X



トップページ数学
1002コメント417KB

不等式への招待 第10章

■ このスレッドは過去ログ倉庫に格納されています
0001不等式ヲタ ( ゚∀゚)
垢版 |
2018/12/18(火) 21:47:07.65ID:e1oKVpnI
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・不等式への招待 第9章 https://rio2016.5ch.net/test/read.cgi/math/1505269203/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html
0478132人目の素数さん
垢版 |
2020/07/25(土) 10:36:55.68ID:g3fpMEvS
>>476

[高校数学の質問スレPart405] から。

4つの実数をx_iとする。(i=1〜4)
θ_i = arctan(x_i) (-π/2 < θ_i < π/2) とおく。
4つから上手く2つを選ぶと
 |θi - θj| ≦π/4 または |θi-θj±π| ≦π/4,
となる。
tanの加法公式
 tan(α-β) = (tanα-tanβ)/(1+tanα・tanβ),
より
 1 ≧ |tan(θi - θj)| = |(x_i-x_j)/(1+x_i・x_j)|,
よって x_i, x_j は条件を満たす。
等号成立は {x_i} がπ/4ずつ異なるとき。 [895,948-949]

例:tan(±22.5゚) = ±(√2 -1), tan(±67.5゚) = ±(√2 +1),
0479132人目の素数さん
垢版 |
2020/08/05(水) 03:24:43.09ID:ud0wEpwG
三角形ABCの外接円の半径Rと内接円の半径rに対して、
2/R ≦ (1/a)*sec(A/2) + (1/b)*sec(B/2) + (1/c)*sec(C/2) ≦ 1/r.

[AMM, Prob12168] ( ゚∀゚)ウヒョッ!
0481132人目の素数さん
垢版 |
2020/08/11(火) 16:49:54.71ID:sLooAqcf
〔Inequalitybot 98〕
aa ≦ 1, aa+bb ≦ 5, aa+bb+cc ≦ 14, aa+bb+cc+dd ≦ 30 のとき
   a+b+c+d ≦ 10
を示せ。   Hungary-Israel binational 2007, 1日目, 問2
0482132人目の素数さん
垢版 |
2020/08/11(火) 17:00:55.87ID:sLooAqcf
コーシーにより、
 (a+b+c+d)^2 /(1+2+3+4) ≦ aa + bb/2 + cc/3 + dd/4
 = (1-1/2)aa + (1/2-1/3)(aa+bb) + (1/3-1/4)(aa+bb+cc) + (1/4)(aa+bb+cc+dd)
 ≦ (1-1/2) + (1/2-1/3)・5 + (1/3-1/4)・14 + (1/4)・30
 = 10,
等号成立は (a,b,c,d) = (1,2,3,4)
0483132人目の素数さん
垢版 |
2020/08/11(火) 22:11:26.18ID:sSrJdUio
a,b,c∈R,
a^2 + b^2 + c^2 > 0,
-1/2 ≦ Σ[cyc] ab/(a^2 + b^2 + 3c^2) ≦ 3/5.

[不明] ( ゚∀゚)ウヒョッ!
0487132人目の素数さん
垢版 |
2020/08/14(金) 14:32:03.90ID:Vqud894y
>>484
a,b,c≧0 に対し
 a^3 + b^3 + c^3 ≧ abb + bcc + caa,
を示せ。
--------------------------------------
 差積 (a-b)(b-c)(c-a) の符号は正にも負にもなるから、
このままではマズイ。
(ついでに言えば、符号も変)

0 ≦ {(a+2b)(a-b)^2 + (b+2c)(b-c)^2 + (c+2a)(c-a)^2}/3
= a^3 + b^3 + c^3 -abb -bcc -caa,

とやるか又は AM-GM で

(a^3 + 2b^3)/3 - abb = (1/3)(a+2b)(a-b)^2 ≧ 0  >>485
を循環的にたす。
0489132人目の素数さん
垢版 |
2020/08/18(火) 21:30:28.99ID:ymr8iYI5
「入試数学の純粋な難問」
0 ≦ x,y,z ≦ 1 のとき
 (x+y+z)/3 + √{x(1-x)+y(1-y)+z(1-z)} ≦ 3/2
を示せ。
--------------------------------------------------------
(x+y+z)/3 = A とおく。
x(1-x) = (3/2)(3/8 - x/3) - (x - 3/4)^2 ≦ (3/2)(3/8 - x/3),
より
x(1-x) + y(1-y) + z(1-z) ≦ (3/2)(9/8 - A)
 = (3/2 - A)^2 - (3/4 - A)^2 ≦ (3/2 - A)^2,
よって
√{x(1-x) + y(1-y) + z(1-z)} ≦ 3/2 - A,
0492132人目の素数さん
垢版 |
2020/08/26(水) 23:23:01.07ID:oXbdk8QE
a,b,c>0
$\frac{a^3+b^3}{ \sqrt{a^2-ab+b^2} } + \frac{b^3+c^3}{ \sqrt{b^2-bc+c^2} } + \frac{c^3+a^3}{ \sqrt{c^2-ca+a^2} } \geq 2(a^2+b^2+c^2)$

2020 China Norther MO ( ゚∀゚)ウヒョッ!
0496132人目の素数さん
垢版 |
2020/09/03(木) 00:51:04.79ID:PGJ1gE8Y
(a+i)(b+i)(c+i) = (abc -a-b-c) + (ab+bc+ca-1)i,
(a-i)(b-i)(c-i) = (abc -a-b-c) - (ab+bc+ca-1)i,
辺々掛ける。
0497132人目の素数さん
垢版 |
2020/09/03(木) 01:07:54.34ID:PGJ1gE8Y
>>492
a,b,c>0 のとき
 (a^3+b^3)/√(aa-ab+bb) + (b^3+c^3)/√(bb-bc+cc) + (c^3+a^3)/√(cc-ca+aa) ≧ 2(a^2 + b^2 + c^2),

(略証)
コーシーで
 (x^3+y^3)/√(xx-xy+yy) = √{(x^3+y^3)(x+y)} ≧ x^2 + y^2,
巡回的にたす。
0499132人目の素数さん
垢版 |
2020/09/03(木) 13:48:56.02ID:PGJ1gE8Y
>>495
実数でやるなら
 a+b+c = s, ab+bc+ca = t, abc = u,
とおく。
 (左辺) = (abc)^2 + ((ab)^2 + (bc)^2 + (ca)^2) + (a^2 + b^2 + c^2) + 1
 = uu + (tt-2su) + (ss-2t) + 1
 = (uu -2su +ss) + (tt -2t +1)
 = (u-s)^2 + (t-1)^2,
0500132人目の素数さん
垢版 |
2020/09/03(木) 14:48:46.83ID:PGJ1gE8Y
>>493
(上)
〔問題214〕
自然数n∈Nを固定する。
i=1,2,・・・・・,2n に対して |x_i| ≦ 1 の値をとるとき
 Σ[1≦r<s≦2n] (s-r-n) x_r x_s
の取り得る最大の値を求めよ。
 IMO Shortlist 2015 A-3
 Inequalitybot [214]


(中)
△ABCにおいて、
 F = {(sinA)^2 + 2(sinB)^2 + 3(sinC)^2} / {(sinA)(sinB)(sinC)}
とおく。
(1) △ABCの3辺の長さを BC=a, CA=b, AB=c とおき、
さらに△ABCの面積をSとする。
F を a,b,c,S で表わせ。
(2) Fの最小値を求めよ。

(下)
Problem 26
正の実数 a,b,c が ab+bc+ca=3 をみたすとき、
 a(bb+cc)/(aa+bc) + b(cc+aa)/(bb+ca) + c(aa+bb)/(cc+ab) ≧ 3
が成立することを示せ。
0501132人目の素数さん
垢版 |
2020/09/03(木) 16:26:15.63ID:PGJ1gE8Y
(中)
(1) 正弦定理
 sin(A) = a/2R, sin(B) = b/2R, sin(C) = c/2R,

 S = abc/4R,
より
 F = 2R(aa+2bb+3cc)/abc = (aa+2bb+3cc)/2S,

(2)
ところで 面積S は a,b,c の関数である。(ヘロンの公式)
 (aa+2bb+3cc)^2 - 11・16SS
 = (aa+2bb+3cc)^2 - 11{2(ab)^2 + 2(bc)^2 + 2(ca)^2 -a^4 -b^4 -c^4}
 = (3・4・5){(bb/4-cc/3)^2 + 2(cc/3-aa/5)^2 + 3(aa/5-bb/4)^2}
 ≧ 0,
 aa+2bb+3cc ≧ (4√11)S,
∴ F ≧ 2√11 = 6.63325
等号成立は a:b:c = √5:√4:√3 のとき。
0502132人目の素数さん
垢版 |
2020/09/13(日) 23:58:13.39ID:JpJgDqA9
a,b,c,d > 0
\sqrt[3]{ab} + \sqrt[3]{cd} ≦ \sqrt[3]{(a+c+d)(a+c+d)}

あばばばばばば
  ∩___∩         
  |ノ   ヽ/⌒)    あびゃば
  /⌒)(゚) (゚) /       あびゃあばばば
 / / (_●)ミ /         ∩――、
( ヽ |∪| /         /(゚)ヽ _ ヽ
 \  ヽノ /         / (● (゚) |つ
  /    /         | (入_ノ ミ
 |    /         | (_/  ノ
 | /\ \         \___ノ゙ー-、
 | /  ) )          /\    _ \
 (_ノ  ( \        (⌒O /\   (_ノ
     \_)        \ノ   /  、  )0
0504132人目の素数さん
垢版 |
2020/09/14(月) 04:14:30.54ID:MMq0bu8b
何かおかしい、何となくそんな気がした。
TVに映る試合は俺とは全く縁もゆかりもない県同士の戦いだが、負けてる方をなんとな〜く応援している気分でいると、これまたなんとなくそろそろハルヒが騒ぎ出すような気がした。
0505132人目の素数さん
垢版 |
2020/09/15(火) 07:33:01.17ID:bL5lP9LW
>>483
等号成立条件だけ。
 最小値: {a,b,c} = {-1,0,1}
 最大値: {a,b,c} = {1,1,1} {1,1,2/3}
0506132人目の素数さん
垢版 |
2020/09/15(火) 21:41:55.44ID:oug42vb/
うむ
0508132人目の素数さん
垢版 |
2020/09/21(月) 22:00:12.84ID:uwUcrYFn
>>483>>505
等号成立条件は、たぶんこうぢゃなゐかな? ( ゚∀゚)ウヒョッ!

(a,b,c,d) = (t, kt, (1+ 1/k)t, k(k+1)t), ただし k, t > 0 とする。
0510132人目の素数さん
垢版 |
2020/09/23(水) 14:21:02.58ID:qMQmLmqf
xが0以上のとき 5x^3-3x+1>0

微分法で簡単に示せるですが
不等式エキスパートの人なら巧みな多項式変形とかで示せるですか?
0511132人目の素数さん
垢版 |
2020/09/23(水) 21:07:53.46ID:63e1O9oo
x√5 = X とおけば
 5x^3 - 3x + 1 > 5x^3 - 3x + (2/√5)
 = (X^3 - 3X + 2) /√5
 = (X+2)(X-1)^2 /√5
 ≧ 0,

ただし、x=1/√5 で極小になることを
微分などの方法で知る必要がある…
0514132人目の素数さん
垢版 |
2020/09/23(水) 22:35:07.36ID:qMQmLmqf
x=0のときは明らかなのでx>0として 5x^2 + 1/x > 3 を言えばよいが
相加相乗で左辺≧3*(5/4)^(1/3) >3 。

式変形だけで、例えば
x^16 - x + 1 = (x^8-1/2)^2+(x^4-1/2)^2+(x^2-1/2)^2+(x-1/2)^2
みたいな感じの巧みな変形でいけないものでしょうか。
0515132人目の素数さん
垢版 |
2020/09/24(木) 10:06:27.00ID:qc+lGULo
>>512
 X^3 + 1 + 1 ≧ 3X,
は 相加相乗平均(AM-GM) と思ってもいいし、
コーシー
 (X^3 + 1 + 1)(1 + X^3 + 1)(1 + 1 + X^3)
 ≧ (X + X + X)^3
 = (3X)^3,
の3乗根と思ってもいい。
0516132人目の素数さん
垢版 |
2020/09/24(木) 10:21:36.43ID:3a+g1aMq
>>514-515
abc3数の相加相乗平均は、
(a+b+c)(a^2+b^2+c^2-ab-bc-ba)
= (a+b+c){(a-b)^2+(b-c)^2+(c-a)^2}
と変形できるので、a=X・b=1・c=1を代入して……って>>511と同じ式変形やないかーい笑

y=f(x) とした関数は非負だと x=1/√5 で極小値かつ最小値をとる。
極小値だけ移動した g(x)=f(x)-極小値 を考える→
x軸に接する
→(x-1/√5)^2 または (X-1)^2を因数にもつ
という考えと同じ。
0517132人目の素数さん
垢版 |
2020/09/24(木) 22:14:11.72ID:shPxNCvG
>>516
少し話が逸れるんだけど4次や5次の相加相乗にも同じように直接平方完成する変形があるんでしょうか?
0518◆iMgX3HS3iA
垢版 |
2020/09/25(金) 01:49:19.72ID:a6NySAb6
>>517
> 少し話が逸れるんだけど4次や5次の相加相乗にも同じように直接平方完成する変形があるんでしょうか?
なんと出来るらしい。
https://mathoverflow.net/questions/279969/wanted-positivity-certificate-for-the-am-gm-inequality-in-low-dimension

AMとGMの差は非負多項式で表すことが可能 https://gyazo.com/0e13cfb59b28c529dd5adbfed354bd16
具体的な恒等式(5次) https://gyazo.com/58b89593fc30a48f70ab35cee68d31e5
具体的な恒等式(2次・3次・4次)https://gyazo.com/4726111c57e1863fca1b9fcd64678b23

アドルフ・フルヴィッツによる1891年の論文
Hurwitz, A. (1891). Ueber den Vergleich des arithmetischen und des geometrischen Mittels. Journal für die reine und angewandte Mathematik, 108, 266-268. https://link.springer.com/chapter/10.1007/978-3-0348-4160-3_35
nが奇数の場合を示したらしい: 藤原和将・小澤徹(応用物理)による2014年の論文 Fujiwara, Kazumasa, and Tohru Ozawa. Identities for the Difference between the Arithmetic and Geometric Means, (2014).
http://m-hikari.com/ijma/ijma-2014/ijma-29-32-2014/ozawaIJMA29-32-2014.pdf
nが偶数の場合を示しているらしい: ハーディ・リトルウッド・ポリア『不等式』第2章

なおこの問題は、ヒルベルトの第17問題(いつも正の有理式は平方和で表せる)の特殊な場合でもある。

最初に見付けたのページは医師でアマチュア数学者の佐藤郁郎によるコラムだったが、いかんせん読みにくく参考までに。(NGなのでURL貼らない)
因数分解の算法(その11)
因数分解の算法(その14)
因数分解の算法(その18)
0519132人目の素数さん
垢版 |
2020/09/25(金) 02:15:38.40ID:Bm3x9keW
>>518
めっちゃ詳しくありがとうございます!
まさか本当に出来るとは驚きです
第17問題のwikiを読んだ感じでは非負な斉次多項式に対して一般にこういうことは出来ないようですね
この不可能性はモデル理論的な話があるようでこれも面白そうです
0521132人目の素数さん
垢版 |
2020/09/25(金) 13:45:47.22ID:C/C9yJEj
(x_1)^n, ・・・・・, (x_n)^n の相加平均をA, 相乗平均をG,
兩n = n(A^n - G^n) = Σ x^n - nΠ x,
とおく。
兩2(a,b) = aa +bb -2ab = (a-b)^2,

兩3(a,b,c) = a^3 +b^3 +c^3 - 3abc
 = (a+b+c){(a-b)^2 + (b-c)^2 + (c-a)^2}/2,

兩4(a,b,c,d) = a^4 +b^4 +c^4 +d^4 - 4abcd
 = (aa-bb)^2 + (cc-dd)^2 + 2(ab-cd)^2
 = (aa-cc)^2 + (bb-dd)^2 + 2(ac-bd)^2
 = (aa-dd)^2 + (bb-cc)^2 + 2(ad-bc)^2,

兩5(a,b,c,d,e)
 = a^5 + b^5 + c^5 + d^5 + e^5 -5abcde
 = (a-b)(a^4 -b^4)/4 + (a-c)(a^4 -c^4)/4 +
 ・・・・・ + (d-e)(d^4 -e^4)/4
 + a兩4(b,c,d,e)/4
 + b兩4(c,d,e,a)/4
 + c兩4(d,e,a,b)/4
 + d兩4(e,a,b,c)/4
 + e兩4(a,b,c,d)/4,

* (x-y)(x^4-y^4) = (x+y)(xx+yy)(x-y)^2 ≧ 0,
0522132人目の素数さん
垢版 |
2020/09/26(土) 22:14:27.50ID:lnmePYpg
>>521
なるほど、5次の場合は
1/4(x+y)(x^2+y^2)(x-y)^2
=1/6(x^3+y^3)(x-y)^2+1/12(x+y)(x^2-y^2)^2
を利用すると>>518の藤原小澤の表示と一致するのか
藤原小澤の論文は流し読みしたけどテクすぎて全然わからん
表示の仕方の自由度高そうだし何か行列式的な表示とか対称式の空間上の作用素みたいなのを見つけて綺麗に示せないもんかね

>>519
訂正
てっきり不可能性がモデル理論的に分かると思っていたけど今日モデル理論の本借りて見てみたら肯定的な証明が書かれていた
17問題が肯定的なのか否定的なのか混乱してきた…
0523132人目の素数さん
垢版 |
2020/09/26(土) 22:49:49.44ID:yIQAC3t7
元の十七問題はΣ多項式^2でかけるか?でそれは誰かの反例が出た
後に実閉体まで話広げるとΣ実閉包の元^2でかける事が証明された(Artin)
永田先生の可換体論の5章に証明がある
0524132人目の素数さん
垢版 |
2020/09/26(土) 23:07:14.49ID:lnmePYpg
自分の読んでる「幾何学的モデル理論入門」(最近、改訂版が出たばかりらしい)に実閉体の第17問題が肯定的に解けることを利用して有理数体の場合も証明できるかのように書いてるように見えるんです…
0528132人目の素数さん
垢版 |
2020/09/26(土) 23:49:36.06ID:yIQAC3t7
>>526
thx
確か上がってる反例はΣ整式^2では表せない例でΣ有理式^2では表せるんだったかな?
Artinの定理の正確なステートメント覚えてない(かつ永田先生の本が現在部屋のどこにあるかわからん)のでわかんないけどΣ有理式^2で表すのは有理係数でもいけるのかもしれない

 任意の実閉包の中で0以上 →Σ有理式^2で表示できる

だったかも
確か右が言えてない場合に標数0の加法的付値体て0未満になる構造が存在する事示してそれを上手いこと微調整して通常のRの中で0以下に出来る事を示すんだったような
0529132人目の素数さん
垢版 |
2020/09/26(土) 23:56:47.06ID:lnmePYpg
あー、有理式なら肯定的という可能性があるんですね
ありがとうございます
0531132人目の素数さん
垢版 |
2020/09/27(日) 00:49:47.04ID:KH9c7ePZ
あ、全ての有理数に対して非負な多項式で考えるから奇数次の場合は全ての変数を平方にしておかないといけなくて藤原小澤の結果の変数を平方にするだけか
0532132人目の素数さん
垢版 |
2020/09/27(日) 01:09:34.88ID:KH9c7ePZ
いや、そうなってくると藤原小澤も必要なくて古典的なフルヴィッツの形で示せてるのか
無知すぎてスマン
0533132人目の素数さん
垢版 |
2020/09/27(日) 01:15:18.97ID:T1BBTchP
有理式使っていいならAM-GMは簡単でしょ?
いわゆる2冪でやっといて減らす作戦でいける
0534132人目の素数さん
垢版 |
2020/09/27(日) 14:36:59.49ID:N42SrDUa
>>521
兩n(a_1, a_2, ・・・・, a_n)
 = (a_1)^2 + (a_2)^n + ・・・・ + (a_n)^n - n(a_1)(a_2)・・・・(a_n)
 = Σ[i<j] (a_i - a_j)[(a_i)^{n-1} - (a_j)^{n-1}] /(n-1)
 + Σ[i=1,n] a_i (Σ[j≠i] (a_j)^{n-1} - (n-1)Π[j≠i] a_j) /(n-1)
 = Σ[i<j] (a_i - a_j)[(a_i)^{n-1} - (a_j)^{n-1}] /(n-1)
 + Σ[i=1,n] a_i 兩{n-1}(i以外) /(n-1),
0538132人目の素数さん
垢版 |
2020/09/28(月) 01:14:12.03ID:VdFe70Zi
>>535
数列 {a_n}n∈N と {b_n}n∈N が |a_n|≦1, |b_n|≦1 (∀n∈N) を満たす時、
次を示せ。
| Π[i=1,n] a_i - Π[k=1,n] b_k | ≦ Σ[j=1,n] |a_j - b_j| (∀n∈N)

(略証)
Π[i=1,n] a_i - Π[k=1,n] b_k
 = Σ[j=1,n] (Π[i=1,j-1] a_i) (a_j - b_j) (Π[k=j+1,n] b_k),
三角不等式により
(左辺) ≦ Σ[j=1,n] (Π[i=1,j-1] |a_i|) |a_j - b_j| (Π[k=j+1,n] |b_k|)
 ≦ Σ[j=1,n] |a_j - b_j|
 = (右辺),
0539132人目の素数さん
垢版 |
2020/10/06(火) 20:34:14.40ID:CqXEEU8P
〔問題944〕
a,b,c は相異なる正の数で、√a + √b + √c = 1 を満たす。
 f(x,y) = log(y/x) / (1/x - 1/y),
に対して、
 f(a,b) + f(b,c) + f(c,a) ≦ 1/3
を示せ。

高校数学の質問スレPart407 - 944
0541132人目の素数さん
垢版 |
2020/10/13(火) 14:51:16.00ID:Aceyovpj
>>539
0<x,y, x≠y のとき
f(x,y) = log(y/x)/(1/x - 1/y)
 = log(y/x)/(√(y/x) - √(x/y))
 = 2t/(e^t - e^{-t})・√(xy)
 = t/sinh(t)・√(xy)
 ≦ √(xy),
 等号成立は x=y のとき。

(左辺) = f(a,b) + f(b,c) + f(c,a)
 ≦ √(ab) + √(bc) + √(ca)
 ≦ (1/3)(a+b+c + 2√(ab) + 2√(bc) + 2√(ca))
 = (1/3)(√a + √b + √c)^2,
 等号成立は a=b=c のとき。
0544132人目の素数さん
垢版 |
2020/10/14(水) 04:12:15.55ID:PHtzabu1
JP346.
 両辺に ab(a+b) >0 を掛けて通分すると
ab(a+b)(左辺 - 右辺) = (a-b)^2 {(a-b)^2 + (4 - k/4)ab},
 (4 - k/4) ≧ 0,
 k ≦ 16,
0546132人目の素数さん
垢版 |
2020/10/14(水) 20:10:00.68ID:PHtzabu1
JP347.
基本対称式を
 s = a+b+c, t = ab+bc+ca, u = abc,
とおく。
(a+b)(b+c)(c+a) = st-u を掛けて通分すると
2(a+b)^2・(a+c)^2 + 2(b+c)^2・(b+a)^2 + 2(c+a)^2・(c+b)^2
 = 2(ss-t)^2 + 8su
 = s^4 + (5/3)tt + s(s^3 -4st+9u) + (tt-3su)/3
 ≧ s^4 + (5/3)tt,
∴ (左辺) ≧ {s^4 + (5/3)tt}/st = (s^3)/t + 5t/(3s),

JP348.
 a/b=x, b/c=y, c/a=z とおくと
 x^3 + y^3 + z^3 ≧ 3xyz = 3,   (← AM-GM)
 (x^4+y^4+z^4)(1+1+1) ≧ (x^2+y^2+z^2)^2, (←コーシー)
辺々掛ける。
0547132人目の素数さん
垢版 |
2020/10/14(水) 22:07:28.25ID:OfAfCbWz
>>545
346はkについての一次式だから
与式⇔k≦4次式÷4次式
になる(割る時、除数の符号わそこまで難しくない)
分子も分母も(a-b)^2で割り切れる
0548132人目の素数さん
垢版 |
2020/10/15(木) 17:59:01.64ID:2j40wcqC
JP350.
 (a+b+c)^2 ≦ 3(aa+bb+cc),
x ≧ 1/√3 のとき
{1 + 3x(1-x)}^2 - (4-3xx) = 3(3xx-1)(x-1)^2 ≧ 0,
√(4-3xx) + 3x(x-1) ≦ 1,
x=a,b,c でたす。

JP351.
ABCが鈍角凾フときは
 Πcos(・) ≦ 0,
 (左辺) ≧ 0 ≧ (右辺),
で成立するから以下では、ABCは鋭角Δとする。
 sin(A) = x, sin(B) = y, sin(C) = z
とおくと
 xyz > 0,
一方、題意より
 xx+yy+zz = 1 - 2xyz,
 xyz ≦ 1/8,
左辺に加法公式
 sin(A)sin(B) = cos(A)cos(B) - cos(A+B) = xy + z,
を入れれば
 (左辺) - (右辺) = (xy+z)(yz+x)(zx+y) - 4xyz + 5(xyz)^2
 = ・・・・,
 がんばれ

JP352.
△不等式で
 |a+b+c| + |a-b| + |a-c| ≧ |(a+b+c) + (a-b) + (a-c)| = 3|a|,
巡回的にたすと
 3|a+b+c| + 2(|a-b|+|b-c|+|c-a|) ≧ 3(|a|+|b|+|c|),
0549132人目の素数さん
垢版 |
2020/10/15(木) 19:59:49.04ID:2j40wcqC
UP346
 (左辺) = 1 + (x-1)exp(arctan(x))√(1+xx),  ←可積分
∴ x=1

UP347.
上の式は
0 = |x|^2 /m + |y|^2 /n - |x+y|^2 /(m+n)
 = xx' /m + yy' /n - (x+y)(x+y)' /(m+n),
mn(m+n) を掛けて通分する。
0 = nnxx' + mmyy' - mn(xy'+x'y)
 = (nx - my) (nx - my)'
 = |nx - my|^2
∴ x = (m/n)y,
これを下の式に入れて
 y = 1+2i,

UP534.
 (1/n)Σ[k=1,n-1] (k/n)sin(kπ/n)
 → ∫[0,1] x・sin(πx) dx   (n→∞)
 = [ sin(πx)/π^2 - x・cos(πx)/π ](x=0,1)
 = 1/π,

(与式) ≒ (1 + π/n)^n
 = {(1+π/n)^(n/π)}^π
 → e^π,  (n→∞)

UP359.
Ω = ∫[0,π/2] θ・cosθ/[(sinθ)^3 + (cosθ)^3] dθ
 = (π/36){π√3 + log(97/8 + 7√3)}
  - (1/144){ψ'(5/12) - ψ'(11/12)}
 = 0.71907287245537291248414214
ここに
ψ'(x) = {log(Γ(x))}" = {Γ'(x)/Γ(x)}'
 = Σ[k=0,∞] 1/(x+k)^2  … トリガンマ函数
0550132人目の素数さん
垢版 |
2020/10/16(金) 05:20:43.69ID:QJC/WS82
JP351.
 cos(A) = x, cos(B) = y, cos(C) = z
とおくと、
に修正…

SP349.
 s = -log(sin(a)) >0,  c = -log(cos(a)) >0,
とおく。
(左辺) = (e^{-s})^{√(c/s)} + (e^{-c})^{√(s/c)}
 = 2e^{-√(cs)}
 ≦ 2e^{-log(2)/2}    (*)
 = 2e^{log(1/√2)}
 = √2,
(*) a が端(0,π/2) に近づくとき cs は急に大きくなる。

SP351.
 (1+t)^{1/3} + (1-t)^{1/3}
 = 2/[(1+t)^{2/3} - ((1+t)(1-t))^{1/3} + (1-t)^{2/3})
 ≦ 2,

UP358.
|∫[a,b] e^{ix}/x dx | ≦ ∫[a,b] 1/x dx = log(b/a),
両辺を2乗する。

UP360.
 x = y = 1/3,
0552132人目の素数さん
垢版 |
2020/10/16(金) 19:37:27.70ID:QJC/WS82
SP353.
与式を辺々引くと
 λ(x-y) = √(λλyy-1) - √(λλxx-1)
  = λλ(yy-xx)/{√(λλyy-1) + √(λλxx-1)},
もし x-y≠0 ならば
 1 = - λ(x+y)/{√(λλyy-1) + √(λλxx-1)}
 < 0, (矛盾)
∴ x = y = z = 2/(λ√3),
0553132人目の素数さん
垢版 |
2020/10/16(金) 20:49:16.21ID:QJC/WS82
SP353. (別法)
t≧1 で f(t) = t + √(tt-1) は単調増加
与式より
 f(λx) = f(λy) = f(λz),
 λx = λy = λz,
λ>0 より
 x = y = z,
0554132人目の素数さん
垢版 |
2020/10/17(土) 13:08:39.01ID:Ml1qOBSK
UP346.
 f(x) e^{arctan(x)} = ∫ (2xx) e^{arctan(x)} / √(1+xx) dx
とおく。
 f '(x) + f(x)/(1+xx) = 2xx/√(1+xx),
 f '(x)√(1+xx) + f(x)/√(1+xx) = 2xx,
ここで
 f(x) = g(x)√(1+xx),
とおくと
 (1+xx)g '(x) + (1+x)g(x) = 2xx,
g(x) が n次多項式とすると
 g(x) = ax^n + ・・・
(左辺)= (n+1)ax^{n+1} + …
∴ n=1,
 (左辺) = 2ax^2 + g(1)(1+x),
 a=1, g(1)=0,
 g(x) = x-1,
 f(x) = (x-1)√(1+xx),
0555132人目の素数さん
垢版 |
2020/10/18(日) 13:13:01.21ID:ZEBeZlNg
SP354.
 log(x^{xy}・y^{yz}・z^{zx})
 = log(x^{xy}) + log(y^{yz}) + log(z^{zx})
 = y・log(x^x) + z・log(y^y) + x・log(z^z)
 ≦ y・(x^x - 1) + z・(y^y - 1) + x・(z^z - 1)
 = (y・x^x + z・y^y + x・z^z) - (x+y+z),

*) e^t ≧ 1+t より log(u) ≦ u-1,
0556132人目の素数さん
垢版 |
2020/10/18(日) 19:36:39.48ID:ZEBeZlNg
SP358.
コーシーで
 {(y+1)+(z+1)+(x+1)} {(z+1)(x+1)+(y+1)}{x^3/[(y+1)(z+1)] + cyclic}
 ≧ (x+y+z)^3
 = s^3
よって
 (左辺) ≧ 4s^3 /(s+3)^2 + 3
 = s{(2s/(s+3))^2 + (s+3)/2s + (s+3)/2s - 1}
 = s(3-1)       (← AM-GM)
 = 2s
 ≧ (右辺),
等号は s=3, x=y=z=1 のとき。
0557132人目の素数さん
垢版 |
2020/10/18(日) 21:26:39.70ID:ZEBeZlNg
SP358.
コーシーで
 { …… } {(z+1)+(x+1) + (y+1)}{ …… }
 ≧ (x+y+z)^3

 ≧ s(3-1)       (← AM-GM)

JP360.
 tan(x)^2/{tan(x)^3+cot(x)} + cot(x)^2/{cot(x)^3+tan(x)}
  - 2/{tan(x)^2 +cot(x)^2}
 = Σ {tan(x) + cot(x) -2}/{tan(x)^2 + cot(x)^2}
 = X / (XX+4X+2)
 ≦ 1/(4+2√2),           (*)
ここに X = tan(x) + cot(x) -2 ≧ 0,
∴ 0 ≦ (左辺) - (右辺) ≦ 3/(4+2√2),

*) (XX+4X+2) - (4+2√2)X = (X-√2)^2 ≧ 0,
等号成立は X = √2, sin(2x) = 2 - √2,
0559132人目の素数さん
垢版 |
2020/10/20(火) 20:12:27.86ID:J8I4fsGY
〔問題558〕
正の実数 x,y,z が xyz=1 を満たすとき、以下を示せ。
x/(1+y+z)^3 + y/(1+z+x)^3 + z/(1+x+y)^3 ≧ 1/9 ≧ 1/(√xy + √yz + √zx)^2,
0562132人目の素数さん
垢版 |
2020/12/03(木) 06:23:28.55ID:qlrP4DQI
a,b,c > 1/2 のときに、aa+bb+cc+ab+bc+ca-a-b-c ≧0 を証明したい。
左辺を平方完成して、残り物 ab+bc+ca-3/4 にAM-GMする以外にハァハァできそうな方法はないかな?
0563132人目の素数さん
垢版 |
2020/12/03(木) 06:24:46.82ID:qlrP4DQI
>>558
左辺の分母の1を(abc)^(1/3)に変えて同次にするんだろうと思うけど、そこで手が止まっている…
0564132人目の素数さん
垢版 |
2020/12/06(日) 02:09:47.83ID:KT/cOuDT
>>562
 (左辺) = {(a+b)^2 + (b+c)^2 + (c+a)^2}/2 - (a+b+c)
   = {(a+b)(a+b-1) + (b+c)(b+c-1) + (c+a)(c+a-1)}/2
  > 0,
とか
 (左辺) = {4(a+b+c)^2 + (a-b)^2 + (b-c)^2 + (c-a)^2}/6 - (a+b+c)
 ≧ (2/3)ss - s       (s=a+b+c)
 = (2/3)s(s - 3/2)
 > 0,
とか色々あるけど、単に
 a' = a - 1/2 > 0, b' = b - 1/2 > 0, c' = c - 1/2 > 0,
でいい希ガス…
0566132人目の素数さん
垢版 |
2020/12/14(月) 01:35:46.45ID:gLda82Cm
a,b>0は定数とする. 0<s,t<1のとき
st/(as+bt)+(1-s)(1-t)/{a(1-s)+b(1-t)}の最大値を求めよ.
0567132人目の素数さん
垢版 |
2020/12/18(金) 06:19:31.83ID:DAoaiwdi
1/(a+b) - (与式) = ab(s-t)^2 /[(a+b)(as+bt){a(1-s)+b(1-t}] ≧ 0,
等号成立は s=t のとき。
0568132人目の素数さん
垢版 |
2020/12/18(金) 13:22:00.83ID:DAoaiwdi
コーシーで
 st/(as+bt) ≦ (at+bs)/(a+b)^2,
 (1-s)(1-t)/{a(1-s)+b(1-t)} ≦ {a(1-t)+b(1-s)}/(a+b)^2,
辺々たす。
0569132人目の素数さん
垢版 |
2020/12/19(土) 21:22:13.58ID:iw6DTiTj
単位円に内接する正n角形のn個の頂点からの距離の和が最小になる点とその最小値を求めよ。
0570132人目の素数さん
垢版 |
2020/12/20(日) 20:55:16.29ID:QYPKWpxY
頂点A_k の極座標を (1, 2kπ/n) 点Pの極座標を (r, θ) とおく。
第二余弦定理より
PA_k = √{1 - 2r・cos(2kπ/n - θ) + rr} ≧ 1 - r・cos(2kπ/n - θ)
 等号成立は r=0 のとき
また
 Σ[k=1,n] cos(2kπ/n - θ) = Σ[k=1,n] {sin((2k+1)π/n - θ) - sin((2k-1)π/n - θ)}/{2sin(π/n)}
 = {sin((2n+1)π/n - θ) - sin(π/n - θ)}/{2sin(π/n)}
 = 0,
∴ Σ[k=1,n] PA_k ≧ n,
 等号成立は P=O のとき。

・nが偶数のとき (n=2m)
三角不等式より
 PA_k + PA_{m+k} ≧ A_k A_{m+k} = 2,
 等号成立は P が線分 A_k A_{m+k} 上にあるとき。(← 円の直径)
∴  Σ[k=1,n] PA_k = Σ[k=1,m] (PA_k + PA_{m+k}) ≧ Σ[k=1,m] 2 = 2m = n,
 等号成立は P=O のとき。
0571132人目の素数さん
垢版 |
2020/12/20(日) 23:01:24.01ID:QYPKWpxY
ヴェクトルの内積を使えば
OA_k = 1 より

PA_k ≧ ↑PA_k・↑OA_k = (↑OA_k - ↑OP)・↑OA_k
  = 1 - ↑OP・↑OA_k,

∴ Σ[k=1,n] PA_k ≧ n - ↑OP・{Σ[k=1,n] ↑OA_k} = n,
等号成立は ↑OP = o.
0572132人目の素数さん
垢版 |
2021/01/01(金) 08:32:42.45ID:NURKUP5N
      ∧_∧
     ( ´Д` )  新年あけまして
     /     ヽ
     し、__X__,ノJ

      /´⌒⌒ヽ
    l⌒    ⌒l  おめでとうございます。
   ⊂ (   ) ⊃
      V ̄V

正の数 a,b,c に対して
(a^2021 -a^3 +3)(b^2021 -b^3 +3)(c^2021 -c^3 +3) > (a+b+c)e,
e = 2.71828… は自然対数の底
>>294
0574132人目の素数さん
垢版 |
2021/01/03(日) 06:38:55.14ID:N51mYuOL
eが出てきても eじゃない…

(左辺) ≧ 2.7199579587(a+b+c)
等号は a=b=c = 0.9968783547581 のとき。
0575132人目の素数さん
垢版 |
2021/01/03(日) 16:12:00.62ID:+lbXmv47
すべての自然数nについて
Σ_{k=1}^n (k^(1/2)-1)≧(n/2)*((n/2)^(1/2)-1)
が成り立つことをしめせ
0576132人目の素数さん
垢版 |
2021/01/03(日) 20:22:26.62ID:N51mYuOL
k≧2 について
 (k-1)^3 - k(k-3/2)^2 = (3/4)k - 1 > 0,  (AM-GM)
 (k-1)^{3/2} > (k - 3/2)√k = k^{3/2} - (3/2)√k,
 √k > (2/3)(k^{3/2} - (k-1)^{3/2}),
(左辺) = Σ_{k=2}^{n} (√k - 1)
  > (2/3)(n^{3/2} - 1) - (n-1)
  = (1/3)(2√n +1)(√n - 1)^2
  > (n/2)(√(n/2) - 1),
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況