X



トップページ数学
1002コメント387KB

分からない問題はここに書いてね 466

■ このスレッドは過去ログ倉庫に格納されています
0080132人目の素数さん
垢版 |
2021/02/26(金) 12:42:50.98ID:tbQwhlVI
すでに他のカード持っていてそれで買い物するとポイントが付く場合はそれとの差も考慮しないとわからんのじゃないか?
0081132人目の素数さん
垢版 |
2021/02/26(金) 14:37:21.78ID:oGPGoKSp
a%の食塩水bgとc%の食塩水dgを混ぜて(b+d)gの食塩水を作った。
このときa,b,c,dはすべて整数で、a,cは1以上50以下、b,dは100以上の値であった。
このような整数の組(a,b,c,d)を全て求めよ。
0082132人目の素数さん
垢版 |
2021/02/26(金) 14:45:32.84ID:/DBoAvWE
「最大値が最小値の2倍の、それぞれ異なる13つの自然数」の最小公倍数の最小値はどうやって求めたらいいでしょうか

1より大きく2未満の、それぞれ異なる11つの分数の、「それぞれの分母の最小公倍数と、それぞれの分子と2の最小公倍数」の積の最小値
と同じ値になりそうなので、総当たり的にそっちを調べました
調べた中で一番小さい値は30240でしたが、これより小さい値があるかどうかが分かりません

数学の知識がないので、初歩的な質問をしているかもしれず恐縮ですが、よろしくお願いします
0083132人目の素数さん
垢版 |
2021/02/26(金) 14:50:20.72ID:qCsO3myF
非減少数列a[n]はa[1]=N,a[13]=2Nを満たし、各項は全て正整数である。
ここでNは正整数の定数である。
a[1],a[2],...,a[13]の最小公倍数s[13]と2N^2の大小を比較せよ。
0085イナ ◆/7jUdUKiSM
垢版 |
2021/02/26(金) 19:20:53.12ID:txUjhtcS
>>74
>>54
平面で考えると双曲線4つで囲まれる領域になるから、
立体で考えると双曲面角錐か双曲面四角錐12個の体積が1/2
1個あたり1/6
推定すると、
k=(2の三乗根)
=1.25992104989…….
0086132人目の素数さん
垢版 |
2021/02/26(金) 20:31:53.66ID:qhY5GZT1
最小かどうかは分からないけど、
LCM[60,63,66,70,72,77,84,88,90,99,105,110,120] = 27720 = 2^3 * 3^2 * 5 * 7 * 11
0087132人目の素数さん
垢版 |
2021/02/27(土) 00:00:09.03ID:DCo4sDzH
θを0<θ≦π/2の実数の定数とする。
曲線C:y=1-x^2(-1≦x≦1)を原点中心にθだけ回転させたとき、Cが通過しうる領域の面積をθで表せ。
0089132人目の素数さん
垢版 |
2021/02/28(日) 17:35:39.02ID:0OxPa3B4
>>86
27720以下で総当たりすると見つからないので277720が最小。

その組み合わせは以下の通り

[1] 60 63 66 70 72 77 84 88 90 99 105 110 120
[1] 63 66 70 72 77 84 88 90 99 105 110 120 126
[1] 66 70 72 77 84 88 90 99 105 110 120 126 132
[1] 70 72 77 84 88 90 99 105 110 120 126 132 140
[1] 84 88 90 99 105 110 120 126 132 140 154 165 168
[1] 165 168 180 198 210 220 231 252 264 280 308 315 330
[1] 198 210 220 231 252 264 280 308 315 330 360 385 396
[1] 210 220 231 252 264 280 308 315 330 360 385 396 420
[1] 220 231 252 264 280 308 315 330 360 385 396 420 440
[1] 231 252 264 280 308 315 330 360 385 396 420 440 462
0090132人目の素数さん
垢版 |
2021/02/28(日) 17:42:01.71ID:0OxPa3B4
5万以下で探索させて、総和も最小になるのを書き上げると

[1] 60 63 66 70 72 77 84 88 90 99 105 110 120
[1] 70 72 80 84 90 96 105 108 112 120 126 135 140
[1] 60 63 65 70 72 78 84 90 91 104 105 117 120
[1] 84 88 96 105 110 112 120 132 140 154 160 165 168
[1] 100 105 108 120 126 135 140 150 168 175 180 189 200
[1] 99 105 108 110 126 132 135 140 154 165 180 189 198
[1] 140 156 160 168 182 195 208 210 224 240 260 273 280
[1] 70 72 80 81 84 90 105 108 112 120 126 135 140
[1] 140 150 154 165 168 175 200 210 220 231 264 275 280
[1] 88 90 96 99 108 110 120 132 135 144 160 165 176
[1] 105 108 117 126 130 135 140 156 180 182 189 195 210

最小公倍数は
[1] 27720
[1] 30240
[1] 32760
[1] 36960
[1] 37800
[1] 41580
[1] 43680
[1] 45360
[1] 46200
[1] 47520
[1] 49140
30240は2番目に小さい
0091132人目の素数さん
垢版 |
2021/02/28(日) 17:56:12.20ID:0OxPa3B4
>>89
×27720以下で総当たりすると見つからないので277720が最小。
〇27720以下で総当たりすると見つからないので27720が最小。

解説なしのおまけ(Rのコード)

library(numbers)
f <- function(nmax=27720,showALL=FALSE){
y=divisors(nmax)
y=y[y>12]
re=NULL
for(i in 1:length(y)){
if((2*y[i]) %in% y){
i2=which(y==2*y[i])
if((i2-i)==12){
re=y[i:i2]
cat(re,':','LCM =',mLCM(re),'\n')
if(!showALL) break
}
}
}
invisible(re)
}
vf=Vectorize(f)
DEL=vf(13:27720)
DEL=vf(27720:50000)
0092132人目の素数さん
垢版 |
2021/02/28(日) 18:05:54.17ID:0OxPa3B4
>82の13個を15個に増やしてみると
> DEL=vf(50000:100000,N=15)
55 56 60 63 66 70 72 77 80 84 88 90 99 105 110 : LCM = 55440
160 168 180 189 192 210 216 224 240 252 270 280 288 315 320 : LCM = 60480
60 63 65 70 72 78 80 84 90 91 104 105 112 117 120 : LCM = 65520
100 105 108 112 120 126 135 140 144 150 168 175 180 189 200 : LCM = 75600
0093132人目の素数さん
垢版 |
2021/02/28(日) 18:23:23.84ID:HmRMSEKQ
>>89

>>82です、調べてくださりありがとうございました
欲を言えば、総当たり以外で求める方法ももしあれば知りたかったのですが、最小が分かっただけでも満足です
0094132人目の素数さん
垢版 |
2021/02/28(日) 20:38:37.31ID:0OxPa3B4
>>93
コードにコメントいれて総当たりした方法を解説

f <- function(nmax,N=13,showALL=FALSE){
library(numbers) # 約数や最小公倍数を計算するライブラリ
y=divisors(nmax) # nmaxまでの約数の数列y
y=y[y>(N-1)] # N(=13)以上の約数のみ
re=NULL # 答の格納場所
for(i in 1:length(y)){ # N以上の約数y[i]について
if((2*y[i]) %in% y){ # y[i]の2倍の数がyに含まれれば
i2=which(y==2*y[i]) # 何番目かをi2に収納
if((i2-i)==(N-1)){ # i2とiの差がN-1(=12)であれば
re=y[i:i2] # 答として格納i番目からi2番目を
cat(re,':','LCM =',mLCM(re),'\n') # その最小公倍数を返す
if(!showALL) break # showALLでなければ1つ表示してループからでる
}
}
}
invisible(re) # 答を返す
}
0095132人目の素数さん
垢版 |
2021/02/28(日) 23:40:01.66ID:XcQJIvH/
一階述語論理の真理値割当ては、構造を与えて変数に値割当てをする方法が一般的だと思いますが、それ以外の方法というのはないのでしょうか?
0096132人目の素数さん
垢版 |
2021/03/01(月) 14:51:55.31ID:RetCp9bn
x^2-x+y^2-y=z^2-z
を満たす整数の組(x,y,z)が無数に存在することを示せ。
0102132人目の素数さん
垢版 |
2021/03/01(月) 21:20:12.72ID:C+7k2GlV
・x=y のとき
与式を 4倍すると
 (2z-1)^2 - 2(2x-1)^2 = −1,
いわゆる「ペル方程式」

 (x,y,z) が解ならば (3x+2z-2, 3y+2z-2, 2x+2y+3z-3) も解。
例えば
 (x,y,z) = (1,1,0) (1,1,1) (3,3,4) (21,21,15) (85,85,120) …

一般項 (ビネの公式)
 x_n = y_n = (1/2) + ((√2 +1)^{2n-1} + (√2 -1)^{2n-1})/(4√2),
 z_n = (1/2) + ((√2 +1)^{2n-1} − (√2 -1)^{2n-1})/4,
0103132人目の素数さん
垢版 |
2021/03/01(月) 21:34:34.96ID:iX+JbHjU
k=(1/2)(1+√(1+8ab)) を整数にするような 整数 a,b を持ってくると、
(x,y,z)=(a+k,b+k,a+b+k) は、x(x-1)+y(y-1)-z(z-1)=0 を満たす。

では、k=(1/2)(1+√(1+8ab)) を整数にするような 整数 a,b は無数にあるか? 答えはある。
適当な整数 r と m を持ってきて、a=2r-1、b=m(m(2r-1)±1)/2 とすれば、
k=(1/2)(1+√(1+8ab))=(1/2)(1+|4mr-2m±1|)
0104132人目の素数さん
垢版 |
2021/03/01(月) 21:46:48.39ID:C+7k2GlV
>>102 (補足)
{2(2x+2y+3z-3)-1}^2 - {2(3x+2z-2)-1}^2 - {2(3y+2z-2)-1}^2 = (2z-1)^2 - (2x-1)^2 - (2y-1)^2,

 (左辺) - (右辺) = - 16(x-y)^2 = 0,

例)
 (x,y,z) = (1,1,0) (1,1,1) (3,3,4) (15,15,21) (85,85,120) (493,493,697) (2871,2871,4060) …
に訂正
0106132人目の素数さん
垢版 |
2021/03/02(火) 00:30:56.15ID:K/oD/Qs/
いろいろな解を見つけたいのでは?

・y=x+1 のとき
与式を 4倍すると
 (2z-1)^2 - 4x(x-1) - 4y(y-1) = 1,
いわゆる「ペル方程式」

{2(2x+2y+3z-3)-1}^2 - 4(3x+2z-1)(3x+2z-2) - 4(3y+2z-3)(3y+2z-4) = (2z-1)^2 - 4x(x-1) - 4y(y-1),

∴ (x,y,z) が解ならば (3x+2z-1, 3y+2z-3, 2x+2y+3z-3) も解。

 (x,y,z) = (0,1,1) (1,2,2) (6,7,9) (35,36,50) (204,205,289) …

一般項 (ビネの公式)
 x_n = ((√2 +1)^{2n} − (√2 -1)^{2n})/(4√2),
 y_n = 1 + ((√2 +1)^{2n} − (√2 -1)^{2n})/(4√2),
 z_n = (1/2) + ((√2 +1)^{2n} + (√2 -1)^{2n})/4,
0107132人目の素数さん
垢版 |
2021/03/02(火) 12:27:17.08ID:M9DBdv8X
任意の実数 x に対して、

n * cos(n^2*x)

は n → ∞ のとき、収束しないことを証明せよ。
0108132人目の素数さん
垢版 |
2021/03/02(火) 12:45:22.83ID:M9DBdv8X
>>107

ちなみに、このことは、松坂和夫著『解析入門上』に証明なしで、あたかも当たり前の事実であるかのように書かれています。
0110132人目の素数さん
垢版 |
2021/03/02(火) 13:25:27.37ID:M9DBdv8X
>>109

証明をお願いします。
0111132人目の素数さん
垢版 |
2021/03/02(火) 13:42:29.32ID:ehrJ/QGR
x=0のとき、n*cos(n^2*x) = n → ∞
x≠0のとき、n_k:=√|2πk/x|に対してn_k*cos(n_k^2*x) = n_k*cos(2πk) = n_k → ∞
0112132人目の素数さん
垢版 |
2021/03/02(火) 13:55:00.09ID:M9DBdv8X
>>111
n は正の整数です。
0113132人目の素数さん
垢版 |
2021/03/02(火) 14:23:02.04ID:IddjJv3w
x/πが無理数の時( (n+1)^2x - n^2x )/(2π)の小数部は[0,1)で一様に分布する
0114132人目の素数さん
垢版 |
2021/03/02(火) 14:25:45.92ID:ehrJ/QGR
cos(n^2*x)が0に収束するとすると、cos((2n)^2*x)もまた0に収束する
しかし、cos((2n)^2*x)
= cos(4*n^2*x)
= 2*cos(2*n^2*x)^2 - 1
= 2*(2*cos(n^2*x)^2 - 1)^2 - 1
→ 2*(2*0^2 - 1)^2 - 1
= 1
よって矛盾し、cos(n^2*x)は0に収束しない
cos(n^2*x)が0以外の値に収束するならn*cos(n^2*x)は無限大に発散するし、
cos(n^2*x)が発散するならn*cos(n^2*x)も発散する
0115132人目の素数さん
垢版 |
2021/03/02(火) 14:26:46.08ID:EjfU7429
単行列生成零
0118132人目の素数さん
垢版 |
2021/03/02(火) 17:58:09.59ID:M9DBdv8X
>>114
ありがとうございました。
0119132人目の素数さん
垢版 |
2021/03/02(火) 18:35:33.62ID:K/oD/Qs/
>>114
|cos(n^2*x)| と |cos((2n)^2*x)| との間に4倍角公式
 cos((2n)^2*x) = T_4(cos(n^2*x))
の関係があるため、
これら両方を cos(72) = (φ-1)/2 = 0.309017 より小さくすることが
できぬのでござるか。なるほど〜

ここに、 T_4(t) = 8t^4 - 8t^2 + 1,
0120132人目の素数さん
垢版 |
2021/03/02(火) 19:17:33.34ID:M9DBdv8X
>>108

まとめると、当たり前ではなかったということですね。
0121132人目の素数さん
垢版 |
2021/03/02(火) 19:30:04.09ID:M9DBdv8X
Richard E. BORCHERDSというフィールズ賞受賞者がYouTubeに講義動画をアップロードしていますが、講義の質はどうですか?
0122132人目の素数さん
垢版 |
2021/03/02(火) 20:20:03.78ID:+/ACoiXe
それ自分もこの前知っていくつか見た
わりと式の気持ちや具体的な計算が聞ける感じ
相互法則のところではΓ関数とガウス和の類似の話があった
かといって凄く特別な話が聞ける感じでもなかったかな
動画数多くて幅広いから全体でどうなってるかは分からないけど
0123132人目の素数さん
垢版 |
2021/03/02(火) 20:30:17.03ID:K/oD/Qs/
(補足)
[T_4(t)^2 - cos(72)^2] + 4[tt - cos(72)^2]
= 16[tt - cos(72)^2]^2・{cos(72) + 4[tt - cos(18)^2]^2}
≧ 0

∴ |T_4(t)| と |t| の少なくとも一方は cos(72) 以上である。

cos(72) = 1/(2φ) = 0.309017
0124132人目の素数さん
垢版 |
2021/03/02(火) 20:36:29.80ID:5nzDonq+
旅先でバスや電車に乗りながら計算しまくってムーンシャイン予想を証明したんだっけ
0125132人目の素数さん
垢版 |
2021/03/03(水) 09:56:32.78ID:Yx/wHhZC
すべての n に対して、 a_n ≠ 0 とします。

lim sup |a_{n+1}/a_n| < 1 ならば、 Σa_n は絶対収束するという命題があります。
lim |a_{n+1}/a_n| > 1 ならば、 Σa_n は発散するという命題があります。

lim sup |a_{n+1}/a_n| > 1 であるが、 Σa_n は収束する例を挙げてください。
0127132人目の素数さん
垢版 |
2021/03/03(水) 10:47:02.82ID:Yx/wHhZC
>>126

ありがとうございました。

lim sup |a_{n+1}/a_n| = 2 > 1 であるが、 Σa_n = 0 ということですね。
0129132人目の素数さん
垢版 |
2021/03/03(水) 12:07:59.99ID:SY070HAY
>>123
|t| < cos(72) < cos(18) のとき
T_4(t) - cos(72) = 8t^4 - 8t^2 + (1-cos(72))
 = 8 [tt - cos(18)^2] [tt - cos(72)^2]
 ≧ 0,
∴ T_4(t) ≧ cos(72),
 Max{|t|, T_4(t)} ≧ cos(72),

あるいは

|cosθ| < cos(72) となるのは
 72<θ<108, 252<θ<288 (mod 360)

cos(4θ) < cos(72) となるのは
 18<θ<72, 108<θ<162, 198<θ<252, 288<θ<342 (mod 360)

よって 共通部分はない。
 Max{|cosθ|, cos(4θ)} ≧ cos(72),
0130132人目の素数さん
垢版 |
2021/03/03(水) 18:58:15.11ID:XWikYl64
xyz空間において
1≦(1+x^2)(1+2y^2)(1+4z^2)≦8
を満たす点(x,y,z)全体からなる領域の体積を求めよ。
0131132人目の素数さん
垢版 |
2021/03/03(水) 19:33:53.60ID:pfwVrOnK
>>130
モンテカルロでやってみたら

> nrow(b)/nrow(gr)*6^3
[1] 11.72513

信頼区間は
1] 11.69124 11.75909

x=y=z=seq(-3,3,length.out=200)
f <- function(x,y,z){
a=(1+x^2)*(1+2*y^2)*(1+4*z^2)
1<=a & a <= 8
}
gr=expand.grid(x,y,z)
idx=mapply(f,gr[,1],gr[,2],gr[,3])
b=gr[idx,]
plot3d(b,col=4,xlab='x',ylab='y',zlab='z')
nrow(b)/nrow(gr)*6^3
0136132人目の素数さん
垢版 |
2021/03/04(木) 08:07:07.17ID:1qOql75x
>>131
モンテカルロでの乱数の分布を立方体から直方体での一様分布に変えて再計算

> nrow(b)/nrow(gr)*xlim*ylim*zlim*2^3
[1] 11.9016
0139132人目の素数さん
垢版 |
2021/03/04(木) 21:46:19.15ID:4Iw6qF0G
(1) 級数 Σa_n において、すべての n に対し a_n > 0 とする。そのとき

lim sup (a_n)^(1/n) ≦ lim sup a_{n+1}/a_n

が成り立つ

(2) 級数 Σa_n において

lim sup (}a_n|)^(1/n) < 1 ならば Σa_n は絶対収束する。

(3) 級数 Σa_n において、すべての n に対し a_n ≠ 0 とする。このとき

lim sup |a_{n+1}/a_n| < 1 ならば Σa_n は絶対収束する。


------------------------------------------------------
級数 Σa_n で、

すべての n に対し a_n > 0 かつ lim sup (a_n)^(1/n) < 1 ≦ lim sup a_{n+1}/a_n

となるようなものはありますか?
0141132人目の素数さん
垢版 |
2021/03/04(木) 22:09:31.53ID:4Iw6qF0G
級数 Σa_n で、

すべての n に対し |a_n| > 0 かつ lim sup (|a_n|)^(1/n) < 1 ≦ lim sup |a_{n+1}/a_n|

となるようなものはありますか?
0148132人目の素数さん
垢版 |
2021/03/05(金) 14:58:49.14ID:pi8gftnN
>>144
形状の画像を期待してクリックしましたが、無料版じゃ描画されないみたいで残念。
でも、体積はモンテカルロでの数値と近似しているので>132の形状でいいのだろうと勝手に納得。
0150イナ ◆/7jUdUKiSM
垢版 |
2021/03/05(金) 17:23:54.49ID:YFAe1aWz
>>149
切り目の入ったマカロニ12本と球と内部の正八面体を足して掛ける2√2
となりあう正三角形の交わる内角109°ぐらいの値θ,
内部の正八面体の一辺の長さa,
マカロニの半径rがわかればわかる。
V/2√2=4πr^3/3+12πr^2a(360°-θ)/360°+2(1/3)a^2(a√2/2)
0151132人目の素数さん
垢版 |
2021/03/05(金) 18:03:40.83ID:yfTfCAgL
x^2021+y^2=z^2
を満たす0でない整数の組(x,y,z)は無数に存在することを示せ。
0152132人目の素数さん
垢版 |
2021/03/05(金) 18:21:38.18ID:XaujjeFo
>>121
隣り合った平方数の差は3以上の全ての奇数をとることからxが3以上の奇数であればそれに対応する(y,z)の組が必ず1つ以上存在する
したがって(x,y,z)の組は無限に存在する
0156132人目の素数さん
垢版 |
2021/03/05(金) 19:17:36.17ID:s8OGtqZr
(±1, ±1/√2, ±1/2) での接平面
 |x| + |y√2| + |2z| = 3,
は八面体をなす。その体積は
 9√2 = 12.728
う〜む、だいぶ大きい。

曲面は角が丸く、主軸の長さが 2√7, √14, √7.
一方、八面体は角が尖っていて 主軸の長さは 6, 3√2, 3.
なので大きくなった?
0161132人目の素数さん
垢版 |
2021/03/05(金) 22:49:01.10ID:52YncrNE
>>157
関数はx≧0,y≧0,z≧0から原点を除いた領域まで連続に拡張できるからそこで考える
まずx+y=a, z=0の領域において端点での値は2、未定定数法より極値はx+y=a/2の時で、その値は2a^(a/2)+1
この最小値はa=1/eの時1+2e^(-1/2e)>2
領域x+y+z=aで考える
この領域では(a-x)^x+(a-y)^y+(a-z)^z
境界では>2
極値はやはり未定定数法よりx=y=z=a/3のとき3(2a/3)^(a/3)
コレの最小値はa=3/(2e)のとき3e^(1/(2e))>2
0162132人目の素数さん
垢版 |
2021/03/05(金) 23:00:25.74ID:SJdDEIP3
集合論のブール値モデルを理解したい素人なのですが、前提知識として、集合論と位相空間論以外に何を理解している必要があるでしょうか?
0166132人目の素数さん
垢版 |
2021/03/06(土) 01:36:01.64ID:cLmO19UL
スレ違いかもしれないですが、教えて欲しいです。
例えば4月は10個5円、5月は3個20円のものがあれば、5月と4月の差は

3*20-10*5=10円で計算できますが、この計算式以外に5月と4月の差である10円を算出する方法はありますかね
0167イナ ◆/7jUdUKiSM
垢版 |
2021/03/06(土) 01:37:22.61ID:A9yjV+HE
>>150
違うなぁ。正八面体表面を動き回る球体を2√2倍じゃない。
>>132の輪郭は辺に平行な線を描いてない。
辺や面の中央ほど中心方向にくぼんでる。
まるで重力に引っ張られてるみたいに。
立方体内部の立体の2√2倍と考えて、
0≦x≦√7,0≦y≦√14/2,0≦z≦√7/2だけを求めて16√2倍か。
>>130推定値を出してみる。
過不足相殺するとして(1/8)√7(√14/2)(√7/2)16√2=7√7
=7×2.64171……
=18.49197……
≒18.492
0168イナ ◆/7jUdUKiSM
垢版 |
2021/03/06(土) 02:04:43.26ID:A9yjV+HE
>>167
内部の八面体の体積は√7(√14/2)(√7/2)=7√14/4=6.5……
端っこが丸いったって2倍に膨れるわけがねえでな、
11か、いって12か。
0169132人目の素数さん
垢版 |
2021/03/06(土) 05:41:39.33ID:dHW5XVEt
>>156

(±1, ±1/√2, ±1/2) で接する凸曲面
 |x|^a + |y√2|^a + |2z|^a = 3,
は角が丸まる。
 a = log(9)/log(7) = 1.12915
とおけば、主軸の長さも 2√7, √14, √7
体積は 11.4929 でやや小さめ…
0170132人目の素数さん
垢版 |
2021/03/06(土) 07:23:45.77ID:DOHEz9Hc
>>166
あるよ。

()を使わない前提で
3*20-10*5=10
の他に
3*20-5*10=10
20*3-5*10=10
20*3-10*5=10
3*20-10-10-10-10-10=10
20+20+20-5*10=10
20+20+20-10*5=10
3*20-10-10-10-10=10
20*3-10-10-10-10=10

列挙漏れがあるかなぁ?
0171132人目の素数さん
垢版 |
2021/03/06(土) 07:58:15.77ID:YunRwHNA
>>166
なぜその計算で出てくる10円が「5月と4月の差」と呼ばれるものになるのか理解出来ない
何を計算してんの?それ
0172132人目の素数さん
垢版 |
2021/03/06(土) 08:34:05.40ID:sIiQuxCB
問題にしてみる

購入数と単価は
4月は10個5円、5月は3個20円、6月は5個10円、7月は4個15円のとき購入総額を括弧や空白を使わないで計算する式は何通りあるか。

計算式の例
10*5+20+20+20+10*5+15+15+15+15
5*10+3*20+5*10+15*4

系統的に列挙するのも面倒そうだな。
0174132人目の素数さん
垢版 |
2021/03/06(土) 08:53:31.10ID:sIiQuxCB
>>172
順不同で途中で別の月の値を入れる
計算式20+20+15+15+15+15+20+10*5+5*10
とかでもいいことにすると更に厄介。
0175132人目の素数さん
垢版 |
2021/03/06(土) 12:23:48.66ID:i38UJL/f
>>170
>>172

確かに*や+の選び方とか並べ替え方で数式が色々できるね、抜けてました。ありがとう。


>>171
情報不足で申し訳ない。
個数*単価の月額売上(支払でも可)を計算したかった。
4月と5月の売上を比べると5月の売上が10円多い計算だけど、この10円増えた根拠を知れる計算式ってあるかなという意図だった。
4月と5月を比べて、5月の売上が多いのは、
・(5月減要素)個数は4月が多い
・(5月増要素)数量は5月が多い
・(5月増要素)単価は5月が高い
だと、思うんだけど各要素の計算式(複数必要?)を使って、4月と5月の売上の差の10円を算出することってできるのかな
0177132人目の素数さん
垢版 |
2021/03/06(土) 17:08:43.54ID:dHW5XVEt
>>150
計算シタイナーの公式
 v(r) = (4π/3)r^3 + Mr^2 + Sr + v(0),

一辺の長さaの正八面体の場合
 M = 6(2π-θ)・a,
 S = (2√3)・a^2,
 v(0) = (√2)/3・a^3,
ここに
 θ = arccos(-1/3) = 1.910633236 = 109.47122°

>>167
 面の中央 (±1, ±1, ±1) はかなり平坦…
 |x| + |y| + |z| ≒ 3,
0178132人目の素数さん
垢版 |
2021/03/06(土) 19:24:50.57ID:dHW5XVEt
>>157
 {x+y, y+z, z+x} の中に1以上のものが…

2個以上のとき 明らかに成立。

1個のとき
 x+y ≧ 1 > y+z, z+x とする。
 (x+y)^z ≧ 1,
 (y+z)^x + (z+x)^y > (y+z) + (z+x) > x+y ≧ 1,  (0<x,y<1)
 辺々たす。

0個のとき
 0 < x, y, z < 1.
 f(z) = (x+y)^(1-z) は下に凸だから
 f(z) < f(0)(1-z) + f(1)z,  (0<z<1)
 (x+y)^(1-z) < (x+y)(1-z) + z < x+y+z,
 (x+y)^z > (x+y)/(x+y+z)  … ベルヌーイ
 巡回的にたす。
0180132人目の素数さん
垢版 |
2021/03/06(土) 19:40:15.32ID:ohKIuy2A
不定積分ですが

∫(e^x)(sinx)dx
=(e^x)(sinx)-∫(e^x)(cosx)dx
=・・・

または
=(e^x)(-cosx)-∫(e^x)(-cosx)dx
=・・・

前者と後者ですが、計算を進めていくと両者とも当然同じ解になりますが、
計算のやりやすさを考えると、前者と後者はどちらがお勧めですか?
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況