>>121
つづき

このように、宇宙を取り替えたりするような作業を行なう際、別の宇宙にも通じる数学的対象を扱うようにしないと、議論は意味を成さなくなるが、(本稿では省略するが)様々な理由によって、圏は、そのような性質を満たす。一般に、違う宇宙にも通じるものをinter-universal と呼ぶことにするが、「圏」というものは、最も基本的かつ原始的な inter-universal な数学的対象ということになる。

さて、スキームを他宇宙から見たらどんな風に見えるか、という問いに答えるためには、スキームを、inter-universal に表現する必要がある。これには様々な手法があるが、本稿では、次のものを取り上げる(別の手頃な例については、「Mzk7] を参照):

Et(X) {Xの有限次エタール被覆の圏 }

(ただし、X は、連結なネータ・スキームとする。) 副有限群 G に対して B(G) を、G の連続な作用をもつ有限集合の圏、というふうに定義すると、Et(X) という圏は、B(mュ(X)) (ただし、(X) は、Xの代数的基本群とする)と同値になる。

ここでは、B(G) を、1つの幾何的対象とみなし、anabelioid と呼ぶことにする。実は、B(G) は、「連結な anabelioid」になるが、一般には、複数の連結成分をもつanabelioid を扱うこともある(詳しくは、「Mzk8] を参照)。anabelioid の理論の大きなテーマの一つは、通常スキームに対して行なうような様々な幾何的操作を、(Et(X)のようにスキームから生じたものかどうかとは関係なく) anabelioid のみの世界に

おいていわば“native' に行なうことである。このテーマの最も基本的な例の一つは、有限次 エタール被覆の定義である。連結な anabelioid 間の有限次エタール被覆は、

B(H) → B(G)

(ただし、G は副有限群、H はその開部分群。なお「射」は圏の間の関手と逆向きに書く。)と同型な射として定義される。
(引用終り)
以上