【あさひ】高校数学の質問スレPart397 [無断転載禁止]©2ch.net

レス数が1000を超えています。これ以上書き込みはできません。
1132人目の素数さん2016/03/22(火) 11:56:35.33ID:H6VvUp2+
次スレ

952fusianasan2018/09/25(火) 20:23:45.29ID:831HQZG+
↑ね
見ろよ見ろよ

953132人目の素数さん2018/09/25(火) 20:24:20.37ID:831HQZG+
うーん

954132人目の素数さん2018/10/07(日) 14:36:36.72ID:5DRIK+m3
具体的な問題ではなく、考え方についての質問です
微分を学校で習いましたが、ある等式があってその式について
「両辺をxで微分すると、、、」という解き方がありました
両辺に2をかけたり、両辺を二乗したりするのと同じ気軽さで
書いてあったので、ちょっとびっくりしました
微分って、もっとなんかとても複雑なものと思っていたんですが、
どんな等式にでも使えるものなんですか?

955132人目の素数さん2018/10/07(日) 18:24:42.38ID:WDkQwWME
>>954
意味がわからない。
例えば、y=x^2という関数を微分する場合、
普段、あなたはそれをどのように表してるんだ。
ちなみに、私は以下のように書いている。
y'=2x あるいは、(dy/dx)=2x

956132人目の素数さん2018/10/07(日) 20:36:31.07ID:5DRIK+m3
>>955
うまく伝わらなかったので、具体的に書きます。
「f(x)を(x-a)^2で割ったときの余りを、
a、f(a)、f'(a)を用いて表せ」
という問題で、
f(x)=(x-a)^2 · Q(x) + px+q
などとおくところまではわかるのですが、この式の両辺を
微分すると…と解法が続いていたので、ちょっと疑問に
思ったのです。
まだ習いたてで知らないだけかもしれないですが、
微分を使うのは関数を微分して接線を求めたり、
微分そのものの計算問題しか見たことがなかったので、
「こんなところで使っていいの?」
と思って質問しました。
だから、等式が出てきたら、両辺を二乗したり、両辺をゼロで
割ったりという、いわゆる方程式でよく使う方法と
同じように、気軽に使えるのかな?と思って質問しました。

957132人目の素数さん2018/10/07(日) 20:39:33.46ID:5DRIK+m3
>>956
自己レスです
×「ゼロで割ったり」
○「ゼロでない数で割ったり」
です

958132人目の素数さん2018/10/07(日) 20:43:23.29ID:I2sIXbF/
f(x)=g(x)ならばf(x+h)=g(x+h)
∴f(x+h)-f(x)=g(x+h)-g(x)
∴{f(x+h)-f(x)}/h={g(x+h)-g(x)}/h
∴lim[h→0]{f(x+h)-f(x)}/h=lim[h→0]{g(x+h)-g(x)}/h
∴f'(x)=g'(x)

959132人目の素数さん2018/10/07(日) 20:52:41.02ID:D/OxZX71
(1)理屈っぽく、粘着質な性格である
(2)中学・高校時代はクラスの隅にいるような目立たない存在だった
(3)人と話すとき目を合わさない、またボソボソと小さな声でしゃべる
(4)模型など何かを収集するとこが趣味になっている
(5)ファッションセンスがダサい、またファッション関係の知識に乏しい
(6)人と話しても相手を楽しませる事が出来ない
(7)常に挙動不審、またテンションが低い
(8)自分の部屋で2chやってる時が一番落ち着く
(9)ネットでは強気だが、リアルでは弱気でショボイ
(10)街中でカップルを見かけると敵意を持つ
(11)チビ、メガネ、デブ、ガリ、天パ、ハゲのいずれかである
(12)人が自分をどう見てるかが非常に気になる
(13)2次元キャラに恋愛感情を持ったことがある
(14)美容院ではなく床屋or自分で髪を切る
(15)容姿にコンプレックスを持っている
(16)物静かで気弱そうな異性がタイプ
(17))一人でファミレスに行って食事したことがある
(18)異性と遊んだり、異性の家に遊びに行った経験がない
(19)面倒なことは親にやってもらうことが多い
(20)いい歳こいてアニメや漫画、ゲームを卒業できな

960132人目の素数さん2018/10/07(日) 21:01:15.96ID:it7EQ2Eg
>>956
=って同じって意味ですよ

同じものなんだから何しても変わりませんよね

961132人目の素数さん2018/10/07(日) 22:31:08.66ID:WDkQwWME
>>956
回答は、>>958>>960でつきていますね。
それらをちゃんと読めば十分でしょう。
勉強、頑張ってくださいね。

962132人目の素数さん2018/10/11(木) 10:57:22.88ID:pH6LMRjy
>>959
(5),(11),(13),(14),(17),(18)
が当てはまるけど、判定はどうなわや
ちな大学生

963132人目の素数さん2018/10/11(木) 16:10:02.52ID:sFTkpsnw
          ,/"ヽ       ,/゛ヽ
          ,/ :::::ヽ     ,/  ::::ヽ        
         ,i   ::::::ヽ  ,/    ::::ヽ
         ,i      """/      ::::ヽ
        ,i                ::::ヽ      
        ,i                  ::::i
       i  ○       ○       :::::i        はにゃ〜〜〜〜〜〜〜〜ん♪
       i              \|/  :::::i
       i     | ̄ ̄|      /|\  ::::i       
       ゛i        ノ           ::::i
        ゛丶               ::::/       
         /´゛゛゛          """""ヽ
         ,i:::::::             ::::::::::ヽ⌒ヽ    
        ,i::::::    .......          :::::::::iヽ  ヽ
        i::::    . . ........        ::::::::iノ   i   
        i::::    . .. .... .....      ::::::::::i   /
        ゛i::::   .. ..  .... .......    :::::::::/__,ノ     
         ゛ヽ:::::            :::::::::::/
          `" "  "  "   """"    

964132人目の素数さn2018/10/11(木) 18:52:45.31ID:OYjzbvEh
多項式だから微分が使える。

以下、質問から離れるが、
多項式の割り算の問題に微分を使うのは
やりすぎだと思う。
使わずに済む方法があるかも。

965132人目の素数さん2018/10/12(金) 09:43:04.88ID:GRxlK+xo
組合せの数 C[n,3] (n=1,2,3,・・・) のなかに平方数はいくらでも無数にありますか?
n=1,2のときだけでしょうか。

966132人目の素数さん2018/10/12(金) 19:46:54.25ID:XClNk0HB
↑何いってんの?こいつ

967132人目の素数さん2018/10/12(金) 20:47:19.42ID:c72A1ukK
すみません
数学の試験で
ax+xをx(a+1)と書いたら減点されてしまうのでしょうか?

968132人目の素数さん2018/10/12(金) 21:33:52.13ID:72cesl8m
いいえ

9699652018/10/12(金) 21:50:07.63ID:GRxlK+xo
>>965はカキ間違いました
正しい質問は

組合せの数 C[n,3] (n=3,4,5,・・) のなかに平方数はいくらでも無数にありますか?
n=3のときのC[3,3]=1 と n=4のときのC[4,3]=4だけでしょうか。

970132人目の素数さん2018/10/12(金) 21:55:34.11ID:UbZGNwQq
どこからどう見ても書き間違いじゃないな

971132人目の素数さん2018/10/13(土) 01:05:48.36ID:0aqObBBf
・5以上の素因数は連続する3数に高々1度しか出てこない
・2の倍数と4の倍数が3の倍数を挟んでいるときは2の倍数を2で割れば2でも3でも割りきれない数になる

972132人目の素数さん2018/10/13(土) 01:50:06.41ID:qVm3bbN1
>>969
C[n,3] = abc/6 ((a,b,c) は連続する3数)とおいてbはacと互いに素、(a,c) = 1,2。
よって2,3以外の素因子の多重度はa,b,c全て偶数。
2,3についての多重度が奇数であるものはちょうど一つ。
よって
(a.b,c) = (6x^2,y^2,z^2)、(2x^2,3y^2,z^2)、(2x^2,y^2,3z^2)、
     (3x^2,2y^2,z^2)、(x^2,6y^2,z^2)、(x^2,2y^2,3z^2)、
     (3x^2,y^2,2z^2)、(x^2,3y^2,2z^2)、(x^2,y^2,6z^2)
とおける。
u^2-2v^2 = 1⇔(u,v) = (3,1)、u^2-2v^2 = -1⇔(u,v) = (1,1)、u^2-3v^2 = 1⇔(u,v) = (2,1)、u^2-3v^2 = -1⇔解無し
により適するのは(a,b,c) = (2,3,4)、(1,2,3)。

973132人目の素数さん2018/10/17(水) 18:27:59.17ID:ppuaXtV2
質問です
(2a-1)x^2+(b-2)x+(3c+9)=0
このとき、xについての恒等式ならば
2a-1=0, b-2=0, 3c+9=0となることの理屈がわかりません

これって、逆にいうと、x^2やxの係数、そして定数項の各部分が
0以外の値でないと、合計を0

それが直感的にしっくりきません、本当にそうなるの?と思ってしまいます。

もしかしたら、次数が違う文字(x^2とxなど)を足し引きしたとしても
絶対に0になることはない、ということが、この法則の根拠になっているのかとも考えましたが

x^2-x=0を満たすxの解は、x(x-1)=0、x=1、このように存在し、これを反例として
「次数の違う文字同士を引いて値が0になることはない」を否定することができるので

僕は2a-1=0, b-(略)が導かれる根拠を完全に失ってしまいました

974132人目の素数さん2018/10/17(水) 19:24:41.13ID:O4XG5fOc
二次関数のグラフ考えてみれば良いですね
全てのxに対して(2a-1)x^2+(b-2)x+(3c+9)=0ってことは、y=(2a-1)x^2+(b-2)x+(3c+9)のグラフがx軸に張り付くってことです
y=0の直前にならないとダメですね
係数が0にならないとダメですね

975132人目の素数さん2018/10/17(水) 22:43:40.97ID:w43ZlZqk
>>972
C[50,3] はどうすればいいのですか

976132人目の素数さん2018/10/18(木) 00:13:27.27ID:AC5Di51t
>>973
a,b,cは定数だから変数xが変わったからっていって勝手に変えていいもんじゃない。
だから>>974がいうようにxの値に関わらず常に0になるっていうのは全部0になるしかあり得んのですわ

977132人目の素数さん2018/10/18(木) 00:46:32.91ID:MxKVVcoK
>>973
> 質問です
> (2a-1)x^2+(b-2)x+(3c+9)=0
> このとき、xについての恒等式ならば
> 2a-1=0, b-2=0, 3c+9=0となることの理屈がわかりません

多項式として 0 である とは、全ての係数が0であることと定義される。
従って 多項式 (2a-1)x^2+(b-2)x+(3c+9) が 0 であるための必要十分条件は
2a-1=0, b-2=0, 3c+9=0 となる。

ところが、多項式関数 f(x)=(2a-1)x^2+(b-2)x+(3c+9 が恒等的に0である、とは
多項式として0であるのとは違って、
関数f(x)の定義域を動く変数xがどのような値をとっても常にf(x)=0となること、と定義される。

より進んだ数学の中には、多項式としては 0 ではないが、それを多項式関数と見た場合は 0 というようなものがある。

質問にある 恒等的に 0 である とは、高校レベルの場合は
定義域実数上の関数として常に 0 の意味として扱うのが問題の趣旨のようなので、
解答としては例えば次のようなものが考えられる。

f(0)=0なので f(0)=3c+9=0。よって、c=-3
またこのとき、 f(1)=0なので (2a-1)+(b-2)=0、f(-1)=(2a-1)-(b-2)=0 、これより 2a-1=0 かつ b-2=0
逆に、 2a-1=0、b-2=0、3c+9=0 ならば明らかにすべてのxの値に対して f(x)=0 である。

978132人目の素数さん2018/10/18(木) 00:59:28.70ID:BoJlALsC
>>977
>より進んだ数学の中には、多項式としては 0 ではないが、それを多項式関数と見た場合は 0 というようなものがある。

ありません
複素関数を考えるにしても、多項式、すなわち連結領域上の正則関数を考えるならば、一致の定理よりある部分で0なら全体で0です
多項式とは有限次元で打ち切りですから、収束半径は無限大、すなわち複素数全体で0となります

979132人目の素数さん2018/10/18(木) 01:11:11.10ID:MxKVVcoK
>>978
標数2の素体上で多項式関数 x^2+x を考えると、これは常に0関数となります。 

980132人目の素数さん2018/10/18(木) 01:13:16.71ID:BoJlALsC
>>979
殺す

981132人目の素数さん2018/10/18(木) 01:13:29.75ID:BoJlALsC
>>979
殺す

982132人目の素数さん2018/10/18(木) 01:13:58.44ID:BoJlALsC
>>979
殺す

983132人目の素数さん2018/10/18(木) 01:14:17.55ID:BoJlALsC
>>979
殺す

984132人目の素数さん2018/10/18(木) 01:14:34.92ID:BoJlALsC
>>979
殺す

985132人目の素数さん2018/10/18(木) 01:14:52.56ID:BoJlALsC
>>979
殺す

986132人目の素数さん2018/10/18(木) 01:15:10.20ID:BoJlALsC
>>979
殺す

987132人目の素数さん2018/10/18(木) 01:15:27.98ID:BoJlALsC
>>979
殺す

988132人目の素数さん2018/10/18(木) 01:15:44.45ID:BoJlALsC
>>979
殺す

989132人目の素数さん2018/10/18(木) 01:16:01.16ID:BoJlALsC
>>979
殺す

990132人目の素数さん2018/10/18(木) 01:16:22.12ID:BoJlALsC
>>979
殺す

991132人目の素数さん2018/10/18(木) 01:16:39.77ID:BoJlALsC
>>979
殺す

992132人目の素数さん2018/10/18(木) 01:16:56.43ID:BoJlALsC
>>979
殺す

993132人目の素数さん2018/10/18(木) 01:16:59.70ID:MxKVVcoK
よほど恥ずかしかったみたいだね^^

994132人目の素数さん2018/10/18(木) 01:17:12.48ID:BoJlALsC
>>979
殺す

995132人目の素数さん2018/10/18(木) 01:17:41.99ID:BoJlALsC
>>993
殺す

996132人目の素数さん2018/10/18(木) 01:18:00.91ID:BoJlALsC
>>993
殺す

997132人目の素数さん2018/10/18(木) 01:18:17.47ID:BoJlALsC
>>993
殺す

998132人目の素数さん2018/10/18(木) 01:18:34.17ID:BoJlALsC
>>993
殺す

999132人目の素数さん2018/10/18(木) 01:18:51.45ID:MxKVVcoK
さあ、もうすぐ新しいスレだ

1000132人目の素数さん2018/10/18(木) 01:18:53.19ID:BoJlALsC
>>993
殺す

10011001Over 1000Thread
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 939日 13時間 22分 18秒

10021002Over 1000Thread
5ちゃんねるの運営はプレミアム会員の皆さまに支えられています。
運営にご協力お願いいたします。


───────────────────
《プレミアム会員の主な特典》
★ 5ちゃんねる専用ブラウザからの広告除去
★ 5ちゃんねるの過去ログを取得
★ 書き込み規制の緩和
───────────────────

会員登録には個人情報は一切必要ありません。
月300円から匿名でご購入いただけます。

▼ プレミアム会員登録はこちら ▼
https://premium.5ch.net/

▼ 浪人ログインはこちら ▼
https://login.5ch.net/login.php

レス数が1000を超えています。これ以上書き込みはできません。