>>239
つづき

https://ja.wikipedia.org/wiki/%E3%83%92%E3%83%AB%E3%83%99%E3%83%AB%E3%83%88%E7%A9%BA%E9%96%93
ヒルベルト空間
正則関数の空間
ハーディ空間
複素解析や調和解析で用いられるハーディ空間は、その元が複素領域上の正則関数となっているような関数空間の一種である[26]。

ベルグマン空間
正則関数の成すヒルベルト空間の別なクラスにベルグマン空間がある[27]。
ベルグマン空間は再生核ヒルベルト空間(英語版)(関数からなるヒルベルト空間で、先と同様の再生性を持つ積分核 K(ζ,z) を備えたもの)の例になっている。

応用
ヒルベルト空間の応用の多くは、ヒルベルト空間において射影や基底変換といったような単純な幾何学的概念が、ふつうの有限次元の場合に考えられるそれらの自然な一般化になっているという事実に依拠して行われている。

量子力学
ディラック[41]とフォンノイマン[42]によって発展した量子力学の数学的に厳密な定式化は、量子力学系の取りうる状態(より正確には純粋状態)が、状態空間と呼ばれる可分な複素ヒルベルト空間に属する単位ベクトル(状態ベクトルという)によって(位相因子と呼ばれるノルム 1 の複素数の違いを除いて)表現される。つまり、取りうる状態はあるヒルベルト空間の射影化(ふつうは複素射影空間と呼ばれる)の元である。このヒルベルト空間が実際にどのようなものになるかは系に依存する。

https://en.wikipedia.org/wiki/Hilbert_space
Hilbert space
(引用終り)
以上