名古屋大学のアゴラにあった問題なのですが,

証明したい事柄:
「nを2以上の自然数とする.
1,2,…,2nの2n個の自然数から,
n+1個の自然数をとると,
そのうちの2つについて,
一方が他方の倍数になっているものが存在する.」

次のような解答で合っていますか.
教えてください.
よろしくお願いします.

「数学的帰納法」と「引き出し論法」を使いました.

[basis]
n=2のとき,
{1,2,4},{3}の2組に分けると,
3個とれば,{1,2,4}の中から2個はとることになるので
成り立つ.
n=3のとき,
{1,2,4},{3}の2組に対して,
6は,{3}に入れて{3,6}とし,
5は{5}とする.
{1,2,4},{3,6},{5}の3組に分けることができる.
4個とれば,{1,2,4},{3,6}の少なくともどちらからは2個とるので
成り立つ.
n=4のとき,
{1,2,4,8},{3,6},{5},{7}の4組に分けることができる.
5個とれば,成り立つ.

[induction step]
n=k(k≧2)で成り立つと仮定する:
1,2,…,2kの2k個の自然数が,
n=2,3,4のように,
{1,2,4,…},{3,6,…},{5,10,…},…という具合に,
k個の組に分けることができると仮定する.
(ここから,k+1個を選べば成り立つことがわかる.)
このとき,2k+1については,{2k+1}として,1組作り,
2(k+1)については,k+1の属している組に入れれば,
n=k+1のときも,k+1個の組に分けることができる.
(したがって,ここからk+2個をとれば成り立つことがわかる)

以上から,証明したい事柄は,証明された.□□

よろしくお願いします.