>>82 のヒント

〔補題〕
 (n^n)/n! ≦ e^(n-1),

(略証)
(1 +1/j)^j = Σ[L=1, j] C[j, L](1/j)^L = Σ[L=1, j] (1-1/j)(1-2/j)…(1-(L-1)/j)/L!
はjについて単調増加。
∴ {(j+1)/j}^j = (1 + 1/j)^j < e,
j=1,…,n-1 を入れて掛けると
 (n^n)/n! ≦ e^(n-1),

(別法)
マクローリン展開から
 e^x > x^{n-1} /(n-1)! + (x^n)/n! + x^{n+1} /(n+1)! + x^{n+2} /(n+2)!
   = (x^n)/n! {n/x + 1 + x/(n+1) + xx/(n+1)(n+2)},
 e^n > (n^n)/n! {2 + n/(n+1) + nn/(n+1)(n+2)} > (n^n)/n! e,   (n≧2)
∴ e^(n-1) > (n^n)/n!,
 n=1 は直接確かめる。   (終)

不等式スレ9-724