https://ja.wikipedia.org/wiki/%E3%83%98%E3%83%B3%E3%82%BC%E3%83%AB%E3%81%AE%E8%A3%9C%E9%A1%8C
ヘンゼルの補題

ヘンゼルの補題(ヘンゼルのほだい、英: Hensel's lemma)とは、1変数多項式が素数 p を法として単根(英語版)を持つならば、その根は p の任意の冪乗を法とする根に一意的に持ち上げられるという、合同算術における補題である。この補題は、多項式が法 p で2つの互いに素な多項式(英語版)に因数分解できるならば、その因数分解は p の任意の冪乗を法とする因数分解に持ち上げることができるという補題に一般化できる。因数分解に現れる多項式の次数が1の場合が根の場合に相当する。ヘンゼルの持ち上げ補題(英: Hensel's lifting lemma)とも呼ばれる。名称はクルト・ヘンゼルに因む。

p の冪指数を無限に大きくしていったときの(射影極限の意味での)極限を取ることにより、法 p での根(または因数分解)を p 進整数上での根(または因数分解)に持ち上げることができる。

還元と持ち上げ
R を可換環、I を R のイデアルとする。R の元を標準写像 R\→ R/I による像で置き換えることを、I を法とする還元、または法 I での還元と呼ぶ。
持ち上げとは還元の逆の操作である。つまり、R/I の元を使って表されている対象があったとき、持ち上げとは対象の性質を保ったまま還元するとこの対象に等しくなるように R(もしくはある k > 1 に対する R/I^{k}の元に置き換えることをいう。

https://ja.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E6%A5%B5%E9%99%90
射影極限
逆極限(ぎゃくきょくげん、英: inverse limit)あるいは射影極限(しゃえいきょくげん、英: projective limit)は、正確な言い方ではないが、いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。逆極限は任意の圏において考えることができる。
厳密な定義
代数系の射影極限

完備化への持ち上げ
全ての正の整数 n に対して R/{m}^{n} に持ち上げることができるので、n を限りなく大きくしていったときの"極限"を考えたくなる。これが p 進整数が考案された主な理由の1つである。