不等式への招待 第9章 [無断転載禁止]©2ch.net

1不等式ヲタ ( ゚∀゚)2017/09/13(水) 11:20:03.95ID:i1anpb+k
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html

615132人目の素数さん2018/06/15(金) 02:05:18.57ID:mm39PC7P
>>609
(4)
(1-i)(x+iy)(y+iz)(z+ix) = (1-i){-(xyy+yzz+zxx-xyz) +i(xxy+yyz+zzx-xyz)}
= -(x-y)(y-z)(z-x) +i{(x+y)(y+z)(z+x)-4xyz},
絶対値の2乗をとって
 2(xx+yy)(yy+zz)(zz+xx) = {(x-y)(y-z)(z-x)}^2 + {(x+y)(y+z)(z+x) -4xyz}^2,

>>613
 [前スレ.456]
(abc)^2 +aa +bb +cc +2 -2(ab+bc+ca)≧ 0 を使う?
文献[9] 佐藤(訳)、問題3.85改、練習問題1.90(i)

616132人目の素数さん2018/06/15(金) 02:30:14.62ID:d1fXPxbR
なるほど!

>>613
x、y、z∈R のとき、(aa+2)(bb+2)(cc+2) ≧ 9(ab+bc+ca)

[前スレ.456]
x、y、z∈R のとき、(aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2

合体!
(aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2 ≧ 9(ab+bc+ca)

617132人目の素数さん2018/06/15(金) 02:32:47.15ID:mm39PC7P
>>609 (4) >>615
 s = x+y+z,
 t = xy+yz+zx,
 u = xyz,
  = (x-y)(y-z)(z-x),
で表わせば
 2(ss-2t)(tt-2su) -2uu = 刧 + (st-5u)^2,

618132人目の素数さん2018/06/15(金) 02:38:30.76ID:d1fXPxbR
左辺を見て、昨夏の不等式三昧の夜を思い出す ( ゚∀゚) ウヒョッ!

[前スレ.469前後]
x、y、z∈R 、k≧0 のとき、(aa+k)(bb+k)(cc+k) ≧ (3kk/4)*(a+b+c)^2 などなど…

619132人目の素数さん2018/06/15(金) 02:40:06.93ID:d1fXPxbR
>>614
もう最新号出る時期か。よし明日読みに行こう。

620132人目の素数さん2018/06/17(日) 01:22:10.06ID:8Ln3gkjC
立ち読みで疎覚えだが、数蝉NOTE。

a、b、c >0、a+b+c=1 のとき、Σ[cyc] a/(b^2+bc+c^2) ≧3.

621132人目の素数さん2018/06/17(日) 01:33:38.57ID:lI+JiKnS
>>619

〔Igarashi の不等式〕
 a,b,c>0 のとき、
 a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb) ≧ (a+b+c)/(ab+bc+ca) ≧ 3/(a+b+c),
 2018年7月号NOTE

(略証)
 a ' = bb + bc + cc,
 b ' = cc + ca + aa,
 c ' = aa + ab + bb,
とおくと
 aa ' + bb ' + cc ' = (a+b+c) (ab+bc+ca),  … これがミソ(?)
コーシーにより
 (左辺) = a/a ' + b/b' + c/c' ≧ (a+b+c)^2 /(aa ' + bb ' + cc ') = (a+b+c)/(ab+bc+ca),

622132人目の素数さん2018/06/17(日) 01:44:34.71ID:8Ln3gkjC
>>621
おお、これだ。さんくす。
解説でZZZが一般化してたけど、なんかよく分からなかった…。

623132人目の素数さん2018/06/17(日) 01:45:36.54ID:lI+JiKnS
>>620 >>621
 被りました。

 f(x) = 1/x は下に凸だから、Jensenにより
 (左辺) = a f(a ') + b f(b ') + c f(c ')
  ≧ (a+b+c) f((aa'+bb'+cc')/(a+b+c))
  = (a+b+c) f(ab+bc+ca)
  = (a+b+c)/(ab+bc+ca),

624132人目の素数さん2018/06/17(日) 01:46:16.03ID:8Ln3gkjC
>>621
>  a ' = bb + bc + cc,
>  b ' = cc + ca + aa,
>  c ' = aa + ab + bb,
> とおくと
>  aa ' + bb ' + cc ' = (a+b+c) (ab+bc+ca),  … これがミソ(?)

この変形は初めて見た。コレクションに入れておこう。

625132人目の素数さん2018/06/17(日) 01:48:52.60ID:8Ln3gkjC
あと一松じっちゃんの不等式の解説で、s(2(s^2-2t)-5t)+27u の因数分解があったような。
立ち読みだったんで s、t、u で覚えて帰ったから怪しいが…。
手計算で因数分解しようとして挫折した。 手計算でできるのか?

626132人目の素数さん2018/06/17(日) 02:42:52.98ID:lI+JiKnS
>>625

(b+c-2a)(c+a-2b)(a+b-2c) = (s-3a)(s-3b)(s-3c) = -2s^3 +9st -27u,
を使うでござる。

エレ解スレ【2016.11】
http://rio2016.5ch.net/test/read.cgi/math/1476702312/785-786

627132人目の素数さん2018/06/18(月) 22:44:29.14ID:wEh7fB1P
>>622
Nesbittと合体したでござるか…

〔Nesbitt-Igarashi の不等式〕
 a,b,c>0 のとき、
 (a+b+c) {a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb)}
 ≧ 2 {a/(b+c) + b/(c+a) + c/(a+b)}
 ≧ (a+b+c)^2 /(ab+bc+ca)
 ≧ 3,
 数セミ、2018年7月号NOTE-改

628132人目の素数さん2018/06/19(火) 02:28:33.39ID:8eLVrD8z
>>614
よく分からぬ難しげな不等式で、攻めづらかったかも。
この式が出てきた背景は、解説で触れていたけれど。

629132人目の素数さん2018/06/19(火) 02:47:35.19ID:/rZEmPAN
うむ、よう分からなんだ。

630132人目の素数さん2018/06/19(火) 05:03:35.48ID:/rZEmPAN
botの101の問題、分かりますか?

631132人目の素数さん2018/06/19(火) 13:57:17.17ID:8eLVrD8z
>>630 [101]

a〜d>0、a+b+c+d-1=0 のとき
 6(a^3 + b^3 + c^3 + d^3) ≧ aa+bb+cc+dd + 1/8.
 フランス TeamSelectionTest-2007 Q.2

(略解)
 f(x) = 6x^3 - (xx + 1/32)
 = (5/8)(x-1/4) + 2(3x+1)(x-1/4)^2
 ≧ (5/8)(x-1/4),
より
 f(a) + f(b) + f(c) + f(d) ≧ (5/8)(a+b+c+d-1) = 0.

{x = 1/4 で接線を曳く。f '(1/4) = 5/8}

632132人目の素数さん2018/06/19(火) 17:30:30.95ID:/rZEmPAN
>>631
さんくす。4月から見てるけど、101だけ出てこないのだ。
画像のない192は頻繁に出てくるのにな。偏りすぎている。

633132人目の素数さん2018/06/20(水) 02:26:05.78ID:ZoYl55O4
>>632 [192]
 
任意の実数a,b,cに対し、
 (a-b)(a-c)(aa-bc)^2 + (b-c)(b-a)(bb-ca)^2 + (c-a)(c-b)(cc-ab)^2 ≧ 0,
を示せ。
 casphy! - highmath(高校数学) - 不等式2-188
 じゅー君が高校生のとき作ったヤツ(?)

(略証)
i)a+b+c≠0 のとき、
 A = aa-bc,B = bb-ca,C = cc-ab,
とおくと
 A-B = (a+b+c)(a-b),etc.
(左辺) = {AA(A-B)(A-C)+BB(B-C)(B-A)+CC(C-A)(C-B)}/(a+b+c)^2
 = F_2(A,B,C)/(a+b+c)^2  (←シューア)
 ≧0,
ii)a+b+c=0 のとき、
 A = B = C,
 (左辺) = AA F_0(a、b、c) ≧ 0.
これで ☆9 だって。

634132人目の素数さん2018/06/20(水) 23:16:58.87ID:ZoYl55O4
>>613 >>615

〔補題〕
a,b,c≧0 のとき
(abc)^2 +aa +bb +cc +2 -2(ab+bc+ca)≧ 0,

(略証)
a = A^(3/2),b = B^(3/2),c = C^(3/2) とおくと
 (abc)^2 + 2 -3ABC = (ABC)^3 +1 +1 -3ABC ≧ 0,  (←AM-GM)
 A(A-B)(A-C) + B(B-C)(B-A) + C(C-A)(C-B) = F1(A,B,C) ≧ 0,
 AB(A+B) -2ab = AB(√A - √B)^2 ≧ 0,etc.
辺々たす。

635132人目の素数さん2018/06/22(金) 04:52:05.21ID:5dKvywCX
>>634
 >>529 ( Suranyi-3, >>512 >>513  を使った) からも出る…

>>555
 >>549 〔問題18〕は [204] でござった ...orz

636132人目の素数さん2018/06/22(金) 11:12:57.72ID:mDZvFtTn
不等式に関する研究
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/100782

ちと古いがな。他にないかな?

637132人目の素数さん2018/06/23(土) 07:31:00.50ID:NONJ6Zo1
>>611
これはどう証明するのですか?

638132人目の素数さん2018/06/23(土) 18:12:52.09ID:BnO9HX6O
〔問題677〕

Pを凸多面体とし、Pの辺を L_1,L_2,…,L_n とする。
各 1≦i≦n について L_i を辺にもつPの2つの面を考え、
その2つの面のなす角を外側から測ったものを θ_i とする。
(2面の外向き法線のなす角。2面角)

このとき、Σ[i=1,n] θ_i ≧ 3π であることを示せ。

JMO夏季セミナー
http://jmoss.jp/mon/old.php → 第9回 (G,入江)

面白スレ26-677

639132人目の素数さん2018/06/23(土) 22:49:56.64ID:BnO9HX6O
[213]
正の実数列 {a_k} が各自然数kに対して
a_{k+1} ≧ k・a_k / {(a_k)^2 + (k-1)}
を満たすとする。すべての n≧2 に対して
a_1 + a_2 + … + a_n ≧ n,
を示せ。
 IMO Shortlist 2015 A.2 ☆2

640132人目の素数さん2018/06/23(土) 23:13:45.08ID:BnO9HX6O
>>639 [213]
nについての帰納法による。

・n=2 のとき
 a_1 + a_2 ≧ a_1 + 1/a_1 ≧ 2  (← AM-GM)

・n>2 のとき
 a_n ≧1 のときは明らかに成立つ。
 a_n ≦1 のとき 題意より
 k/a_{k+1} ≦ (k-1)/a_k + a_k,
 a_k ≧ k/a_{k+1} - (k-1)/a_k,
 k=1,…,n-1 でたす。
 a_1 + a_2 + … + a_{n-1} ≧ (n-1)/a_n,
 a_1 + a_2 + … + a_n ≧ (n-1)/a_n + a_n
  = n + (n-1 - a_n)(1 - a_n)/a_n
  ≧ (n-2) + 1/a_n + a_n
  ≧ n,   (← 0 < a_n ≦1)

641132人目の素数さん2018/06/23(土) 23:13:45.10ID:BnO9HX6O
>>639 [213]
nについての帰納法による。

・n=2 のとき
 a_1 + a_2 ≧ a_1 + 1/a_1 ≧ 2  (← AM-GM)

・n>2 のとき
 a_n ≧1 のときは明らかに成立つ。
 a_n ≦1 のとき 題意より
 k/a_{k+1} ≦ (k-1)/a_k + a_k,
 a_k ≧ k/a_{k+1} - (k-1)/a_k,
 k=1,…,n-1 でたす。
 a_1 + a_2 + … + a_{n-1} ≧ (n-1)/a_n,
 a_1 + a_2 + … + a_n ≧ (n-1)/a_n + a_n
  = n + (n-1 - a_n)(1 - a_n)/a_n
  ≧ (n-2) + 1/a_n + a_n
  ≧ n,   (← 0 < a_n ≦1)

642132人目の素数さん2018/06/24(日) 04:02:09.24ID:BW6lbwPs
>>632 [101]

25分前に出ますた。

643132人目の素数さん2018/06/24(日) 05:10:52.64ID:dz2BpZ6O
>>642
きたか…!!

  ( ゚д゚ ) ガタッ
  .r   ヾ
__|_| / ̄ ̄ ̄/_
  \/    /

644132人目の素数さん2018/06/24(日) 05:15:05.23ID:dz2BpZ6O
あとは消失した192を作り直してもらうことと、224問目以降を作ってもらうことだな

645132人目の素数さん2018/06/25(月) 23:38:45.92ID:qOAzU6BU
>>611 >>637

基本対称式を x+y+z = s,xy+yz+zx = t,xyz = u とおく。
 xx-yz = xs-t,yy-zx = ys-t,zz-xy = zs-t,
より
 (左辺) - (右辺) = (ss-2t)^3 - 8(xs-t)(ys-t)(zs-t)
 = (ss-2t)^3 - 8(us^3 - t^3)
 = ss{(ss-3t)^2 + (8/3)(tt-3su) + (1/3)tt}
 ≧ 0,
等号成立は x+y+z = 0.

646132人目の素数さん2018/06/25(月) 23:48:14.02ID:qOAzU6BU
>>611 の〔類題〕

x,y,z ∈ R のとき
-(35+13√13)/486 ≦ (xx-yz)(yy-zx)(zz-xy)/(xx+yy+zz)^3 ≦ 1/8,
 -0.1684612481

 左側等号は (x,y,z) = ((3-√13)/2,1,1) など。  -0.302775637732

647132人目の素数さん2018/06/29(金) 11:42:15.93ID:kgKL/5Ht
正の実数a,b,cはa+b+c=3を満たす。このとき、
1/(2+aa+bb)+1/(2+bb+cc)+1/(2+cc+aa)≦3/4

2009 イランTST

648132人目の素数さん2018/06/30(土) 11:28:21.01ID:ApWhDcRo
>>609
(1) は x+y+z=0 の条件があるから、一緒にまとめるべきではなかったね。

649132人目の素数さん2018/07/01(日) 11:44:56.53ID:o+nodY1/
>>647

左辺を f(a,b,c) とおく。
1≦c とし、(a+b)/2 = (3-c)/2 = m とおく。
 f(a,b,c) ≦ f(m,m,c) ≦ 3/4
を示す。

(左)
aa+bb ≧ 2mm より
1/(2+aa+bb) = 1/{2 +2mm +(1/2)(a-b)^2} ≦ 1/(2+2mm),
1/(2+cc+bb) + 1/(2+cc+aa) = 2{2+cc+(aa+bb)/2}/{(2+cc+bb)(2+cc+aa)}
 ≦ 2/(2+cc+mm),
∵ (2+cc+bb)(2+cc+aa) -(2+cc+mm){2+cc+(aa+bb)/2}
 = (1/4)(a-b)^2 (2+cc-3mm) + (1/16)(a-b)^4
 = (1/4)(a-b)^2 {2+cc-(3/4)(3-c)^2} + (1/16)(a-b)^4
 = (1/32)(a-b)^2 (19+c)(c-1) + (1/16)(a-b)^4
 ≧ 0,   (← c≧1)

(右)
 f(m,m,c) = 1/(2+2mm) + 2/(2+cc+mm)
 = (3/4){1 - (c-1)^2・(5cc-26c+37)/[8(2+2mm)(2+cc+mm)] }
 ≦ 3/4.

650132人目の素数さん2018/07/01(日) 14:00:30.20ID:AVymxtb0
実数x_1,x_2,…,x_nに対して次の不等式が成立することを示せ
Σ[i,j=1,n]|x_i+x_j|≧nΣ[i=1,n]|x_i|

2006 イランTST

651132人目の素数さん2018/07/02(月) 01:07:30.65ID:dZnBLmxp
>>649
 m ≦ 1 ≦ c より
 2+cc-3mm ≧ 0,

652132人目の素数さん2018/07/02(月) 07:40:46.47ID:dZnBLmxp
>>650

x_1, x_2, …, x_p > 0,
x_{p+1}, …, x_n ≦ 0, とする。(0≦p≦n)

(左辺) = Σ[i,j=1,p] |x_i+x_j| + Σ[i,j=p+1,n] |x_i+x_j| + Σ[i=1,p][j=p+1,n] |x_i+x_j|
= Σ[i,j=1,p] (|x_i|+|x_j|) + Σ[i,j=p+1,n] (|x_i|+|x_j|) + Σ[i=1,p][j=p+1,n] |x_i+x_j|
= 2p S_p + 2(n-p) S_n + 2S~,
ここに
 S_p = Σ[i=1,p] |x_i|, S_n = Σ[j=p+1,n] |x_j|, S~ = Σ[i=1,p][j=p+1,n] |x_i+x_j|,
とおいた。

・p = n/2 のときは成立する。(S~≧0)

・0 ≦ p < n/2 のとき
 S~ ≧ Σ[i=1,p][j=p+1,n] (|x_i|-|x_j|) = (n-p) S_p - p S_n,
 0 < (n-2p)/(n-p) ≦ 1 を掛けて
 S~ ≧ {(n-2p)/(n-p)}S~ ≧ (n-2p){S_p - [p/(n-p]S_n},
 (左辺) ≧ n S_p + {n + (n-2p)^2 /(n-p)}S_n ≧ n(S_p + S_n),

・n/2 < p ≦ n のとき
 S~ ≧ Σ[i=1,p][j=p+1,n] (|x_j|-|x_i|) = -(n-p) S_p + p S_n,
 0 < (2p-n)/p ≦ 1 を掛けて
 S~ ≧ {(2p-n)/p}S~ ≧ (2p-n){-[(n-p)/p]S_p + S_n},
 (左辺) ≧ {n + (2p-n)^2 /p}S_p + n S_n ≧ n(S_p + S_n),

653132人目の素数さん2018/07/02(月) 16:23:14.90ID:dZnBLmxp
>>652 訂正

はじめの方で
(左辺) = … + … + 2Σ[i=1,p][j=p+1,n] |x_i+x_j| 
の係数2が抜けてました。(後の論証に影響ないと思いますが…)

654132人目の素数さん2018/07/03(火) 11:38:56.42ID:F6g7HQZx
>>652
混乱しているので修正

(左辺) = 2p S(+) + 2(n-p) S(-) + 2S~,
ここに
 S(+) = Σ[i=1,p] |x_i|, S(-) = Σ[j=p+1,n] |x_j|, S~ = ……
とおいた。

結論は
 (左辺) ≧ …… ≧ n{S(+) + S(-)},

655132人目の素数さん2018/07/05(木) 18:50:30.31ID:da/jl28d
非負実数a,b,c,dと1≦p≦2なる実数pに対して、次の不等式が成立することを示せ
(a+b)^p+(c+d)^p+(a+c)^p+(b+d)^p≦a^p+b^p+c^p+d^p+(a+b+c+d)^p

656132人目の素数さん2018/07/05(木) 18:54:49.03ID:da/jl28d
>>655
修正
p≧2

657132人目の素数さん2018/07/05(木) 21:25:46.65ID:lZ8d7PQt
デジャヴを感じる

658132人目の素数さん2018/07/06(金) 08:14:08.28ID:Fbh8MKIz
>>37(1) >>40 >>41 >>44

〔Redhefferの不等式〕
a_1 〜 a_n >0 のとき
G_k = (a_1・a_2…a_k)^(1/k) とおくと
G_1 + G_2 + …… + G_n ≦ Σ[k=1,n] (1+1/k)^k・a_k - n・G_n,

 和書[3] (大関, 1987) p.114-115 例題3
 文献 Ray Redheffer: Proc. London Math. Soc., Vol. s3-17, Iss. 4, p.683-699 (1967/Oct)
    "Recurrent inequalities"

659132人目の素数さん2018/07/13(金) 09:38:28.60ID:/EP6VcDe
>>658

(G_{k-1},G_{k-1},…,G_{k-1},(1+1/k)^k・a_k)のk個ででAM-GM する。
  (k-1)個

 (k+1)G_k - (k-1)G_{k-1} ≦ (1+1/k)^k・a_k,

k=1〜n でたす。(便宜上、G_0=0)

660132人目の素数さん2018/07/14(土) 06:57:00.45ID:bqEthaWH
Math Lovers 数学を愛する会 @Math_Beautiful_ (2017/12/20 00:26:49)
半径rの円に外接する円の面積をSとしたとき、以下が成立。
https://pbs.twimg.com/media/DRa1WNUVoAAgNXE.jpg
http://twitter.com/Math_Beautiful_/status/943140572276985856

661132人目の素数さん2018/07/14(土) 22:00:02.78ID:fIrZynJm
>>660

「円に外接する三角形の面積だろ!」
とかツッコミたくないが。
 
その場合は
 a = {cot(B/2)+cot(C/2)} r/2 などより、
S = {cot(A/2)+cot(B/2)+cot(C/2)} rr
 ≧ 3cot((A+B+C)/6) rr  (←下に凸)
 = 3cot(π/6) rr
 = (3√3) rr,

662132人目の素数さん2018/07/15(日) 22:13:34.38ID:8ME/vsb7
>>609 (2)
>>612 (2)

 [x,y,z] [x,z,y] [S2,t,t]
 |z,x,y| |y,x,z| = |t,S2,t|
 [y,z,x] [z,y,x] [t,t,S2]
の行列式は
 D(x,y,z)^2 = D(S2,t,t).
ここに
 D(x,y,z) = x^3 + y^3 + z^3 -3xyz
 = (x+y+z)(xx+yy+zz-xy-yz-zx)
 = (x+y+z)(S2-t).

663132人目の素数さん2018/07/16(月) 02:00:56.06ID:Dv9n2PFO
>>609 (3) [182](1)

 大数宿題 - 2013 Q.5
[第7章].114[2](1)、116
Casphy! - higmath - 不等式2 - 170

664132人目の素数さん2018/07/17(火) 14:27:57.12ID:s0zcFt1B
( ゚∀゚)つ https://tohoku.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=41283&item_no=1&page_id=33&block_id=38

665132人目の素数さん2018/07/17(火) 23:51:33.85ID:GyPvcBOe
>>662
F(x,y,z) は既約かつ対称な多項式で
 F(x,y,z)^2 = F(xx+yy+zz,xy+yz+zx,xy+yz+zx)
を満たすとする。

F(x,y,z) = x+y+z,
F(x,y,z) = xx+yy+zz -xy-yz=zx,
以外にも解があるかな。

新着レスの表示
レスを投稿する