>>161
つづき

現代的な定式化
現代的な言葉で言えば、基礎体 K の最大アーベル拡大 A は存在して、その拡大次数は K 上無限大となり得るから、その時 A に対応するガロワ群 G は副有限群となり、従ってコンパクト位相群かつまたアーベル群になる。類体論の中心定な目的は、この群 G を基礎体 K の言葉で記述することである。特に、K の有限次アーベル拡大と K に対する適当な(有限な剰余体を持つ局所体の場合の乗法群や大域体の場合のイデール類群のような)対象におけるノルム群との間の一対一対応を確立し、それらのノルム群を(例えば、指数有限な開部分群といったように)直截的に記述することである。そのような部分群に対応する有限次アーベル拡大を類体と呼び、これが理論の名称の由来となっている。

類体論の基本的な結果は「最大アーベル拡大のガロワ群 G は、基礎体 K のイデール類群 CK の(基礎体 K の特定の構造に関係して CK に入る自然な位相に関する)副有限完備化に自然同型である」ことを主張する。同じことだが、K の任意の有限次ガロワ拡大 L に対し、この拡大のガロワ群の最大アーベル商(アーベル化)と、K のイデール類群を L のイデール類群のノルム写像による像で割ったものとの間に、同型

Gal(L / K)ab → CK / NL/K CL
が存在する[1]。

つづく