奇数の完全数の有無について [無断転載禁止]©2ch.net

1132人目の素数さん2017/01/09(月) 03:37:33.28ID:X5hOZBcs
これについて誰か証明できませんか?

47132人目の素数さん2018/02/13(火) 23:02:53.32ID:wewNn4Nt
>>45 訂正
yの素因数の指数は一つだけ奇数にならなければならない。
yが完全数であるためには、以下の式が成立しなければならない。
y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

aはbで割り切ることができるから、整数dをd=a/bとすると
a-2b=bd-2b=b(d-2)
となる。b>1であることから、|a-2b|は1にならない。
よって、pは約数a-2bを持つことになり、素数であることに矛盾する。

以上から、奇数の完全数は存在しない。

48132人目の素数さん2018/02/14(水) 01:10:47.47ID:dQl1imBn
>p=(c-2b)/(a-2b) となる。
>よって、pは約数a-2bを持つ
こういうこと言ってるようではアカンです

49132人目の素数さん2018/02/14(水) 01:19:50.68ID:BzdeAn+s
>>48
>>47では、|a-2b|>1としていますが。

50132人目の素数さん2018/02/14(水) 01:56:32.95ID:dQl1imBn
>>49
よく考えようよ
>p=(c-2b)/(a-2b)
から
(c-2b)は約数(a-2b)を持つ
ことは言えるけど
>pは約数a-2bを持つ
とは言えんでしょうが

51132人目の素数さん2018/02/14(水) 03:12:23.72ID:BzdeAn+s
>>48
その部分は誤りでした。

>>47 訂正
yの素因数の指数は一つだけ奇数にならなければならない。
yが完全数であるためには、以下の式が成立しなければならない。
y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

aはbで割り切れるから、整数dをd=a/bとすると
p=(d/p^n-2)/(d-2)
となるが、p^n>1であるから、p<1となりpが素数であることに矛盾する。

以上から、奇数の完全数は存在しない。

52132人目の素数さん2018/02/14(水) 05:22:53.00ID:dQl1imBn
>>51
>aはbで割り切れる
どうしてそう言い切れる?

53132人目の素数さん2018/02/14(水) 07:41:42.13ID:BzdeAn+s
>>52
言い切れません。dは実数に変更します。

54132人目の素数さん2018/02/14(水) 07:44:59.01ID:BzdeAn+s
>>52
有理数にしました。

>>51 訂正
yの素因数の指数は一つだけ奇数にならなければならない。
yが完全数であるためには、以下の式が成立しなければならない。
y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

有理数dをd=a/bとすると
p=(d/p^n-2)/(d-2)
となるが、p^n>1であるから、p<1となりpが素数であることに矛盾する。

以上から、奇数の完全数は存在しない。

55132人目の素数さん2018/02/14(水) 08:08:41.74ID:Tbd2t9Cq
奇数であることを使ってないからその証明が正しいなら偶数の完全数も存在しないことになるからおかしいってことに気づけ

a/b=(2p^n)/(1+p+p^2+…+p^n)なんだからdは2より少し小さい数
(d/p^n-2)は-2より少し大きい数
(d-2)は0より少し小さい数
(d/p^n-2)/(d-2) は1より大きい数だから矛盾なんてしていない

56132人目の素数さん2018/02/14(水) 08:56:09.94ID:BzdeAn+s
>>55
この証明は>>38から続いている

57132人目の素数さん2018/02/14(水) 09:07:21.99ID:Tbd2t9Cq
>>56
矛盾につながる部分に>>54の最初の行から上は全く使われてない

58132人目の素数さん2018/02/14(水) 10:10:25.97ID:BzdeAn+s
>>54 訂正
yの素因数の指数は一つだけ奇数にならなければならない。

yが完全数であるためには、以下の式が成立しなければならない。
y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

有理数dをd=a/bとすると
ap-2bp+2b=a/p^n
a(p-1/p^n)=2(p-1)b
d=2(p-1)/(p-1/p^n)

(p-1)/(p-1/p^n)<(p-1)/pであり、pは2より大きい素数であるから
p>2+1/p^n
2(p-1)>p-1/p^n
2(p-1)/(p-1/p^n)>1
となるから、dは1<d<2(p-1)/p …C
の値をとる。

p=(2b-a/p^n)/(2b-a)
p=(2-d/p^n)/(2-d)

pはCの範囲で、変数dの単調増加関数であるから
(2-1/p^n)<p<(2-2(p-1)/(pp^n))/(2-2(p-1)/p) …D

右辺は
(2-2(p-1)/(pp^n))/(2-2(p-1)/p)
=(p-(p-1)/(p^n))/(p-(p-1))
=p-(p-1)/(p^n)
となるから、Dは
(2-1/p^n)<p<p-(p-1)/(p^n)
となるが
p<p-(p-1)/(p^n)は成立することはないから、Cは成立しない。

以上から、奇数の完全数は存在しない。

59132人目の素数さん2018/02/14(水) 10:17:04.79ID:BzdeAn+s
>>58 訂正
×p<p-(p-1)/(p^n)は成立することはないから、Cは成立しない。
〇p<p-(p-1)/(p^n)は成立することはないから、Dは成立しない。

60132人目の素数さん2018/02/14(水) 10:28:19.01ID:Tbd2t9Cq
>(p-1)/(p-1/p^n)<(p-1)/pであり、pは2より大きい素数であるから

p-1/p^n<pだから(p-1)/p<(p-1)/(p-1/p^n)

61132人目の素数さん2018/02/14(水) 11:11:34.80ID:dQl1imBn
>a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
>b=Π[k=1,m]pk^qk
>a/p^nは整数となりこれをcとする
>p=(c-2b)/(a-2b) となる。
aと2bの大小は定義からは明らかでない。したがって場合わけをする

1)a>2bの場合
以下の主張は正しいように思われる
>有理数dをd=a/bとするとp=(d/p^n-2)/(d-2)となるが、
>p^n>1であるから、p<1となりpが素数であることに矛盾する。

2)a=2bの場合
これは即ちbが奇数の完全数であることを示している
そのような例が存在するかは別途証明が必要

3)a<2bの場合
p=(2b-a/p^n)/(2b-a)となる。
pは奇素数であるから(2b-a/p^n)/(2b-a)≧3
よってこの場合、2b/aについて解くと
3/2-1/(2p^n)≧2b/a>1
であることが必要といえる

62132人目の素数さん2018/02/14(水) 11:45:30.65ID:dQl1imBn
>>61
2)a=2bの場合
(2b-a/p^n)=(2b-a)pの式は
左辺は0でなく、右辺は0であるため成立しない

以上より「3)a<2bの場合」であることが必要

63132人目の素数さん2018/02/14(水) 22:14:46.43ID:GdB9m1Jz
正整数Nの正の約数の総和とNの比を「Nの約数和比」というとして、
正整数Nが完全数であることはNの約数和比が2であることと同値である。
素数pと正整数qについて、D(p,q)をp^qの約数和比と定義するとき、
素因数分解表示N=Π[k=1→m]pk^qk(i≠jのとき素数pi≠素数pj,かつqk≧1)を持つ
正整数Nについて、Nの約数和比はΠ[k=1→m]D(pk,qk)であるから、このとき、
正整数Nが完全数であるということはΠ[k=1→m]D(pk,qk)=2と同値である。

ところで、D(p,q)=Σ([j=0→q]p^j)/p^q=1+(1-1/p^q)/(p-1)であるから、
任意の素数pと正整数qについて1<D(p,q)<2である。
1<D(pk,qk)であるから、D(pk,qk)は1つ乗じる毎に約数和比は必ず増加する。
D(pk,qk)を乗じてゆくといつか2を超える(ここでは「バーストする」と表現する)かもしれない。
D(p,q)の性質を調べ、それらを幾つどのように掛け合わせればバーストするかしないかを
調べることは、奇数の完全数の存在性を調べる為に有用であると考える。
・D(p,q)は、定義域でqについて単調増加である。(つまりq1<q2⇒D(p,q1)<D(p,q2))
・D(p,1)=1+1/p,D(p,2)=1+(p+1)/pp,...,lim[q→∞]D(p,q)=1+1/(p-1)であり、
 任意の素数pと自然数q≧1について1+1/p≦D(p,q)<1+1/(p-1)である
・D(p,q)は、定義域でpについて単調減少である。(つまりp1<p2⇒D(p1,q)>D(p2,q))

64132人目の素数さん2018/02/14(水) 22:15:55.93ID:GdB9m1Jz
>>63のつづき
これらの性質を使うと、例えば以下のことが言える
・奇数の完全数は少なくとも3種類の素因数を持つ
 ∵1<D(p1,q1)<2のため1種類の奇素数を素因数に持つN=p1^q1は完全数でない。
  2種類の奇素数を素因数に持つN=p1^q1・p2^q2は、p1=3,p2=5のとき
  約数和比はD(3,q1)D(5,q2)<(1+1/2)(1+1/4)=15/8<2であり、
  他の奇素数の組み合わせではこれよりも更に小さくなる。
・奇数の完全数がちょうど3種類の素因数を持つならば、最大の素因数は7を超える
 ∵3つの素数p1≦p2≦p3を7以下の奇素数の組み合わせで選ぶとp1=3,p2=5,p3=7であるが、
  pk≡1(mod 4)となるpkがp2=5のみなのでq2は奇数、q1,q3は偶数である。
  約数和比の下界はD(3,2)D(5,1)D(7,2)=(1+4/9)(1+1/5)(1+8/49)=494/245>2
  となり、D(3,q1)D(5,q2)D(7,q3)はこれより大きいので必ずバーストする。
とまあ、こんな感じでひとつひとつ性質を調べていって積み上げることになるのでは。

65132人目の素数さん2018/02/14(水) 22:32:56.83ID:BzdeAn+s
>>38>>58でQ.E.D.ではないかと思います
acceptだと聞こえてきていますし

本当かどうかは分かりませんが

66132人目の素数さん2018/02/14(水) 23:03:31.91ID:dQl1imBn
>>58
>(p-1)/(p-1/p^n)<(p-1)/pであり、
この部分が誤り

67132人目の素数さん2018/02/15(木) 00:08:43.55ID:YYbCTtwg
>>66
その部分は不等号が反対でした。

68132人目の素数さん2018/02/15(木) 00:10:40.87ID:YYbCTtwg
>>58 訂正
yの素因数の指数は一つだけ奇数にならなければならない。
yが完全数であるためには、以下の式が成立しなければならない。
y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

有理数dをd=a/bとすると
ap-2bp+2b=a/p^n
a(p-1/p^n)=2(p-1)b
d=2(p-1)/(p-1/p^n)

(p-1)/(p-1/p^n)<(p-1)/(p-1/p)
(p-1)/(p-1/p^n)<p/(p+1)
であり、pは2より大きい素数であるから
p>2+1/p^n
2(p-1)>p-1/p^n
2(p-1)/(p-1/p^n)>1
となるから、dは1<d<p/(p+1) …C
の値をとる。

p=(2b-a/p^n)/(2b-a)
p=(2-d/p^n)/(2-d)

pはCの範囲で、変数dの単調増加関数であるから
(2-d/p^n)<p<(2-p/((p+1)p^n))/(2-p/(p+1)) …D

右辺は
(2-p/((p+1)p^n))/(2-p/(p+1))
=(2p+2-p/p^n)/(p+2)
=2+(2-p/p^n)/(p+2)<3
となり、Dから
(2-d/p^n)<p<3
が成立することから、pが素数であることに矛盾する。

以上から、奇数の完全数は存在しない。

69132人目の素数さん2018/02/15(木) 00:26:08.61ID:YYbCTtwg
>>68
×pが素数であることに矛盾する。
〇pが奇素数であることに矛盾する。

70132人目の素数さん2018/02/15(木) 00:32:44.29ID:EGDusbJh
p=3とすれば6という完全数も存在しないことになるな

71132人目の素数さん2018/02/15(木) 00:43:44.20ID:YYbCTtwg
>>68 訂正
yの素因数の指数は一つだけ奇数にならなければならない。
yが完全数であるためには、以下の式が成立しなければならない。
y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

有理数dをd=a/bとすると
ap-2bp+2b=a/p^n
a(p-1/p^n)=2(p-1)b
d=2(p-1)/(p-1/p^n)

p=(2b-a/p^n)/(2b-a)
p=(2-d/p^n)/(2-d) …C

(p-1)/(p-1/p^n)<(p-1)/(p-1/p)
(p-1)/(p-1/p^n)<p/(p+1)
であり、pは2より大きい素数であるから
p>2+1/p^n
2(p-1)>p-1/p^n
2(p-1)/(p-1/p^n)>1
となるから、dは1<d<p/(p+1) …D
の値をとる。

p/(p+1)<1であるから、Dを満たす整数dが存在しないので
Cを満たす素数pは存在しない。

以上から、奇数の完全数は存在しない。

72132人目の素数さん2018/02/15(木) 00:45:14.00ID:YYbCTtwg
>>70
奇数の完全数が存在しないことの証明をしています

73132人目の素数さん2018/02/15(木) 01:01:57.70ID:EGDusbJh
>>72
偶数には使えないことは使ってないから偶数の完全数も存在しないことになるが

74132人目の素数さん2018/02/15(木) 01:12:54.81ID:YYbCTtwg
>>73
pが2より大きい素数をいう条件が途中にある

75132人目の素数さん2018/02/15(木) 01:18:12.00ID:EGDusbJh
y=6でp=3とすれば矛盾するんだろ

76132人目の素数さん2018/02/15(木) 01:28:31.08ID:EGDusbJh
6が完全数だとするとy=6,p=3として>>71を使うと1<d<3/4となって矛盾するから6は完全数じゃない

77132人目の素数さん2018/02/15(木) 01:42:26.35ID:9GXVdFDs
>(p-1)/(p-1/p^n)<(p-1)/(p-1/p)
これマチガイよ

78132人目の素数さん2018/02/15(木) 02:05:41.39ID:9GXVdFDs
>>77
じゃないか
>d=2(p-1)/(p-1/p^n)
>(p-1)/(p-1/p^n)<p/(p+1)であり、
>となるから、dは1<d<p/(p+1) …D
2を掛けるの忘れてるよ

79132人目の素数さん2018/02/15(木) 02:39:10.90ID:O6aE9A8Z
>>71
この方向性ではいくらやってもダメなのよ

|a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
|b=Π[k=1,m]pk^qk
|y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b

から、a/b=2p^n/(1+p+p^2+…+p^n) こうなるんだけれども
左辺=a/b>1は定義より明らか
右辺=2p^n/((p^(n+1)-1)/(p-1))
=2p^n(p-1)/(p^(n+1)-1)
=(2p^(n+1)-2p^n)/(p^(n+1)-1)
=((p^(n+1)-2p^n+1)+(p^(n+1)-1))/(p^(n+1)-1)
=(p^(n+1)-2p^n+1)/(p^(n+1)-1)+1
=((p-2)p^n+1)/(p^(n+1)-1)+1
なのでp≧2なら右辺>1
だからこの式をいくらいじってもd=a/b<1は出てこない

また、1<d<2のときp=(2-d/p^n)/(2-d)>1だから、
この式をいくらいじってもp<1は出てこない
出てきたとしたら導出が誤っている

80132人目の素数さん2018/02/16(金) 07:59:42.15ID:ROeNsO6N
>>71 訂正
yの素因数の指数は一つだけ奇数にならなければならない。
yが完全数であるためには、以下の式が成立しなければならない。

y/p^n=(1+p+p^2+…+p^n)Π[k=1,m](1+pk+pk^2+…+pk^qk)/(2p^n)=Π[k=1,m]pk^qk

ここで、
a=Π[k=1,m](1+pk+pk^2+…+pk^qk)
b=Π[k=1,m]pk^qk
とすると

y/p^n=a(1+p+p^2+…+p^n)/(2p^n)=b
a(p^(n+1)-1)/(2(p-1)p^n)=b
a(p^(n+1)-1)=2b(p-1)p^n
ap^(n+1)-2b(p-1)p^n=a

(ap-2bp+2b)p^n=a
ここで、ap-2bp+2bは整数だからa/p^nは整数となりこれをcとする
ap-2bp+2b=c
(a-2b)p=c-2b
p=(c-2b)/(a-2b)
となる。

有理数dをd=a/bとすると
p=(2-d/p^n)/(2-d)

b=Π[k=1,m]pk^qkだから、
b≢0 (mod p)

正整数e,fとして、
b=ep+f
0<f<p
b≡f (mod p)
が成立する

c-2b≡0 (mod p)
c≡2b≡2f (mod p)
c≢0 (mod p)

ap-2bp+2b=c
ap-c=2b(p-1)

2b=(ap-c)/(p-1)

正整数g,h、h≡2f (mod p), 0<h<p
2b=(ap-c)/(p-1)=gp+h
ap-c=gp^2+hp-gp-h
gp^2+(-a-g+h)p+c-h=0

81132人目の素数さん2018/02/16(金) 08:02:23.66ID:ROeNsO6N
>>80 つづき
-ap+hp+c-h≡0 (mod g)
p(-a+h)+c-h≡0 (mod g)

整数iを用いて
p(-a+h)+c-h=gi

c-h≡gi≡0 (mod p)
整数jを用いて
pj=gi
p=gi/j

pは素数だから、i=1で、g=pjでなければならい。
g≡0 (mod p)


2b=jp^2+h

c-h≡0 (mod p)だから、整数をk(0<k<p)として
c=pk+h

ap-2bp+2b=c

ap=2b(p-1)+c
=(jp^2+h)(p-1)+pk+h
=jp^3+ph-jp^2-h+pk+h
=jp^3+ph-jp^2+pk

a=jp^2-jp+h+k
∴a≡h+k (mod p)

c=pk+hで、c,pはともに奇数であるから、hとkの偶奇は反対になり、
h+kは奇数となる。

整数をmとして
a=mp+h+k

a-2b=mp+h+k-(jp^2+h)=mp-jp^2+k≡k (mod p)
c-2b=pk+h-(jp^2+h)=pk-jp^2≡0 (mod p)
a-c≡k (mod p)

a≡h+k (mod p)
c≡h (mod p)だから、2b≡c≡h (mod p)


gp^2+(-a-g+h)p+c-h=0

p^3-p(p+a-h)+c-h=0
p^3-p^2+(-a+h)p+c-h=0
p^2(p-1)+h(p-1)-ap+c=0

ap-c≡0 (mod p-1)

ap-c-a(p-1)=a-c≡0 (mod p-1)
a-c≡k (mod p)
a-c≡0 (mod p-1)

整数をsとして
a-c=ps+k
ここで、a-cは偶数だから、sとkの偶奇は反対になっている。

82132人目の素数さん2018/02/16(金) 08:03:07.57ID:ROeNsO6N
>>81 つづき
整数をtとして
a-c=(p-1)t

ps+k=(p-1)t
k+t=(t-s)p
k+t≡0 (mod p)

整数をuとして
k=up-t
a-c=(p-1)(up-k)
a((p^n-1)/p^n)=(p-1)(up-k)
a/(p^n(p^(n-1)+p^(n-2)+…+p+1))=up-k
a=(up-k)p^n(p^(n-1)+p^(n-2)+…+p+1)

a≡0 (mod p)
c≡-k (mod p)

a≡h+k (mod p)で、a≡0 (mod p)、0<h,k<pだから
h+k=p

a=jp^2-jp+h+k
a=jp^2-jp+p=jp(p-1)+p

a≡1 (mod p-1)

整数をvとして
a=v(p-1)+1

a((p^n-1)/p^n)=(p-1)(up-k)
(v(p-1)+1)((p^n-1)/p^n)=(p-1)(up-k)

(p^n-1)/p^n≡0 (mod p-1)
(p^(n-1)+p^(n-2)+…+p+1)(p-1)/p^n≡0 (mod p-1)

整数wとして
(p^(n-1)+p^(n-2)+…+p+1)(p-1)/p^n=w(p-1)

w=(p^(n-1)+p^(n-2)+…+p+1)/p^n
wp^n=p^(n-1)+p^(n-2)+…+p+1

wp^n≡0 (mod p)
p^(n-1)+p^(n-2)+…+p+1≡1 (mod p)

となり、wが整数になることに矛盾する。


以上から、奇数の完全数は存在しない。

83DJ学術 2018/02/16(金) 08:45:53.89ID:yN3n4O8g
東アジアなら 兵糧、金、兵士数の実数の ほうが大事だと思われ。
僕は1なんて数を打ち続けても、レア化しないで、直観数術にならないし、
駄目だと思うけどなあ。虚数となるとさらに。

84132人目の素数さん2018/02/16(金) 09:58:09.93ID:n3/HZSNp
>>81 長いね
>pj=gi
>pは素数だから、i=1で、g=pjでなければならい
iがpの倍数でないとなぜ言えるの?

85132人目の素数さん2018/02/16(金) 11:23:04.07ID:n3/HZSNp
>>84
やっぱりか
>gp^2+(-a-g+h)p+c-h=0
>整数iを用いて
>p(-a+h)+c-h=gi
よりgp^2-gp+gi=0であり、i=p-p^2
新しい変数を持ち出すときは、その意味するところを考えた方がいい

86DJ学術 2018/02/16(金) 12:26:08.67ID:yN3n4O8g
数学は一度部分点が出たぐらいで意外に特異な方。確率統計は
ギャンブル好きだから、確実には極めない方がよい。

87DJ学術 2018/02/16(金) 12:38:53.17ID:yN3n4O8g
記号が簡単すぎて幼いころに積み上げた数学が台無しになる。数も小数点
分数、数自体の集合分岐がないから、つまらないものにしたくない。

88DJ学術 2018/02/16(金) 12:46:04.61ID:yN3n4O8g
数式を血統と数式で議論するのも本末転倒だが、詩学と数学の相性を考えると、
数式は真 空 中に建てる方が 綺麗かもしれない。将来は。
私は他者であり、数学は自分だ。

般若心経よりもいいのか。はたして。

89132人目の素数さん2018/02/16(金) 12:58:37.75ID:n3/HZSNp
>>82
>a((p^n-1)/p^n)=(p-1)(up-k)
>a/(p^n(p^(n-1)+p^(n-2)+…+p+1))=up-k
ここの変換も違う
分母と分子を取り違えてる

90132人目の素数さん2018/02/16(金) 15:30:39.59ID:ROeNsO6N
>>89
その部分は計算の誤りでした。

>>82 訂正
>>81 つづき
整数をtとして
a-c=(p-1)t

ps+k=(p-1)t
k+t=(t-s)p
k+t≡0 (mod p)

整数をuとして
k=up-t
a-c=(p-1)(up-k)
a((p^n-1)/p^n)=(p-1)(up-k)
a(p^(n-1)+p^(n-2)+…+p+1)(p-1)/p^n)=(p-1)(up-k)
a(p^(n-1)+p^(n-2)+…+p+1)=(up-k)p^n


a≡0 (mod p)
c≡-k (mod p)

a≡h+k (mod p)で、a≡0 (mod p)、0<h,k<pだから
h+k=p

a=jp^2-jp+h+k
a=jp^2-jp+p=jp(p-1)+p

a≡1 (mod p-1)

整数をvとして
a=v(p-1)+1

a((p^n-1)/p^n)=(p-1)(up-k)
(v(p-1)+1)((p^n-1)/p^n)=(p-1)(up-k)

(p^n-1)/p^n≡0 (mod p-1)
(p^(n-1)+p^(n-2)+…+p+1)(p-1)/p^n≡0 (mod p-1)

整数wとして
(p^(n-1)+p^(n-2)+…+p+1)(p-1)/p^n=w(p-1)

w=(p^(n-1)+p^(n-2)+…+p+1)/p^n
wp^n=p^(n-1)+p^(n-2)+…+p+1

wp^n≡0 (mod p)
p^(n-1)+p^(n-2)+…+p+1≡1 (mod p)

となり、wが整数になることに矛盾する。


以上から、奇数の完全数は存在しない。

91132人目の素数さん2018/02/16(金) 15:43:21.81ID:n3/HZSNp
>>90
>(p^n-1)/p^n≡0 (mod p-1)
左辺は整数じゃないよねえ…

92132人目の素数さん2018/02/16(金) 15:49:33.23ID:n3/HZSNp
>>90
あと、
>a≡h+k (mod p)で、a≡0 (mod p)
これはg≡0(mod p)が証明できてないから言えない

93132人目の素数さん2018/02/16(金) 16:18:11.83ID:ROeNsO6N
>>92
>>81に書いてあります。

>>38, >>80-81, >>90が正しいと思われるレスです。

94132人目の素数さん2018/02/16(金) 16:35:15.40ID:n3/HZSNp
>>93
>>84>>85で指摘した通りです

95DJ学術 2018/02/16(金) 20:06:21.75ID:yN3n4O8g
奇数に完全がないのは当たり前だが奇数を経て完全というのもおかしい話だな。

96132人目の素数さん2018/02/17(土) 00:46:55.71ID:ZE5af5vu
>>64
二番目のは3種類に限らない
4種類以上でも成り立つ
つまり3と5と7を同時に約数にもつ完全数は存在しない
言い換えると、105の倍数は完全数でない

97DJ学術 2018/02/17(土) 08:13:55.42ID:5j7H1MVc
約数といったって 詩を引いて隠す感じが大事であって、数よりクオリア向きだよな。

新着レスの表示
レスを投稿する