/04/29(日) 11:14:13.27ID:hVvr2pmr

678◆2VB8wsVUoo 2018/04/29(日) 11:14:32.87ID:hVvr2pmr

679◆2VB8wsVUoo 2018/04/29(日) 11:14:53.67ID:hVvr2pmr

680◆2VB8wsVUoo 2018/04/29(日) 11:15:13.54ID:hVvr2pmr

681◆2VB8wsVUoo 2018/04/29(日) 11:15:31.02ID:hVvr2pmr

682◆2VB8wsVUoo 2018/04/29(日) 11:15:46.27ID:hVvr2pmr

683◆2VB8wsVUoo 2018/04/29(日) 11:16:00.79ID:hVvr2pmr

684◆2VB8wsVUoo 2018/04/29(日) 11:16:21.34ID:hVvr2pmr

685◆2VB8wsVUoo 2018/04/29(日) 11:16:40.50ID:hVvr2pmr

686◆2VB8wsVUoo 2018/04/29(日) 11:17:01.88ID:hVvr2pmr

687132人目の素数さん2018/04/30(月) 21:16:21.89ID:8AN3/+hC
耳栓をしたら世界が変わってワロタ

688◆2VB8wsVUoo 2018/05/01(火) 08:09:43.96ID:o9N8stUi

689◆2VB8wsVUoo 2018/05/01(火) 08:10:13.62ID:o9N8stUi

690◆2VB8wsVUoo 2018/05/01(火) 08:10:41.28ID:o9N8stUi

691◆2VB8wsVUoo 2018/05/01(火) 08:11:04.36ID:o9N8stUi

692◆2VB8wsVUoo 2018/05/01(火) 08:11:25.85ID:o9N8stUi

693◆2VB8wsVUoo 2018/05/01(火) 08:11:47.47ID:o9N8stUi

694◆2VB8wsVUoo 2018/05/01(火) 08:12:08.05ID:o9N8stUi

695◆2VB8wsVUoo 2018/05/01(火) 08:12:28.41ID:o9N8stUi

696◆2VB8wsVUoo 2018/05/01(火) 08:12:50.30ID:o9N8stUi

697◆2VB8wsVUoo 2018/05/01(火) 08:13:14.52ID:o9N8stUi

698132人目の素数さん2018/05/01(火) 19:20:14.78ID:21rJWgQ2
耳栓をしたら世界が変わってワロタ

699◆2VB8wsVUoo 2018/05/02(水) 07:44:12.20ID:q47JGIF5

700◆2VB8wsVUoo 2018/05/02(水) 07:44:32.92ID:q47JGIF5

701◆2VB8wsVUoo 2018/05/02(水) 07:44:53.57ID:q47JGIF5

702◆2VB8wsVUoo 2018/05/02(水) 07:45:14.06ID:q47JGIF5

703◆2VB8wsVUoo 2018/05/02(水) 07:45:37.16ID:q47JGIF5

704◆2VB8wsVUoo 2018/05/02(水) 07:45:59.60ID:q47JGIF5

705◆2VB8wsVUoo 2018/05/02(水) 07:46:22.75ID:q47JGIF5

706◆2VB8wsVUoo 2018/05/02(水) 07:46:44.42ID:q47JGIF5

707◆2VB8wsVUoo 2018/05/02(水) 07:47:06.45ID:q47JGIF5

708◆2VB8wsVUoo 2018/05/02(水) 07:47:30.52ID:q47JGIF5

709132人目の素数さん2018/05/02(水) 13:40:39.91ID:YOqbT/v5
真理述語ってどういうこと?

710132人目の素数さん2018/05/03(木) 22:08:36.79ID:Ti0cEjFV
ある論理式が「真である」という述語

711132人目の素数さん2018/05/04(金) 00:33:13.37ID:JcSPNatf
命題論理式の真理述語の階層が0であり、これはΠ_1-文で記述できる

712◆2VB8wsVUoo 2018/05/06(日) 10:32:51.08ID:RvBtqT2B

713◆2VB8wsVUoo 2018/05/06(日) 10:33:09.94ID:RvBtqT2B

714◆2VB8wsVUoo 2018/05/06(日) 10:33:28.68ID:RvBtqT2B

715◆2VB8wsVUoo 2018/05/06(日) 10:33:48.24ID:RvBtqT2B

716◆2VB8wsVUoo 2018/05/06(日) 10:34:04.84ID:RvBtqT2B

717◆2VB8wsVUoo 2018/05/06(日) 10:34:24.26ID:RvBtqT2B

718◆2VB8wsVUoo 2018/05/06(日) 10:34:43.29ID:RvBtqT2B

719◆2VB8wsVUoo 2018/05/06(日) 10:35:03.47ID:RvBtqT2B

720◆2VB8wsVUoo 2018/05/06(日) 10:35:22.16ID:RvBtqT2B

721◆2VB8wsVUoo 2018/05/06(日) 10:35:41.84ID:RvBtqT2B

722132人目の素数さん2018/05/08(火) 12:19:58.40ID:klTW3dMX
その真理述語がどう巨大数に関係するの?

723132人目の素数さん2018/05/08(火) 19:30:14.44ID:3JhFRy5O
おまえわかってて聞いてるだろ?

724132人目の素数さん2018/05/08(火) 19:34:57.99ID:qNakUv+Q
恐らく確認?じゃないかな

725132人目の素数さん2018/05/08(火) 21:45:41.91ID:xYbUHu2K
巨大数界隈の人ら、何で皆して
ちゃんと勉強もせずに述語論理とか順序数について
デタラメな事ばかり言い散らかすの?

全くwell-definedでない関数を
well-definedだと強弁したり、二階述語論理なんて
カケラも知らないのに一階論理は函数の再帰的定義が
出来ないとか言ってみたり

726132人目の素数さん2018/05/08(火) 21:53:18.23ID:qNakUv+Q
元々数学を志していなかったから
と思う
自分もそうだし

727132人目の素数さん2018/05/08(火) 21:56:20.36ID:t7joCxxV
ラヨ数はMITの専門家が定義したんだから変な定義じゃないはず、
といった感じですすんで wikipedia にも載ってるので、
専門家がまともに反論しないとおさまりつかないかも

728132人目の素数さん2018/05/08(火) 22:13:24.15ID:qNakUv+Q
巨大数論の最先端分野は数学者が必要な領域に突入してる
既にアマチュア数学研究家の趣味の領域を逸脱してるんだ

729132人目の素数さん2018/05/08(火) 23:41:53.12ID:t7joCxxV
何か書いてarxivにアップすれば

730132人目の素数さん2018/05/08(火) 23:47:28.80ID:Ji4X9G7z
ラヨ関数は公理を指定しないとwell definedにならないけど、その公理はラヨ関数の強さには関係しない模様

731132人目の素数さん2018/05/08(火) 23:50:20.23ID:Ji4X9G7z
>一階論理は函数の再帰的定義が出来ないとか言ってみたり

そういう話あったっけ? ZFCに限定したら計算可能になる云々のこと?

732132人目の素数さん2018/05/09(水) 00:06:35.30ID:Ym4PdP5K
>>725
例えばどれ?

733132人目の素数さん2018/05/09(水) 00:07:23.44ID:Ym4PdP5K
well-definedじゃない例

734132人目の素数さん2018/05/09(水) 00:09:07.30ID:Ym4PdP5K
>>730
つまり定義が完成してない
ってことになるな

735132人目の素数さん2018/05/09(水) 00:20:52.79ID:W4QdABTQ
ラヨ自身はそのへん察してくれくらいの認識だった説

736132人目の素数さん2018/05/09(水) 00:24:27.43ID:rgngy3fG
ラヨ数って大雑把に言って
「或る(集合論とか高階論理っぽい)体系X内で、N
(例えば1 googol)文字以下の形式的な論理式で
定義できる最大の数+1」という定義だと思うのだけど。

ところが、
式φ(x)が自然数mを一意的に定義しているかどうか
(そしてより一般的に、mがφ(x)を満たすかどうか)
というような事は、φがごく簡単な形をしている場合
以外は、Xの具体的な公理だけではなくて、
Xのuniverse(モデル)の取り方自体に依存して
大きく変わってしまう事が知られている(※)から、
Xの公理を決めてもこれだけだと全然
well-definedな定義にならない。

という事を先日、集合論専門の先生が
コメントしてたりするけど、
まあコメントを読んだほぼ全員が理解してないよねw

“satisfaction is not absolute”というarXivの論文が
(※)の分かりやすい解説なんだけど、いくら
分かりやすいとは言え、基礎論の教科書を一冊通読して
完全性定理と不完全性定理の証明を最初から最後まで
フォローしました、くらいじゃ全然この論文を読める
レベルには達しないから、まあ素人にも分かるように
専門家が反論するというのも困難な話。
中学生に今年の東大入試の数学の問題の模範解答を
解説するのが難しいようなのもので。

だから数理論理ってなかなか怖い分野で、
数学や哲学の専門の有名な先生が堂々と
トンデモみたいな事を書いたり言ったりしてて、
しかもそれがデタラメだという事が、
一部の詳しい人にしか分からなかったりする。

737132人目の素数さん2018/05/09(水) 00:32:19.74ID:WlLuqmrF
誰か Rayo number is not defined っていう論文を書いて arxiv にアップしてよ
実際に、Wikipedia ではすでに8ヶ国語の記事になっているくらい広まってるわけだし、
こんな掲示板に書いたって誰も信じないから、きちんと専門家に書いて欲しい
査読誌だと通るかどうかわからないけど、arxiv なら出せるでしょ

738132人目の素数さん2018/05/09(水) 00:40:47.65ID:W4QdABTQ
いやwell definedじゃない派はそれなりにいると思うよ

739132人目の素数さん2018/05/09(水) 00:43:00.82ID:rgngy3fG
定義されていないというより、
メタレベルの自然数nと、体系のモデルMに依存して
決まって、Mをちょっと変えると
全然違った値になるという事。
だから相当好意的に解釈するなら、
well definedでないとまでは言えないんだよね

740132人目の素数さん2018/05/09(水) 00:43:29.00ID:9KZBCA0K
決定打は必要だよね

741132人目の素数さん2018/05/09(水) 00:45:37.44ID:WlLuqmrF
Rayo number is not a unique number でもなんでもいいよ
そういう「引用可能な文献」があれば、Wikipedia の記事にも直接その論文を引用できる

742132人目の素数さん2018/05/09(水) 00:46:33.53ID:W4QdABTQ
個人的にuniverseの取り方の部分は、複数の異なるモデルを含むほど大きなuniverseを取って解決出来るんじゃないかと思ってるけど確信はない

743132人目の素数さん2018/05/09(水) 01:19:18.23ID:W4QdABTQ
universeの取り方のくだりでwell definedでないのを主張するのは例を示して公表するのが一番手っ取り早くて効果的だな。言うほど簡単でもないだろうが

744132人目の素数さん2018/05/09(水) 06:59:52.23ID:W4QdABTQ
1階の定義文なら公理だけに注目すればいいのでは。
2階以降が絡んでくる定義文なら公理だけでは解決できないというのはおk

745132人目の素数さん2018/05/09(水) 17:09:02.42ID:W4QdABTQ
というかなんで「みんなラヨ関数がwell definedだと信じてる」ことになってるんだ?
だいたいみんなお茶を濁すかんじで、well definedだと断定している人っていたっけ

746132人目の素数さん2018/05/09(水) 18:43:30.45ID:52pXctqs
未完成って指摘した時反対されたから
てっきりみんなwell-definedと思ってるのかと思ったが

747132人目の素数さん2018/05/09(水) 22:43:21.52ID:WlLuqmrF
掲示板というのは、そのときそのときに見た人が糧に書き込んでいるわけで、
いる人もコロコロ変わる。ある時に誰かが書き込んだことは、その匿名の誰かの
意見という以上の意味はない。

748132人目の素数さん2018/05/09(水) 22:44:02.27ID:WlLuqmrF
糧にじゃなくて勝手に

749132人目の素数さん2018/05/09(水) 22:49:41.58ID:WlLuqmrF
Googology wiki でも、専門家が定義したんだから間違いないという盲信派と
積極的には認めたくないけど認める立場もあるのかなという懐疑派が多くて、
積極派はビッグフット作った人くらいじゃないかな
サスカッチ作った人は、懐疑派

750132人目の素数さん2018/05/15(火) 23:43:27.46ID:CCKKajZG
ビジービーバー関数はwell definedでいいの?

751132人目の素数さん2018/05/15(火) 23:44:20.00ID:2qP0/Jjl
>>750
専門家がwell definedっていうんだから間違いない。

752132人目の素数さん2018/05/16(水) 02:20:25.12ID:GQdmduDf
疑う要素がある?

753132人目の素数さん2018/05/16(水) 07:01:42.10ID:iStPm0hH
busy beaverは50年以上前から明確に
定義されてる函数で、最初のいくつかの値については
実際に値が計算されている。

定式化の曖昧さとかも無いし、標準的な
(=超準自然数でない)nでの函数の値が
モデルの取り方によって変わり得るということもない。

754132人目の素数さん2018/05/18(金) 10:40:33.56ID:0aDNDlve
多変数ビジービーバー関数の定義

f: 任意の関数
x,n: 0以上の整数

N(f, x, 0) = x
N{f, x, n+1} = f( N{f, x, n} )

BB: ビジービーバー関数
x,n,a: 0以上の整数
Y: 0個以上の0以上の整数
a#n: n個のa

B[](x) = N{BB, x, BB(x)}
B[0#(n+1)](x) = B[x#n](x)
B[Y, a+1](x) = N{B[Y, a], x, B[Y, a](x)}
B[Y, a+1, 0#(n+1)](x) = B[Y, a, x#(n+1)](x)

755132人目の素数さん2018/05/18(金) 11:05:19.55ID:UF2ZBP+U
ゴミwww

756132人目の素数さん2018/05/18(金) 11:09:13.54ID:4+D+TjNP
ビジービーバー関数に頼った再帰とか
虎の威を借る狐じゃないんだから

757132人目の素数さん2018/05/18(金) 12:26:32.57ID:0aDNDlve
まあ、ゴミは置いといてw
ビジービーバー関数がf_ω_1^CK(n)であるとして
f_ω_2^CK(n)に相当する関数はどんなものがあるの?

758132人目の素数さん2018/05/18(金) 12:41:29.35ID:UF2ZBP+U
初期テープ状態を
Σ(1), Σ(2), .... の位置を1
他は0

とした時のビジービーバー関数

759132人目の素数さん2018/05/18(金) 12:51:11.23ID:UF2ZBP+U
チューリングマシンが既知とすれば
これが一番簡単な定義

これだけで特に曖昧な点も無い

760132人目の素数さん2018/05/18(金) 12:54:24.81ID:0aDNDlve
なるほど
ありがとう

761132人目の素数さん2018/05/18(金) 13:00:49.87ID:UF2ZBP+U
おっとしまった
ビジービーバー関数Σだと無限になっちゃう
最大シフト数関数Sにしよう

762132人目の素数さん2018/05/18(金) 13:02:23.36ID:UF2ZBP+U
初期状態も
S(1), S(2), ... の位置が1

の方が良いね

763132人目の素数さん2018/05/18(金) 13:30:16.77ID:0aDNDlve
初期テープ状態を
S(1), S(2), .... の位置を1
他は0

とした時の最大シフト数関数をS^2(x)と定義した時

初期テープ状態を
S^2(1), S^2(2), .... の位置を1
他は0

とした時の最大シフト数関数の大きさは、f_ω_3^CK(n)
という認識であってる?

764132人目の素数さん2018/05/18(金) 13:49:39.90ID:RM2sUXuI
>>758 >>761
この定義って、自然数のコード化にオラクルをつかっただけで強さはビジービーバーから変わってない、
ということは考えられない?

765132人目の素数さん2018/05/18(金) 15:21:48.58ID:UF2ZBP+U
>>763
イエス

>>764
考えられない

766132人目の素数さん2018/05/18(金) 16:13:56.08ID:0aDNDlve
なるほど、すると

初期テープ状態を
S(1), S^2(2), S^3(3), S^4(4), S^5(5) .... の位置を1
他は0

とした時の最大シフト数関数の大きさは、f_ω_ω^CK(n)
となるといいなあ

767132人目の素数さん2018/05/18(金) 17:29:49.63ID:evx8LKs6
そうやってHardyのような階層が作れる

でも次は
ω_(ω_1^CK)^CK を越えないとおもしろく無い

768132人目の素数さん2018/05/18(金) 19:24:08.01ID:RM2sUXuI
言うほど述語論理とか順序数について デタラメな事言い散らされてる?

769132人目の素数さん2018/05/19(土) 18:31:38.68ID:DmxNZjPD
述語論理とか順序数はしらないけどビジービーバーがwell definedじゃないとかはデタラメだろう。

770132人目の素数さん2018/05/19(土) 18:31:45.52ID:+Vnrzd8o
強配列表記の解説とか需要あるかね

771132人目の素数さん2018/05/19(土) 18:45:10.10ID:DmxNZjPD
>>770
スレもペースダウン書いたらいいんじゃないか。

772132人目の素数さん2018/05/19(土) 18:45:42.21ID:DmxNZjPD
ペースダウンしてるし

773132人目の素数さん2018/05/19(土) 19:31:03.07ID:cIt4qGos
>>770
お願いします
まずは結論から

774132人目の素数さん2018/05/19(土) 19:52:04.81ID:+Vnrzd8o
なにが結論なのかは分からんが、

今のところDANまでがwell defined
そのDANの強さがバシク行列で(0,0,0)(1,1,1)(2,2,1)(3,0,0)でZ_2の証明論的順序数に相当する

らしい

775132人目の素数さん2018/05/19(土) 20:46:07.27ID:+Vnrzd8o
結論だけ
{1,,n} が Ω_{n-1}
{1,,1{1,,1,,2}2} がψ_I(0) で {1,,1,,2} が I みたいな

776132人目の素数さん2018/05/19(土) 21:05:01.76ID:DmxNZjPD
結論も欲しいけど解説もホシス。

777132人目の素数さん2018/05/20(日) 00:18:51.15ID:KGBj7Qzl
>>775
非加算の順序数が書いてあるようだが
結論の解説を

778132人目の素数さん2018/05/20(日) 00:19:48.48ID:KGBj7Qzl
非可算

779132人目の素数さん2018/05/20(日) 17:44:08.10ID:QwlsRb0A
ε_0まではBEAFと同じ。
テトレーション空間の区切りを.={1´2}={1{1,,2}2}で表す。しかし{n,n{1{1,,2}2}2}みたいな表記はvalidでない。
{n,n{1,,2}2}={n,n{1´2}2}=ε_0
{n,n{1,,2}3}=ε_0*2
{n,n{1,,2}1,2}=ε_0*ω
{n,n{1,,2}1{1,,2}2}=ε_0^2

以下、{n,nA2}のAの部分だけ書く

{2,,2}=ε_0^ω
{3,,2}=ε_0^ω^ω
{1{1{1,,2}2}2,,2}={1{1´2}2´2}=ε_0^ε_0
{1{1{1{1,,2}2}2{1,,2}2}2,,2}
={1{1{1´2}2´2}2´2}
=ε_0^ε_0^ε_0
{1{1{1,,2}3},,2}={1´3}=ε_1
{1{1{1,,2}4},,2}={1´4}=ε_2
{1{1{1,,2}1{1{1,,2}2}2},,2}
={1´1{1´2}2}=ε_ε_0
{1{1{1,,2}1{1,,2}2}2,,2}
={1´1´2}=ψ(Ω)
{1{1{1,,2}1{1,,2}1{1,,2}2}2,,2}
={1´1´1´2}=ψ(Ω^2)
{1{1{2,,2}2}2,,2}=ψ(Ω^ω)
{1{1,,2}2,,2}=ψ(Ω^Ω)
{1{1{1,,2}2,,2}2,,2}=ψ(Ω^Ω^Ω)
{1,,3}=ψ(ε_{Ω+1})

780132人目の素数さん2018/05/20(日) 19:50:19.46ID:QwlsRb0A
修正
{n,n{1,,2}1,2}=ε_0*ω+1
{1{1{1,,2}1{1,,2}2}2,,2} ={1´1´2}=ψ(Ω)+1
{1{1{1,,2}1{1,,2}1{1,,2}2}2,,2} ={1´1´1´2}=ψ(Ω^2) +1
評価はFGH

781132人目の素数さん2018/05/20(日) 20:38:30.39ID:xOqoMjO9
強配列表記もBEAFを元にしてるけど
それとは何が違うんだ?

782132人目の素数さん2018/05/20(日) 21:49:05.08ID:N/saMlPT
耳栓をしたら世界が変わってワロタ

783132人目の素数さん2018/05/21(月) 00:20:31.78ID:e4bd4/Pz
>>779
普通にHardyと順序数を使った物に対して
どの辺がメリット?

784132人目の素数さん2018/05/21(月) 18:23:45.03ID:0ribCmLT
すみません
聞き方が悪かったですね

バシク行列やBEAFが最終的に出力するものは
実数?
帰納的順序数?
帰納的ではない可算順序数?
非可算順序数?

785132人目の素数さん2018/05/21(月) 20:40:08.78ID:4VRAtjed
なんでそこが疑問なんだ?
>>779の書き方が誤解を招くといいたいのか?

786132人目の素数さん2018/05/21(月) 22:03:27.86ID:2IbqZlSb
>>780 修正の修正
{1{1{1,,2}1{1,,2}2}2,,2} ={1´1´2}=ψ(Ω)
{1{1{1,,2}1{1,,2}1{1,,2}2}2,,2} ={1´1´1´2}=ψ(Ω^2)
この二つの式に+1はいらなかった。たびたびスマン

787132人目の素数さん2018/05/21(月) 22:13:32.07ID:PtHrX8aD
カントール標準系を総和の多重再帰で表現したらBEAFのもう一つの表現が出来そうなんだが何となくイマイチ

788132人目の素数さん2018/05/21(月) 22:39:18.40ID:2IbqZlSb
>>784
バシク行列もBEAFも自然数を出力します。
その関数部分の強さを表すのに帰納的順序数が使われます。(帰納的でなく再帰的と言いたい)

>>783
Hardyと順序数を使った物というのがよくわかりませんが、原始数列から拡張されているシステムを指すのであれば、とくにメリットがあるとは感じません。

>>781
BEAFはテトレーション空間の配列以降がいまひとつ活用できてません。うまいこと定義を修正してもpDANのアイディアには根本から及ばない感じです。

>>777
セパレータ(分離子と訳せばいい?)の強さのようなもので、順序数崩壊関数で大きな順序数を崩壊させるように使います。

1{1,,2}2 を崩壊させると、一例だけど

1{1{1,,2{1,,2}2,2}2}2

になったりするような。

789132人目の素数さん2018/05/21(月) 22:53:15.92ID:0ribCmLT
いまいち記述の意味がわからない

>>779 などに書いてあるのは
左辺は自然数、右辺は順序数

左辺が関数であれば、
その増加度をHardy階層の順序数で表している
というのならわかるのだが
左辺は自然数、となると右辺の順序数は何を表している?

その辺を一行だけでいいので省略しないで書いていただけると

790132人目の素数さん2018/05/21(月) 23:09:01.54ID:0ribCmLT
なんとなくわかってきた

{n,n{1,,2}3}=ε_0 の意味は
{n,n{1,,2}3} ≒ F_(ε_0*2) (n)
の事で

{2,,2}=ε_0^ω
の意味は
{n,n{2,,2}2} ≒ F_(ε_0^ω) (n)
の事であってる?

Aの部分は帰納的順序数の表記法にもなっている?
つまり、
例えばこの記述法で ψ(ε_{Ω+1}) 以下の全ての順序数を表現できる?

791132人目の素数さん2018/05/22(火) 12:26:22.53ID:vlHh6A2w
多変数最大シフト数関数
 強さ:f_[{ω^CK_1}^{ω^CK_1}](n)

・チューリングマシンを既知とする
・s(M) = E_n に含まれる全ての M について、停止するまでに M がシフトする回数
・S(n) = max{s(M)|M∈E_n} 初期テープ状態が全て0である、
    あらゆる n-状態 2-記号チューリングマシンの中で最大のシフト回数
・m,a = 0以上の整数
・X = 0個以上の0以上の整数
・a#m = m個のa
・S[](n) = S(n)
・S[0#(m+1)](n) = S[n#m](n)
・S[X, a+1, 0#(m+1)](n) = S[X, a, n#(m+1)](n)
・S[X, a+1](n) = 初期テープ状態が、S[X, a](1), S[X, a](2), S[X, a](3), ...... の位置を1、他は0である、
        あらゆる n-状態 2-記号チューリングマシンの中で最大のシフト回数

792132人目の素数さん2018/05/22(火) 13:13:42.72ID:rz/ll3MY
ゴミwww

793132人目の素数さん2018/05/22(火) 13:39:01.31ID:vlHh6A2w
多重リスト化してε^CK_1にすればゴミービーバーでなくなる?

794132人目の素数さん2018/05/22(火) 18:07:03.40ID:rz/ll3MY
ネタ切れだからって無理に書き込まなくて良いよ

795132人目の素数さん2018/05/22(火) 23:49:29.42ID:cVn+l2mj
自然数上の任意の計算不能関数f(x)について、健全性(soundness)と実効性(effectiveness)
をもつ論理体系のもとでは、f(n) = 0, f(n) = 1, f(n) = 2,...,f(n) = i,...のいずれも
証明不能となるような自然数nが少なくとも一つは存在する。(*)
(証明)健全性と実効性をもつ論理体系では、その中で証明可能な式全体の集合が帰納的可算集合
になるため、もし任意のnについてf(n) = 0, f(n) = 1,...のいずれかが証明可能な式なら、
あるアルゴリズムで任意のnについてf(n)が求まることになりfの計算不能性に矛盾。
したがってf(n) = 0, f(n) = 1,...のいずれも証明不能となるnが存在する。(終)

しかしこの結論はビジービーバー関数などの計算不能関数がwell definedであることと矛盾しない。
P(n, m) ⇔ mはn状態ビジービーバーゲームの優勝者が出力する1の個数 + 1
として、∀n∃mP(n, m) ∧ ∀n∀x∀y((P(n, x) ∧ P(n, y)) ⇒ x = y)が証明可能なため、
ビジービーバー関数はwell definedである。すなわち、公理のどのモデルでも任意のnについて、
モデルさえ決まれば、Σ(n)の値が一意に決まる。
(*)はf(n) = 0, f(n) = 1,...のうちどれが真か、またはどれも偽かが、同じ公理の上でも
モデル間では異なるかもしれない可能性を示しているだけである。
また、"少なくとも一つは"と書いている通り、Σ(4)までの値が計算できることと(*)も矛盾しない。
ゲーデルの完全性定理から、もし一階述語論理による公理のもとであれば、
Pが証明不能 => Pが恒真でない => Pを偽とするモデルが存在する
から、(*)よりf(n) = 0を偽とするモデル, f(n) = 1を偽とするモデル,...のいずれもありえる。

796132人目の素数さん2018/05/23(水) 00:52:22.97ID:4caPj6x/
∀n∃mP(n, m) ∧ ∀n∀x∀y((P(n, x) ∧ P(n, y)) ⇒ x = y)が証明できただけじゃwell definedとは言い切れないんじゃ。
異なる解釈で異なる関数を読み取ることができても成り立つから

797132人目の素数さん2018/05/23(水) 00:53:38.36ID:4caPj6x/
ビジービーバー関数がwell definedでないとは言わない

798132人目の素数さん2018/05/23(水) 01:51:53.68ID:zNN4cZlg
>>795
φ(0), φ(1), φ(2), ....,,, が全て個々に証明可能だとしても
∀n φ(n)が証明可能だとは限らない。
(例えばφ(n)を、nは矛盾の証明のゲーデル数ではない、
などとすればその例になる。)
∀n φ(n)を証明するには、φ(x)をxの値によらない
“一様な”方法で示してから全称量化しないといけない。
だから上に書いてある議論はおかしい。

busy beaver関数が計算可能じゃないのは、
実際には停止しない或るチューリングマシンTについて、
その非停止性が証明できないからだよ。
だからPeano算術なり何なりのベースの理論に
このTがm stepで停止する、という公理を付け加えると
ノンスタンダードな理論になる。
この理論のモデルの中では、Tが或る超準自然数mについて
m stepで停止するように見えている。

799132人目の素数さん2018/05/23(水) 07:17:50.67ID:4Fh4x0c6
証明可能とか以前に、ちゃんと定義しようよ

ふぃっしゅ数とかラヨ数とか
定義になってないものが定義として扱われて非常に違和感

800132人目の素数さん2018/05/23(水) 19:04:11.51ID:PutOeZzi
>>796確かに「>>796の思う」well definedの定義とは一致しないかもね。
>>798「だから」の前後が全然つながってない件

801132人目の素数さん2018/05/23(水) 19:14:05.61ID:PutOeZzi
>>795というかこれで証明のつもり?はしょりすぎだろ。

802132人目の素数さん2018/05/23(水) 19:32:19.05ID:zNN4cZlg
>>800
ごめん、完全性定理とか不完全性定理とか
算術の超準モデルの基本とかが
俺の脳内で勝手に一般常識みたいな扱いになってた

発表下手な人のパターン

803132人目の素数さん2018/05/23(水) 19:50:08.18ID:4caPj6x/
関数を一意に定義できてなくてもwell definedでいいの?

804132人目の素数さん2018/05/23(水) 19:57:48.60ID:5XOXl9ER
ダメ

805132人目の素数さん2018/05/23(水) 21:38:45.15ID:4caPj6x/
とりあえず1階述語論理で非停止性を証明することはできるよな。停止性を証明できたとしても超準ステップ数目で停止することを示している可能性を排除できない、
という意味であって

806132人目の素数さん2018/05/23(水) 21:47:59.06ID:4caPj6x/
ZFCが無矛盾だとしてもZFC+¬Con(ZFC)のモデルが存在するのと似てる。ω矛盾しておりすべからく超準モデルになる

807132人目の素数さん2018/05/23(水) 21:49:31.31ID:zNN4cZlg
もちろん出来るものもあるし、
本当は停止するのにその事を証明できないような
マシンもある

808132人目の素数さん2018/05/23(水) 21:57:45.98ID:4caPj6x/
逆では?

809132人目の素数さん2018/05/23(水) 22:56:27.80ID:amwAZ2U3
もはや哲学の域?

810132人目の素数さん2018/05/23(水) 23:09:01.76ID:zNN4cZlg
一階述語論理で非停止性を示すというのは、
どういう公理の下での話を想定してるの?
一階述語論理というのは¬とか⇒とか∀とかの
命題結合記号や量化記号を扱えるだけのシステムなので
A⇒Aとか(A∧B)⇒Aみたいなトートロジーを示せるだけで、
具体的な自然数やチューリング機械には
そもそも言及する事自体できないのだけど。

仮にZFCみたいな理論を公理に採用し
(て適切にチューリング機械の理論を解釈し)
たとしても、
実際に停止するマシンについては、
停止するまでのマシンの挙動を書き下すだけで
停止性の証明が出来るわけだから
任意の非停止マシンについて、非停止を示せるのなら、
停止問題が解ける事になって不合理でしょ。

811132人目の素数さん2018/05/23(水) 23:19:15.24ID:zNN4cZlg
>>808
ごめん、よく自分のレス見たら書き間違えてた、、

×本当は停止するのに
○本当は停止しないのに

812132人目の素数さん2018/05/24(木) 06:24:35.22ID:vEMyZpD8
停止するかしないかなんて神様がわかれば良いのだよ

813132人目の素数さん2018/05/24(木) 20:53:48.80ID:of0Asveb
可算無限集合の冪集合の濃度=連続体濃度がZFCのモデルによってアレフ1だったりアレフ2だったりするが、冪集合をとる操作がwell definedでないとか、一意ではないとは普通言わないな。

814132人目の素数さん2018/05/24(木) 21:14:53.84ID:l8QEZfSn
>>793
計算不可能レベルで再帰定義を取り入れるのがあまり歓迎されない。
引数nに応じてn-ビジービーバー関数をオラクルで呼び出すシステムを取り入れるだけくらいでいい

815132人目の素数さん2018/05/24(木) 21:17:20.63ID:pzFSY5oA
何か凄い初歩的で申し訳ないんだけど、
〜〜〜〜で決まる何とか函数がwell-definedである事を
言うためには、〜〜〜〜という記述が表わす対象が
一意に決まる事を言わないといけないんじゃないの?
〜〜〜〜が関数になっている事ではなくて。

816132人目の素数さん2018/05/24(木) 21:18:32.89ID:l8QEZfSn
モデルによって関数が異なる(ある標準的な自然数nについてf(n)の値が異なる)場合はwell definedとは普通言わないと思う

817132人目の素数さん2018/05/24(木) 21:22:13.60ID:l8QEZfSn
>>813の場合はアレフ1やアレフ2がwell definedでないということ

818132人目の素数さん2018/05/24(木) 21:25:12.49ID:l8QEZfSn
>>817言い方が悪かった。べき集合の濃度がwell definedでない

819132人目の素数さん2018/05/24(木) 22:08:46.58ID:pzFSY5oA
>>816
まあラヨ関数についてはそれで良い気がするけど、
だとすると、何かコーディング決めて
f(n)
:=m(自然数nのコードするチューリング機械が
mステップで停止する場合)
:=-1 (nのコードするチューリング機械が停止しない場合)
:=-2 (自然数nがチューリング機械をコードしない場合)
とすると、f(n)=-1という関係がwell-definedで
なくなり得る気がする

820132人目の素数さん2018/05/24(木) 22:16:17.95ID:l8QEZfSn
>>819
ZFCが無矛盾だとして(ZFCじゃなくてもいいけど)、nをZFCが矛盾するという証明列を見つけ出して停止するチューリングマシンのコードとすると、
超準モデルで考えるとf(n)は超準的自然数を返すが標準モデルで考えると-1を返す。

とか?

821132人目の素数さん2018/05/24(木) 22:26:45.97ID:c3neDLsf
そもそもモデルってなんなんだよ
3行で教えてくれ

822132人目の素数さん2018/05/24(木) 23:10:49.08ID:cwLgPhwH

はい俺の勝ち

823132人目の素数さん2018/05/25(金) 01:13:01.45ID:kGxSRdIp
定義文で関数を強くするよりも、定義文を上位の定義文で拡張すれば良いのでは
中の定義文を強化する言わばS定義文

824132人目の素数さん2018/05/25(金) 06:31:25.61ID:CsI1ck0q
>>820
だいたいそんな感じ。
そしてそれは標準的な入力に対しても起こり得る。

825132人目の素数さん2018/05/25(金) 09:56:35.48ID:gU+GX2s9
いや標準モデルではおこりえないんじゃ
知らんけど

826132人目の素数さん2018/05/25(金) 10:09:23.14ID:gU+GX2s9
>>795はビジービーバーがwell definedであることの説明になってないと思うし
関数であることや全域性を証明できてもモデルによって関数が変わるってつまりwell definedじゃないってことだしだからこそラヨ関数がwell definedでないと主張してたんじゃないかと

ビジービーバー関数もラヨ関数も任意のモデルで停止するとか命名文になるとかいうふうにすれば解決する、
というのであって

ラヨ関数は「任意の」という量化の範囲を公理のモデルにするか命名文のモデルにするかで2パターンに別れる

827132人目の素数さん2018/05/25(金) 10:38:10.91ID:oNqoenwT
む、むずかしい話でついてけない

828132人目の素数さん2018/05/25(金) 20:04:39.74ID:EKtLOPjB
とりあえず集合の濃度すらwell definedでないと思うなら、数学においてwell definedとはどんな意味の用語なのか調べたほうがいいんじゃないかな。
多分思ってる定義と世間一般での定義が違うから。

829132人目の素数さん2018/05/25(金) 20:09:51.85ID:dWd6vU9O
>>826はwell definedとはcomputableのことだと誤解してる
数学を知らぬ馬鹿の典型

830132人目の素数さん2018/05/25(金) 20:12:02.69ID:dWd6vU9O
>函数がwell-definedである事を 言うためには、
>(函数の)記述が表わす対象が 一意に決まる事を
>言わないといけないんじゃないの?

それは函数を定義する体系の強度に依存する
そういうことに無神経なのが、数学を知らぬ馬鹿

831132人目の素数さん2018/05/27(日) 00:59:04.29ID:Eccfjv+j
逆に>>830が考えるwell definedといえるものって例えば何?

832132人目の素数さん2018/05/27(日) 01:01:35.17ID:O4Prk3RW
集合の濃度がwell definedでないというんじゃなくて、べき集合の濃度というだけじゃどれほどの濃度かはwell definedじゃないという意見

833132人目の素数さん2018/05/27(日) 02:56:29.25ID:qjdaiiMu
モデルの取り方によって値が超準元になり得るというのは
ごく普通にあり得る現象で、普通に数学をしている場合は
それだけだwell definedでないとは言わないとは思う。


ただ、仮に標準的自然数の値のみを考えるとか
規約したとして、それで元々の問題においてきちんと
数を定義した事になるのかと言えば大変微妙なんだけど。
つまり、ある式が或る自然数を定義しているかどうかが
ZFC + 巨大基数公理みたいな死ぬほど強い公理系から
独立になってしまうので。

834132人目の素数さん2018/05/27(日) 03:00:55.15ID:qjdaiiMu
だから冪集合の濃度がwell definedでないという
言い方は普通しないよね。
2^aleph 0 = aleph αとした時に、αの値は
ZFCでは決定できない、とは言えるけど。

すごく単純な例で例えていうなら、
世の中にはアーベル群と非アーベル群があるから
群Gが可換かどうかはwell definedでない、
とか言ってるようなもの。

835132人目の素数さん2018/05/27(日) 20:34:24.08ID:7gvVQJJP
2*3*5*√(x^2+1/2^2+1/3^2+1/5^2+2*(x*(1/2+1/3+1/5)+1/2*(1/3+1/5)+1/3*1/5))


2*3*5*√(4^2/5^2+1/2^2+1/3^2+1/5^2+2*(-4/5*(1/2+1/3+1/5)+1/2*(1/3+1/5)+1/3*1/5))=7
2*3*5*√(2^2/3^2+1/2^2+1/3^2+1/5^2+2*(-2/3*(1/2+1/3+1/5)+1/2*(1/3+1/5)+1/3*1/5))=11
2*3*5*√(3^2/5^2+1/2^2+1/3^2+1/5^2+2*(-3/5*(1/2+1/3+1/5)+1/2*(1/3+1/5)+1/3*1/5))=13


2*3*5*7*√(5^2/5^2+1/2^2+1/3^2+1/5^2+1/7^2+2*(-5/5*(1/2+1/3+1/5+1/7)+1/2*(1/3+1/5+1/7)+1/3*(1/5+1/7)+1/5*1/7))=37
2*3*5*7*√(6^2/5^2+1/2^2+1/3^2+1/5^2+1/7^2+2*(-6/5*(1/2+1/3+1/5+1/7)+1/2*(1/3+1/5+1/7)+1/3*(1/5+1/7)+1/5*1/7))=5
2*3*5*7*√(7^2/5^2+1/2^2+1/3^2+1/5^2+1/7^2+2*(-7/5*(1/2+1/3+1/5+1/7)+1/2*(1/3+1/5+1/7)+1/3*(1/5+1/7)+1/5*1/7))=47
2*3*5*7*√(5^2/7^2+1/2^2+1/3^2+1/5^2+1/7^2+2*(-5/7*(1/2+1/3+1/5+1/7)+1/2*(1/3+1/5+1/7)+1/3*(1/5+1/7)+1/5*1/7))=97
2*3*5*7*√(6^2/7^2+1/2^2+1/3^2+1/5^2+1/7^2+2*(-6/7*(1/2+1/3+1/5+1/7)+1/2*(1/3+1/5+1/7)+1/3*(1/5+1/7)+1/5*1/7))67
2*3*5*7*√(8^2/7^2+1/2^2+1/3^2+1/5^2+1/7^2+2*(-8/7*(1/2+1/3+1/5+1/7)+1/2*(1/3+1/5+1/7)+1/3*(1/5+1/7)+1/5*1/7))=7

836132人目の素数さん2018/05/27(日) 22:53:46.99ID:EVCCPsiI
どのモデルでもその中でBB(n)は一意であることも、どの計算可能関数よりも大きいことも証明できるんだから単に大小比較をするのに何の問題もないじゃないか。
0=BB(n),1=BB(n),...のどれかが証明できる必要なんてない。

837132人目の素数さん2018/05/27(日) 23:31:38.56ID:1CB7J1d1
BBの大きさを語る能力の無い公理系では
BB(ある大きい数) の値を実際とは違う値だと決めても矛盾を証明出来ない
だから上の公理系に対して
BB(ある大きい数)=実際と違う値
という公理を加えても無矛盾となる

だからBB(ある大きい数)の値は公理依存で一意に決まらない

と主張してる人がこのスレに約1名いる

838132人目の素数さん2018/05/27(日) 23:37:55.68ID:O4Prk3RW
それぞれのモデルの中で一意に定まるんじゃなくて、定義文から一意に定まることを求められるんだと思う、でないと数の大小関係が自明でなくなってしまうことが考えられるし、ある定義文がどこまでも大きな自然数を定義しているという主張ができてしまう。
同じ体系内であればどう解釈しようが大小関係は変わらないということも考えられるが異なる解釈で大小が変わってしまうことがあるのは評価の一意性に欠けてしまう。

あと函数を定義する体系の強度に依存するというのは、たとえば1階述語論理で定義された場合であれば体系の強化が間違っていることになってこの例には当てはまらない

ビジービーバー関数は任意のモデルで同じ関数を意味するように定義することができないという意味では1階述語論理で定義できないが、
任意の標準モデルを充足するという形でなら、同じ関数を意味するように、つまりwell definedに定義できる

839132人目の素数さん2018/05/28(月) 01:25:38.23ID:/I+ydfPI
任意のモデルで同じ関数を意味するって
自然数を定義できないモデルとかどうすんの?

840132人目の素数さん2018/05/28(月) 04:03:14.32ID:CuQVkWzJ
何かstackexchangeとか見てたら、やっぱRayo関数は
いろいろ問題ありそうな感じだね。

海外サイトでも有名な論理学者とかが、やっぱり
理論の不完全性定理とかTuring機械の停止性とかと
絡めて説明してるからこのスレが脱線して非本質的な
議論してるわけじゃなさそう。

https://math.stackexchange.com/questions/2199190/the-first-few-values-of-rayos-function
Rayo関数は一階の集合論内では定義できない。
二階の集合論とかMorse-Kelleyの集合論とかは
一階部分の真理述語を持ってるから一応定義は出来る。
更にRayo関数がZFCなどの一階の集合論で定義出来る
全ての関数を十分先でdominateする事が示せる。
真理述語が使えるのかどうかとかの基礎論的な文脈を
特定しないと無意味なんじゃないのか、と。
二階の集合論が必ず一階部分の真理述語を
持ってるわけじゃないし、持ってなくても部分関数で
代用できる場合もあるし、さらに関数が集合として
存在する事が示せなかったりするし云々。

ぶっちゃけ、連続体濃度がアレフkとなる
自然数nが存在する時k、存在しない時0、みたいな定義も
明らかに1 googol文字以下で出来てるんだか
こういうのどうすんのよ、と。R(n)の値はちょっと先に
行くと明らかにZFCから独立になって
本質的にメタ数学的な問題だらけになる、と。

https://mathoverflow.net/questions/34710/succinctly-naming-big-numbers-zfc-versus-busy-beaver
何か計算量理論で出てくるアルゴリズムで
有名な研究者がコメントしてたりする。

https://mathoverflow.net/questions/32891/finding-the-largest-integer-describable-with-a-string-of-symbols-of-predefined-le
基本的に、こういうコンテストでは誰が勝者かは
再帰理論的な意味で計算不可能になる。
何気にFields賞受賞者とか、証明論の有名な研究者とかがコメントしてる。

841132人目の素数さん2018/05/28(月) 04:11:49.35ID:CuQVkWzJ
あとどっかに、超準モデルでは超準ステップで停止する
Turingマシン、みたいな問題を避けるためには
ベースの理論が無矛盾なだけじゃなくて
少なくともω無矛盾じゃとないといけない、
とか書いてあって、確かにそうだよね、と。

停止までのステップ数が変なモデルを取ると
変わり得るというのは、こういう或る程度の強さの
算術的な健全性を仮定すれば一応解決出来るっぽい。
標準的な自然数というのは一通りに確定する事になってるから。

842132人目の素数さん2018/05/28(月) 20:34:22.56ID:BafdU079
二階論理なら自然数のモデルが全部同型になるような自然数論を作れるのは確かにデデキントが証明した通り。
しかし英語版wikipediaのPeano axiomsの記事
https://en.m.wikipedia.org/wiki/Peano_axioms
によると、これは集合論の立場から見れば、集合論のモデルが決まればその中での二階PAのモデルは一意と言っているだけで、選んだ集合論のモデルが超準的ならその中で作れる二階PAのモデルもまた超準的でありえる。

843132人目の素数さん2018/05/28(月) 20:46:47.11ID:BafdU079
>>837
BB(ある大きい数)がある値「である」と仮定しても無矛盾、と
BB(ある大きい数)がある値「ではない」と仮定しても無矛盾、じゃ意味が違うぞ。
後者は見たことあるが、前者の主張は見たことないな。明らかにBB(ある大きい数)=0からは矛盾が導けるし。

844132人目の素数さん2018/05/28(月) 21:11:46.98ID:RIlknZ+2
言いたいことが>>798ですでに言われていた

任意の標準的な自然数につき、ビジービーバー関数の値でないことは、それぞれの引数につき、標準モデルでビジービーバー関数の値になるものひとつを除いて証明可能。

>>838は充足という言葉のつかいかた間違えてた。

自然数のコーディングを決めて論理公理やらを前提として、ビジービーバー関数の定義文とされるものを充足する任意の標準モデルにおいて同じ関数を意味するように定義可能

845132人目の素数さん2018/05/29(火) 20:00:35.44ID:wkxxhPKm
>>795の最初の命題ってさ、計算不能関数なら機械的証明ができるとは限らないってそれ当然では?

846132人目の素数さん2018/05/29(火) 21:51:50.88ID:IbUB6FhW
2^n-1=1+2+2^2+2^3+2^4+2^5+・・・+2^(n-1)
n=2kのとき3で割り切れる
n=4kのとき5で割り切れる
n=3kのとき7で割り切れる
n=10kのとき11で割り切れる
n=12kのとき13で割り切れる
n=16kのとき17で割り切れる
n=a*kのとき
2^(a*k)-1は必ず(a+1)を因数にもつ
a=a1*a2のとき
2^(a1*a2*k)-1は必ず(a1+1)と(a2+1)を因数にもつ

2^(31)-1のとき
2^(31)-1は31+1=32=2^5を因数に持つはずだが
2^(n)-1は2で割り切れないので素数になる

2^(15)-1のとき
2^(15)-1は15+1=2^4を因数に持つはずだが
上記と同じ理由で割り切れないが
15=3*5なので7を因数にもつ

847132人目の素数さん2018/05/29(火) 21:54:33.82ID:IbUB6FhW
2^(n)-1

n=15kのとき
2^(n)-1は7と31と151を必ず因数にもつ

n=30kのとき
2^(30k)は必ず7と31と151と331を因数にもつ

848132人目の素数さん2018/06/01(金) 23:36:04.34ID:VgAkxq5j
1+2+2^2+2^3+2^4+2^5+2^6+2^7=(1+2+2^2+2^3)+2^4*(1+2+2^2+2^3)=(1+2)+2^2*(1+2)+2^4*(1+2)+2^6*(1+2)=(1+2^2+2^4+2^6)*(1+2)=((1+2^2)+2^4*(1+2^2))*(1+2)=(1+2^4)*(1+2)*(1+2^2)=17*3*5
2^(n*k)-1
2^(2*n*k)-1=1+2+・・・+2^(2*n*k-1)=1+2+・・・+2^(n*k-1)+2^(n*k)*(1+2+・・・+2^(n*k-1))

2^(2^(2^(n)-1)-1)-1=2^(127)-1は素数
2^(2^(2^(2^(n)-1)-1)-1)-1は素数

849132人目の素数さん2018/06/02(土) 11:11:02.44ID:A0nLqGI5
2^(2^(n)-1)-1
n=2^(2^(n)-1)-1


2^(2^(2^(2^(2^(2^(2^(2^(n)-1)-1)-1)-1)-1)-1)-1)-1

2^(2^(2^(2^(2^(2^(2^(2^(3)-1)-1)-1)-1)-1)-1)-1)-1は素数
2^(2^(2^(2^(2^(2^(2^(2^(5)-1)-1)-1)-1)-1)-1)-1)-1は素数
2^(2^(2^(2^(2^(2^(2^(2^(7)-1)-1)-1)-1)-1)-1)-1)-1は素数

850majimanji2018/06/05(火) 20:01:23.20ID:QIACvSK1
定義 H(x)
x!*x!^x!
He(x)=
H(x)^H(x)
途中省略
Ts(x)=
Lv(x)!^Lv!
Og(x)=
Ts!^Ts(x)!
本編
Og(ラヨ数)
これ何桁くらい?

851132人目の素数さん2018/06/05(火) 20:12:10.33ID:ZLxKMO3r
1兆桁くらいじゃないかな?

852132人目の素数さん2018/06/05(火) 21:03:19.39ID:B5vd9rFd
はあ?

853132人目の素数さん2018/06/06(水) 16:43:06.64ID:/P1bex/6
まずラヨ数を定義してから

854132人目の素数さん2018/06/06(水) 21:38:34.51ID:OYrr1IrA
左から新しい数列、新しい配列表記のセパレータ、DANのセパレータ

(0,2)=(1:3)=(1,,2)
(0,2,2)=(1:4)=(1,,,2)
(0,2,2,2)=(1:5)=(1,,,,2)

こんな感じで数列や配列表記でもトリオ数列同等の強さを発揮しそう。
具体的な定義は考えて、どうぞ

855132人目の素数さん2018/06/06(水) 23:37:43.27ID:LoDjkPti
結局、巨大数を生成する関数って、場合分けが多いほどビジービバーの状態数が多いのに対応するみたいな感じで、
基本的には場合分けが多いほど強くなりやすいでOK?

856132人目の素数さん2018/06/07(木) 01:04:27.13ID:nDawOBFe
ただ多いだけじゃ強くはならない。
強くするためのツボを押さえていかないと複雑なだけのサラダになる

857majimanji2018/06/07(木) 17:03:55.32ID:fM5PPEq3
まじ卍関数
卍(x)=
例えば卍(4)=
卍(2)*卍(3)
卍(2)=2,卍(3)=2なので
2*2
4

858カープファン2018/06/07(木) 21:51:29.91ID:fQYx2CWN
下の関数はどれくらいの増加量ですか 教えて下さい

X : 0個以上の1以上の整数
Y : 0個以上の1以上の整数
a : 2以上の整数
b : 1以上の整数
c : 1以上の整数
d : 1以上の整数     のとき

    @ b[1,X]c,d=b[X]c,d
    A b[1]c,d=b→d→c
    B b[X,a]1,c=b[X,(a−1)]c,b
    C b[X,a,1,Y]c,d=b[X,(a−1),(b[X,(a−1),a,Y]c,d),Y]c,d
    D b[X]c,a=b[X](c-1),(b[X](c-1),(b[X](c−1),・・・・(b[X](c−1),b)))
        ただしDの式で右辺のbはa個 
     

859132人目の素数さん2018/06/08(金) 10:02:34.08ID:ISrHFAMi
>>857
卍(x)=2^(フィボナッチ数列のx項目)

860majimanji2018/06/09(土) 12:16:48.93ID:3VrRPcyu
卍関数計算中... 1,2,2,4,8,32,256,8192,2097152,17179869184
36028797018963968

861132人目の素数さん2018/06/10(日) 18:50:02.26ID:6RnxEa1d
>>860
全然弱いねぇ

862132人目の素数さん2018/06/11(月) 17:46:45.42ID:2+Av+778
>>860
かけ算じゃねーかw

863132人目の素数さん2018/06/11(月) 17:51:16.74ID:APJVIZ14
巨大数のシステムって暗号技術に応用利かないのかね

864132人目の素数さん2018/06/11(月) 19:36:26.14ID:QjeVJH30
理屈が解ってればパッと詳細な答えが出る→答え合わせができる数式なら鍵と錠前になるけど……
巨大数って詳細な数値を最後の一桁まで出すようなもんじゃないからどうなんだろ

865132人目の素数さん2018/06/11(月) 21:25:37.62ID:j/6B/rHL
巨大基数を仮定すればNP問題が多項式で解けるとか無いの?

866132人目の素数さん2018/06/12(火) 09:01:21.97ID:r97Z27bm
特にない

867majimanji2018/06/12(火) 18:37:52.57ID:qPwEHV07
>>861
ならば!!
「TMB」
TMB(x)=
TMB(x-1)^TMB(x-2)

868132人目の素数さん2018/06/12(火) 19:05:05.09ID:CGOBYNOh
テトラメチルベンジジン関数?

869132人目の素数さん2018/06/13(水) 21:24:19.65ID:ixvJPa2q
>>865
一応、ZFC+ω-huge cardinalの存在を仮定すれば、
Kunen's inconsistancy theoremと
principle of explosionより
NP問題が多項式時間で解けることを導ける。
まあ無意味だが。

870132人目の素数さん2018/06/13(水) 21:35:04.50ID:xW9095UW
>>869
詳しく

871132人目の素数さん2018/06/13(水) 21:52:20.96ID:WV6DUN30
>>210
SaidiやLepageに見放されてないんだな

872132人目の素数さん2018/06/13(水) 21:52:55.00ID:WV6DUN30
あ、誤爆した

873majimanji2018/06/14(木) 06:41:26.36ID:kAF/yiGJ
TMBの場合は...
1 2 2 4 16 65536 115792089237316195423570985008(続く)
(続き)687907853269984665640564039457584007913129639936
ぎゃあああああああああ

874132人目の素数さん2018/06/14(木) 06:53:44.48ID:ffFDISP4
ZFC + ω-huge cardinalを仮定したら
NP問題が多項式時間では解けない事を示せるよ

875132人目の素数さん2018/06/14(木) 17:58:04.17ID:NqY/3Ana
矛盾するってこと?

876132人目の素数さん2018/06/14(木) 21:37:38.10ID:kwlb7Uay
矛盾はしないだろ

877132人目の素数さん2018/06/14(木) 21:38:57.87ID:kwlb7Uay
というか >>874 が矛盾したらP=NPの証明完了

878132人目の素数さん2018/06/14(木) 22:08:59.35ID:NqY/3Ana
さっぱりわからん
連続体仮説的な何かなのか?

879132人目の素数さん2018/06/14(木) 23:02:41.48ID:P1IHO3yw
>>869>>874は矛盾してるよね?

880majimanji2018/06/16(土) 08:30:06.04ID:tuPDPElw
第1卍数です。
A(x)=(804^x!)→x→x→(804^x^x)
B(x,y)=(x^y)*(A(x)↑↑A(y))→x→(804^x)
C(x,y)=(10↑↑↑(A(x)*A(y))^B(804^xy)
D(x,y,z)=(3↑↑・・(y↑↑・・(z↑↑↑回)・・↑↑y回)・・↑↑3)^(x→y→z→y→x)
このとき、
D(A(1000),B(361,73),C(16552,77384))が第一卍数

881majimanji2018/06/16(土) 09:05:44.14ID:tuPDPElw
(訂正)
>>880の「z↑↑↑回」は正しくは「z↑↑↑z回」でした。すいません

882132人目の素数さん2018/06/19(火) 23:37:29.16ID:3mIZP/N3
結局ω-huge cardinalってなんなのよ?

883132人目の素数さん2018/06/19(火) 23:58:34.39ID:joIzOyug
とても大きな基数
存在するなら

884132人目の素数さん2018/06/20(水) 00:01:51.97ID:6atzgl25
逆にP=NPが言えればω-huge cardinalが存在することも言える?

885132人目の素数さん2018/06/20(水) 00:02:28.06ID:gZ37oghE
勉強が進んでやっとω進数が存在するかどうかって話だと理解した

886132人目の素数さん2018/06/20(水) 00:17:46.70ID:wrLhfBmF
基数か

887132人目の素数さん2018/06/20(水) 12:52:49.53ID:Ai+7ogzB
rank into rank cardinal の一番弱いやつ

888132人目の素数さん2018/06/20(水) 14:55:41.09ID:ZP83riG7
もう集合論の知識ないと何言ってるかわからん世界だな
取り敢えず階層内階層基数(公理?)ってZFCに付け足しても破綻しない中では一番強い巨大基数公理だっけ?

889132人目の素数さん2018/06/20(水) 16:40:09.33ID:xyr9E+RC
破綻してるかしてないかなんてわからないし
一番強いなんて物も無い

890132人目の素数さん2018/06/20(水) 17:13:55.46ID:w+ZIfhaK
wikipediaでググればあまり数学的に意味のある事を言ってないと分かるんだけどね

891132人目の素数さん2018/06/20(水) 19:43:04.38ID:Ai+7ogzB
ほとんどの数学はZFCで間に合うわけで

892132人目の素数さん2018/06/20(水) 22:12:53.52ID:gHo08kK3
wikipediaのhuge cardinalの記事見たら、ω-hugeには複数の同値でない定義があって(つまりω-hugeという言葉は意味が不明確で)、定義によっては>>869が真とは限らなくなるっぽい。
だから>>869の言明は取り下げる。
ω-huge cardinalをReinhardt cardinalに置き換えれば確実に>>869が言えるけど。

893132人目の素数さん2018/06/20(水) 22:22:08.72ID:ZP83riG7
>>889
英語版のWikipediaのリストになんかあったんでそうだと思ってた
おんなじリストによると、選択公理と併用できないのがラインハルト基数とあとなんかもう一つあってこれが階層内階層基数よりも強いらしい(Wiki調べ)

>>890
英語noobだから件の表見たところで力尽きた

894132人目の素数さん2018/06/21(木) 10:11:55.20ID:X3IVFuww
数学板なんだから
「同値」くらい正しい意味で使おうよ

新着レスの表示
レスを投稿する