【定理】pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。
【証明】x^p+y^p=z^pを、z=x+rとおいてx^p+y^p=(x+r)^p…(1)とする。
(1)の両辺をr^pで割って、両辺を積の形にすると、
r^(p-1){(y/r)^p-1}=p{x^(p-1)+…+r^(p-2)x}…(2)となる。
(2)はr^(p-1)=pのとき、x^p+y^p=(x+p^{1/(p-1)})^p…(3)となる。
(3)はrが無理数なので、xを有理数とするとzは無理数となり、解は整数比とならない。
(2)はr^(p-1){(y/r)^p-1}=ap{x^(p-1)+…+r^(p-2)x}/a…(4)となる。
(4)はr^(p-1)=apのとき、x^p+y^p=(x+(ap)^{1/(p-1)})^p…(5)となる。
(5)の解は、(3)の解のa^{1/(p-1)}倍となるので、整数比とならない。
(5)のrは、有理数となる場合があるが、解は、整数比とならない。
∴pが奇素数のとき、x^p+y^p=z^pの解は、整数比とならない。