>>296
つづき

極大座標近傍系
m 次元位相多様体 M に対し Cn 級座標近傍系として S と T の 2つを取るとする。和集合 S ∪ T が再び M のCn 級座標近傍系になるとき、 S と T は同値であるという。これは同値関係を定める。これは S に属する座標近傍と T に属する座標近傍の間にも座標変換が存在し S での計算と T での計算に違いが無いという性質を保証するための同値関係である。

こうして座標近傍系の取り方に依存しない Cn 級多様体が定義される。m 次元位相多様体 M 上に互いに微分同相でない複数の微分構造が存在することもある。

多様体上の関数
m 次元 Cn 級多様体 M 上で定義された実数値関数 f を考える。

f: M → R
これは、多様体上の点 p ∈ M に対して実数値 f(p) を対応させる関数である。特定の局所座標を考えているわけではないので、この関数の変数は (x1, x2, ..., xm) のように数を並べた座標ではなく単に点を表している。

多様体上には局所座標を貼ることができるためこの座標を用いた微積分などの計算が可能である。

多様体の間の写像
m1 次元 Cs 級多様体 (M1,S) から m2 次元 Ct 級多様体 (M2,T) への写像 f を考える。

f: M1 → M2
それぞれの多様体に与えられている座標近傍系が S = {(Uλ, φλ) | λ ∈ Λ} , T = {(Vτ, ψτ) | τ ∈ Τ} で定められているとする。多様体上の関数と同じように、写像も座標を用いて表現することができる。関数の場合と違うのは写像でうつる先でも座標について考えなければならないことである。

M2 = R という「特別な」場合の写像が関数になる。

つづく