モンティホールの問題で絶対選び直す奴www [無断転載禁止]©2ch.net

1132人目の素数さん2017/08/25(金) 14:37:30.24ID:S098vEOR
コイントスで表が出たら次に出るのは絶対に裏を選択するんだな?

541132人目の素数さん2018/08/08(水) 10:41:57.67ID:r4IJEhQA
モンティホール問題をドア四枚で行った時の
確率空間は以下の通り

Ω={(i,j,k,l)|1≦i≦4,1≦j≦3,1≦k≦8,1≦l≦2}

#A=4x3x8x2−3x2x7x1=192−42=150なので

Aの起こる確率p=150/192=25/32

#Aは事象Aに含まれる要素の個数

モンティがプレイヤーが最初に選択したドアを
開けることができる場合
ドアが四枚の時の当たりの確率P(A)=25/32

q=1−pだから

最初に当たりを引く確率q=7/32=0.21875

ドアが四枚の時はモンティが二回ハズレを開けられるので
プレイヤーが最初に選択したドアの確率は下がる

542132人目の素数さん2018/08/08(水) 10:56:22.48ID:VJppIciK
ドア4枚  (1/4、1/4、1/4、1/4)
残り3枚  (1/4、3/8、3/8)
残り2枚  (1/4、3/4)  (4/7、3/7)  (1/3、2/3)

1/4 ≦ P(X) ≦ 3/4

543132人目の素数さん2018/08/08(水) 10:59:20.20ID:r4IJEhQA
トランプ問題でダイヤ以外のスートが出る
確率空間は以下の通り

Ω={(i,j)|1≦i≦4,1≦j≦49}

#A=4x49−3x48=196−144=52なので

Aの起こる確率p=52/196=13/49

#Aは事象Aに含まれる要素の個数

ダイヤのカードが三枚出た後に箱の中のカードが
スペード・ハート・クラブのどれかである確率は
P(A)=13/49

スペード・ハート・クラブである確率は
P(X)=39/49

排反事象q=1−pにより

箱の中のカードがダイヤである確率∵q=10/49

544132人目の素数さん2018/08/08(水) 12:25:17.17ID:VJppIciK
>>540
@ P(恩赦A ∧ 処刑BC)=(1/10)*(1/3)
A P(恩赦D ∧ 処刑BC)=(4/10)*(1)
@:A=1:12
P(恩赦A|処刑BC)=@/(@+A)=1/13

545132人目の素数さん2018/08/08(水) 13:15:44.06ID:VJppIciK
ドア5枚  (1/5、1/5、1/5、1/5、1/5)
残り4枚  (1/5、4/15、4/15、4/15)
残り3枚  (1/5、2/5、2/5)  (9/29、8/29、12/29)  (1/4、3/8、3/8)
        ↓          ↓           ↓
残り2枚  (1/5、4/5)     (9/25、16/25)      (1/4、3/4)
      (1/2、1/2)     (9/33、24/33)      (4/7、3/7)
      (1/3、2/3)     (9/13、4/13)      (1/3、2/3)
                (1/4、3/4)
                (4/7、3/7)
                (3/5、2/5)

546132人目の素数さん2018/08/09(木) 06:42:23.97ID:9fEpZ7SK
シャッフル後にダイヤのカードをn枚引いた時の

箱の中のカードがダイヤである確率は

1≦n≦12の範囲において

∵q=1−(165−3n/208−4n)

547132人目の素数さん2018/08/09(木) 09:29:38.02ID:5KuB/Ih9
>>546
q=(13−n)/(52−n) (0≦n≦13)

548132人目の素数さん2018/08/09(木) 10:14:53.39ID:9fEpZ7SK
>>546
∵q=1−{(165−3n)/(208−4n)}

549132人目の素数さん2018/08/09(木) 12:00:13.09ID:5KuB/Ih9
>>548
n=3 のとき q=10/49 になる式っていうだけで
n={1,2,4,5,6,7,8,9,10,11,12} のときは正しい数値にならないぞ
一般化するなら、ちゃんと検算ぐらいしろ

n=1 q=1−(162/204)=7/34     正しくは q=12/51
n=12 q=1−(129/160)=31/160    正しくは q=1/40

550132人目の素数さん2018/08/09(木) 12:06:26.27ID:9fEpZ7SK
7/34

41/200

10/49

39/192

19/94

37/184

1/5

35/176

17/86

11/56

8/41

31/160

551132人目の素数さん2018/08/09(木) 12:08:37.76ID:9fEpZ7SK
確率空間の計算と条件付確率の計算がちょうど合う

10/49が問題に選択されただけだよ

552132人目の素数さん2018/08/09(木) 12:17:19.66ID:9fEpZ7SK
パターン総当たりを根拠に10/49を導くのはおそらく確率論ではない

553132人目の素数さん2018/08/09(木) 12:21:38.25ID:5KuB/Ih9
n=0  13/52
n=1  12/51
n=2  11/50
n=3  10/49
n=4  9/48
n=5  8/47
n=6  7/46
n=7  6/45
n=8  5/44
n=9  4/43
n=10  3/42
n=11  2/41
n=12  1/40
n=13  0/39

554132人目の素数さん2018/08/09(木) 12:23:46.99ID:9fEpZ7SK
単純すぎるね

555132人目の素数さん2018/08/09(木) 12:40:10.49ID:5KuB/Ih9
箱の中のカードを含めて
残りのカードがダイヤである確率は同様に確からしいから、必然的にそうなる

556132人目の素数さん2018/08/09(木) 12:59:45.58ID:9fEpZ7SK
「n通りのうちm通りだから確率m/n」という単純な計算を正当化したいなら、
n通りそれぞれが全て同様に確からしい根拠を示さなきゃいけない

557132人目の素数さん2018/08/09(木) 13:12:11.71ID:5KuB/Ih9
くじ引きで最初に引こうが最後に引こうが当たる確率は同じというのと一緒

558132人目の素数さん2018/08/09(木) 13:39:58.82ID:5KuB/Ih9
n=1 のとき
事象A:箱の中がダイヤ、次に引いたのもダイヤ
事象B:箱の中がダイヤ以外、次に引いたのがダイヤ

P(A|B)=P(A)/{P(A)+P(B)}
    =(13/52)*(12/51)/{(13/52)*(12/51)+(39/52)*(13/51)}
    =(13*12)/{(13*12)+(39*13)}
    =12/(12+39)
    =12/51

559132人目の素数さん2018/08/09(木) 13:44:23.35ID:5KuB/Ih9
>>558 訂正
× P(A|B)
○ 求める確率

560132人目の素数さん2018/08/09(木) 13:54:57.72ID:5KuB/Ih9
>>554
そもそも複雑なら正解というわけでもない

561132人目の素数さん2018/09/30(日) 22:24:58.05ID:QXkD3Yad
■■■■■■■■■■■■■
□□□□□□□□□□□□■
■■■■■■■■■■■□■
■□□□□□□□□□■□■
■□■■■■■■■□■□■
■□■□□□□□■□■□■
■□■□■■■□■□■□■
■□■□■□□□■□■□■
■□■□■■■■■□■□■
■□■□□□□□□□■□■
■□■■■■■■■■■□■
■□□□□□□□□□□□■
■■■■■■■■■■■■■

562132人目の素数さん2018/10/19(金) 19:12:21.39ID:5btDxqP5
>>548
nの二次関数にして(0≦n≦13)の範囲でも成立する式に
大幅アップグレード

kを正の整数の定数として
山札からダイヤがn枚抜き出された時の
5≦k≦15の範囲において以下の式が成り立つ

■箱の中のカードがダイヤである確率は

∴q=1−{{165n−(k−4)n^2+351}/(208n−kn^2+468)}

または式変形すると

∴q=(n−13)(4n+9)/(kn^2−208n−468) [5≦k≦15]

k=7,n=3の時q=10/49

k=7,0≦n≦13の範囲において

1/4
52/223
187/856
10/49
25/132
232/1333
77/488
74/527
205/1684
20/197
7/88
106/1909
19/652

563132人目の素数さん2018/10/19(金) 23:45:36.44ID:5btDxqP5
調査によってq=10/49を導く式をたくさん発見した

■q=10/49 ∵n=3,k=7,[5≦k≦16]

q=1−{{165n−(k−4)n^2+39}/(216n−kn^2+52)}
q=1−{{165n−(k−4)n^2+78}/(215n−kn^2+104)}
q=1−{{165n−(k−4)n^2+117}/(214n−kn^2+156)}
q=1−{{165n−(k−4)n^2+156}/(213n−kn^2+208)}
q=1−{{165n−(k−4)n^2+195}/(212n−kn^2+260)}
q=1−{{165n−(k−4)n^2+234}/(211n−kn^2+312)}
q=1−{{165n−(k−4)n^2+273}/(210n−kn^2+364)}
q=1−{{165n−(k−4)n^2+312}/(209n−kn^2+416)}

564132人目の素数さん2018/10/20(土) 00:39:15.64ID:kWakH5+C
さらに定数aを定めることにより116個の関数を追加

∴q=1−{{165n−3n^2+(4875−39a)}/{(92+a)n−7n^2+(6500−52a)}}

■q=10/49 ∵n=3,[0≦a≦115]

565132人目の素数さん2018/10/20(土) 01:01:15.68ID:kWakH5+C
定数bを定めて>>563の式を一般化する

■q=10/49 ∵n=3,k=7,[5≦k≦16],[0≦b≦7]

∴q=1−{{165n−(k−4)n^2+(39+39b)}/{(216−b)n−kn^2+(52+52b)}}

>>564と合わせてq=10/49 ∵n=3の関数は224種類

566132人目の素数さん2018/10/20(土) 18:07:21.57ID:i/pSdc7x
モンテイホールの問題は条件付確率の問題と考えると
非常識な結論が導き出されますので、
非復元抽出の問題だと考えるべきだと思います。

条件付確率となるのは事前確率が確定で不変のもの、
言い換えると、事前確率が前提条件となって後発事象が発生するということですが、
本問題にあっては、事前確率が後発事象の影響で必然的に変化するケースに相当するので、
条件付確率ではありません。

本問題は極めて単純な非復元抽出の問題で、
たとえば、袋の中から籤を引くような問題と同等です。
当たりくじが1本で、外れくじが9本ある母集団(サイズ10)を考えてみると、
引く順番によって特定の籤の当たる確率が変わることはなく、
先に引こうが後から引こうが事前確率は1/10となります。

ところで、一つの籤の結果が公表され外れとなりました。
この時最初に引いた人の事前確率はどうなるかというと、
母集団がサイズ10の時には1/10であったものが、
母集団のサイズが1個減少して9個になったことから、
必然的に1/10から1/9に事前確率は変化します。

条件付確率であると仮定すると、事前確率は確定不変ですから、
母集団が縮小しても変わらず1/10であると主張することになります。

567132人目の素数さん2018/10/20(土) 18:07:42.07ID:i/pSdc7x
そうすると、縮小された母集団のサイズに関係なく最初の母集団のサイズにより事前確率は一意的に確定することになりますが、
この例では母集団のサイズが9個でも8個でも7個でもーーーー3個でも1/10になります。
そうすると、母集団の最初のサイズがN個であってもよいわけですから、
3個のドアの問題にあたって事前確率は必ずしも1/3とはいえず、1/Nであると言わなければなりません。

ところでNは2以上の整数をとれますから、事前確率は確定しないということになります。
これは確率論としては誤りであり、数学的確率は、当たりが1本しかない場合には、1/(母集団のサイズ)と定義されていますから、
3個のドアの場合には事前確率は1/3であり、4個のドアの場合には事前確率が1/4となります。

本問題は、司会者が1個のドアを確定事象として外れとしたものですから、母集団のサイズは縮小して2個となり、
解答者の選んだドアも残されたドアの当たる確率は等しく1/2となり、
解答者が選択を換えることの必然性というか有利さはありません。

568132人目の素数さん2018/10/20(土) 18:24:51.61ID:kWakH5+C
>>565
q=10/49 ∵n=3の関数は125種類でした(・∀・)

定数kを3と7で固定して正の整数cで一般化すると

∴q=1−{{165n−3n^2+(39+39c)}/{(216−c)n−7n^2+(52+52c)}}

■q=10/49 ∵n=3,[0≦c≦124]

569132人目の素数さん2018/10/20(土) 18:54:54.27ID:kWakH5+C
『事前確率が後発事象の影響で必然的に変化するケースに
相当するので、条件付確率ではありません』

事前確率は三枚のドアがそれぞれ1/3
プレイヤーが選択したドアが1/3
プレイヤーが選択しなかった
残り二枚のドアの当たりの確率が2/3

モンティが確定情報をもとにハズレのドアを開けると
プレイヤーが選択しなかった二枚のドアが
一枚になって当たりの確率が2/3

570132人目の素数さん2018/10/20(土) 19:15:16.97ID:i/pSdc7x
事前確率が確定しないというのが非常識でないとしたらどうなるのでしょうか?
ベイズの定理は事前確率を仮定しての事後確率の計算公式ですから、
事前確率なり事前の状況が後発事象により影響を受ける時には
(仮定に影響を及ぼす時には)、適用されるべき公式ではなくなります。
それは一次方程式の解を求める時に二次方程式の根を求める公式を適用するようなもので、
公式それ自体は正しくとも一次方程式には適用できないのと類似しています。

571132人目の素数さん2018/10/20(土) 19:16:04.51ID:i/pSdc7x
本問題に立ち返って、3個のドアの場合を考えると、
事前確率は1/3でどのドアも同じ確率です。
ではこれが4個のドアの場合はどうでしょうか?
事前確率は1/4でどのドアも同じ確率です。
先に選択されたドアと残されたドアで確率が変わることはありえません。

572132人目の素数さん2018/10/20(土) 19:17:15.06ID:i/pSdc7x
司会者が1個のドアを外れとして示したことは、
このドアは確定現象となってしまいますから、
今後の可能性の空間から飛び出したものとなります。
今後の可能性の空間の標本数は1個減少します。
問題は、先に選択されたものと残された標本との間に確率的有意差があるのかということです。
同一の可能性の空間に存在するのは、解答者の選んだドアと残されたドアだけです。
司会者がどちらのドアを外れとしようが、当たりのドアは、解答者が選んだドアか残されたドアかのいずれかになります。
従って、小生の解答は解答者の選んだドアも残されたドアも同じ確率の1/2になります。

573132人目の素数さん2018/10/21(日) 18:07:43.29ID:ltcwrDDV
3枚のドアがある

□□ ■■ ■■
□□ ■■ ■■
□□ ■■ ■■

モンティチョイス

□□ ■■ 
□□ ■■ 
□□ ■■ 

当たりの確率が1/2世界線へシフト

■□ □■
□■ ■□
■□ □■

574132人目の素数さん2018/10/22(月) 02:44:32.34ID:KtsVLZzJ
当(A,B,C)=(9900/10000、99/10000、1/10000)

あなたが扉Bを選んだ後、
当たりを知ってる司会者がハズレ扉Aを開けた。
あなたは扉Cに変えるべきだろうか?

(stay):(switch)=99*(1/2):1*(1)=99:2

575132人目の素数さん2018/10/30(火) 02:38:54.38ID:m3nuFJvJ
A,B,Cの処刑確率が異なるように設定した「変形3囚人問題」では
(看守がすべてを知っており、かつ嘘をつかずAを意図的に除外し、
かつBとCに優劣をつけないとしたときでも)
看守から情報を得たあとの処刑確率が変化し
しかも確率の設定によっては事前より「増える」というより直観に反する事態も起こる。

たとえば、A,B,Cの処刑確率がそれぞれ3/4,3/4,1/2だったとして(1人だけ釈放
され、釈放確率が1/4,1/4,1/2ということ)、看守についての上記の条件のもとで
看守から「Bが処刑される」という情報を得たあとのAの処刑確率は、4/5に増える。
このことはベイズの定理で計算すればわかるが、
ライバルが減ったにもかかわらず処刑確率が増えるのは不思議といえば不思議。

この種の問題を直観的に処理するとき無意識に使っている
「確率不変の原理(関係ない情報のはずだから確率は不変だろう)」
や「事前確率比例配分(AとCの確率比を、Bなしで再配分)」
などが必ずしも正しくないことが分かる

576132人目の素数さん2018/11/02(金) 00:17:00.48ID:+UTP9GLJ
■■■
□□■
■■■

■■■
□□■
■■■

577132人目の素数さん2018/11/03(土) 22:26:04.59ID:nqMGpkef
もんちい(´・ω・`)

578132人目の素数さん2018/11/14(水) 16:18:58.57ID:bGkusq+Z
あなたがゲーム番組の挑戦者に選ばれた。
あなたに3つの扉が示された。
そのうちの1つに賞品が隠されている。
  賞品を隠す扉の決め方が均等だとは限らない
ホストがあなたに一つの扉を選ばせた。
ホストはどこに賞品が隠されているか知っている。
  その知識をどのように利用したかわからない
ホストは別のハズレの扉を一つ開けた。
  いつも開けるとは限らない
  ハズレしか開けないとは限らない
  あなたが選んだ扉を開けないとは限らない
  あなたが当たりを選んだときに、ホストが開ける扉に偏りが無いとは限らない
あなたはもう一つの扉に切り替えてもよいと言われた。
  言われるとは限らない
あなたはどうすべきか?

579132人目の素数さん2018/11/22(木) 11:22:20.65ID:Tk92OMZa
三囚人は条件付き確率で考えるとしっくりくるけど
モンティは素朴に考えた方がわかりやすい

580132人目の素数さん2018/11/22(木) 12:15:31.95ID:gwl47C58
【何もしてないヤツはいきなりパニック起こす】 世界経済破綻 ⇒ 世界教師マ@トレーヤ ⇒ UFO
http://rosie.5ch.net/test/read.cgi/liveplus/1542853287/l50

581132人目の素数さん2018/11/22(木) 15:25:46.09ID:+vs8K4gw
>>579
その素朴な考え方っていうのは、俗に言うアレだろ?
最初に選んだ扉の当たる確率は、他の扉が開けられても変わらないとか
選択を変えることは、他の2つの扉を選ぶことと同じであるとか。

分かりやすいが故に、その素朴な考え方が
(どんな場合でも)正しいという思い込みが強すぎて
(ある意味では)勘違いということに気づかせるのは容易ではない。

582132人目の素数さん2018/11/22(木) 19:15:42.04ID:rC3xip9O
>>578
なんらかの確率的判断を行うとするならば
主観確率的に考えて
3つの扉A,B,Cのアタリの事前確率は1/3ずつとみなし
挑戦者がAを選び
ホストがBを選らんだとしたら
切り替えしてアタリの確率は単純にP(C:当|B:外)とみなしてよいと思う
故に
切り替えしてアタリの確率は1/2

583132人目の素数さん2018/11/22(木) 22:00:47.02ID:+vs8K4gw
細かいようだけど、P(B:外) の表記はダウト。
P(B:当)=1/3 なんだから、P(B:外)=2/3 という解釈の余地がある。
P(B:開) の表記が無難かと。

584132人目の素数さん2018/11/23(金) 00:25:09.76ID:lWHRnM9w
>>583
モンティホール問題の標準設定や亜種の設定で
プレイヤーが扉Aを選び、司会が扉Bを選んで開けたらハズレだったという状況における
プレイヤーにとっての、切り替えがアタリの確率は
P(C:当|B:開 ∧ B:外)
であって
例えば
P(C:当|B:開)
P(C:当|B:外)
P(C:当|開:外)
等ではないよ

特に司会が選んで開けた扉が必ずしもハズレとは限らない設定では
P(C:当|B:開)≠P(C:当|B:開 ∧ B:外)
となることもある
{B:開 ∧ B:外}や{B:開}や{B:外}などの事象はそれぞれ区別しなければならない

ただし、今回(>>578)のように「司会がどのように扉を選ぶのか不明」という設定では
「司会が扉Bを選んで開けた」という情報を無視して良い
というのが>>582での私の主張の肝であり
だからこそP(C:当|B:外)という表記なのだ

585132人目の素数さん2018/11/23(金) 01:50:49.21ID:/nGqErzs
分かったような、煙に巻かれたような
それだったら、より厳密な表記は
P(C:当|A:選 ∧ B:開 ∧ B:外) ってことなのかな?

586132人目の素数さん2018/11/23(金) 03:07:29.45ID:lWHRnM9w
プレイヤー(自分)がどの扉を選ぶのか確率的に決めたりする場合はそうなるが
そうすることによる意味や面白味はあまりないと思うなあ
プレイヤーが扉Aを選ぶという下での確率空間として考えれば不要

587132人目の素数さん2018/11/23(金) 03:15:24.35ID:/nGqErzs
なんとなく分かってきた

@ P(当A ∧ 開B ∧ 外B)=(1/3)*(1/3)*(1)
A P(当B ∧ 開B ∧ 外B)=(1/3)*(1/3)*(0)
B P(当C ∧ 開B ∧ 外B)=(1/3)*(1/3)*(1)

P(当C|開B ∧ 外B)=@/(@+A+B)=1/2

588132人目の素数さん2018/11/23(金) 21:29:15.94ID:lWHRnM9w
ちがう
司会が3つの扉からランダムに選ぶ設定でそれがプレイヤーに既知ならそうだが
選び方がわからないなら、{開B}という事象は実質無視してみなしてよい

P(当A ∧ 外B ∧ 開B)=P(当A ∧ 外B)=1/3
P(当B ∧ 外B ∧ 開B)=P(当B ∧ 外B)=0
P(当C ∧ 外B ∧ 開B)=P(当C ∧ 外B)=1/3
よって
P(当C | 外B ∧ 開B)=P(当C | 外B)=1/2

589132人目の素数さん2018/11/24(土) 04:47:34.32ID:eoP0/7yT
>司会が3つの扉からランダムに選ぶ設定でそれがプレイヤーに既知ならそうだが

司会の選び方が分からないからこそ、ランダム設定とみなすしかないのでは?
ABCの当たりの事前確率も分からないからこそ、ランダム設定とみなすしかない
みなし自体を否定するなら、そもそも確率計算不能かと

590132人目の素数さん2018/11/25(日) 23:37:18.88ID:35/c0Cbi
ある程度の仮定は必要だが
「司会はランダムに選ぶ」という強い仮定は不要
「司会の選び方は不明」のまま計算は可能

例えば司会の選び方が
プレイヤーが扉Aを選んだとき
扉Cがアタリなら司会は扉Bを開ける
扉Bがアタリなら司会は扉Cを開ける
扉Aがアタリなら、コインdを投げて表なら扉B,裏なら扉Cを開ける
であり、そのことがプレイヤーに既知であるという標準設定の場合
プレイヤーにとっての、切り替えがアタリの確率は
司会が扉Bを開ける条件L1; (C:当)
∨(A:当 ∧ d:表)
を用いて
P(C:当|B:外 ∧ B:開)=P(C:当|B:外 ∧ L1)
と表せる

同様にもし別の設定で、司会が扉Bを開ける条件L2なら
P(C:当|B:外 ∧ B:開)=P(C:当|B:外 ∧ L2)
となる

設定による違いは、司会が扉Bを開ける条件Liの違いで表せるというわけだ
そして、司会が扉Bを開ける条件というのはL1,L2,L3,…と無数に存在する
既に挙げた条件Li,Ljを用いて他の条件を、恒偽条件にならい範囲で
notLi,Li∧Lj,Li∨Lj等といくらでも構成することもできる

591132人目の素数さん2018/11/25(日) 23:38:11.29ID:35/c0Cbi
さて、「司会の選び方は不明」という場合
司会が扉Bを開ける条件はL1,L2,L3,…のどれなのかは不明だが
司会が扉Bを開けたのならば、L1,L2,L3,…の少なくとも1つは満たしたはずだ
すなわち、司会の選び方は不明のとき、司会が扉Bを開けたということは
B:開 ⇔ (L1 ∨ L2 ∨ L3 ∨ …)
と無数の条件の連なりとして表せる
そしてこの中には、LiとnotLi、のような関係の条件も含まれるのだから恒真だ
従って P(B:開)=1

結局、「司会の選び方は不明」という場合には
{B:外 ∧ B:開}等の(B:開)を含む事象(情報)は
{B:外} ;「とにかくBはハズレだったということだけわかった」と
一見(B:開)を無視したような解釈をしてよいのだ

以上により「司会の選び方は不明」という場合は、「不明である」としたまま
P(C:当|B:外 ∧ B:開)=P(C:当|B:外)
故に1/2と計算されるのである


こうしておくと
例えばそこから更に「司会の選び方は標準設定である」という情報を得た場合では
P(C:当|B:外 ∧ B:開 ∧ L1)=P(C:当|B:外 ∧ L1)
となり
「司会の選び方が不明」→「判明」の状況変化を
P(C:当|B:外) → P(C:当|B:外 ∧ L1)
とベイズ改訂で表すこともできる

新着レスの表示
レスを投稿する