>>658
Fを環とする。環F上に定義された二項演算としての加法、乗法をそれぞれ+、・とする。1をFの単元とする。
Gを任意の可換群とする。可換群はその上に定義された加法の二項演算について可換と見なして考えることが多い。
そこで、+と区別するため、群G上に定義された二項演算を +' で表すことにする。0をGの単位元とする。
すると、Fの加法群Gへの、Gの加法 +' に関する左からの作用 F×G→G (a,f)→a+'f が定まる。
同様に、FのGへの、Gの加法 +' に関する右からの作用 G×F→G (f,a)→f+'a も定まる。
Fの加法群Gへの、Fの乗法・に関する左からの作用 F×G→G (a,f)→a・f=af も定まるから、加法群Gは環Fの左F-加群。
同様に、FのGへの、Fの乗法・に関する右からの作用 G×F→G (f,a)→f・a=fa も定まるから、GはFのF-右加群。
よって、加法群Gは環FのF-両側加群。Gは任意なので、G=F として、
Gに定義された加法の二項演算 +' とFに定義された加法の二項演算+とを同じ二項演算の加法と見なせば、環FはFのF-両側加群となる。
単位的環はその上に定義された加法と乗法の二項演算について環なので、単位的環Fの加法の二項演算を+、乗法の二項演算を・とすれば、
Fは加法の二項演算+、乗法の二項演算・について、F上のF-両側加群となる。
Fの乗法の二項演算・が可換のときは、単位的環Fは可換環となって、同様に可換環Fは、
Fに定められた加法の二項演算+、乗法の二項演算・について、FのF-両側加群となる。
多項式環の定義から、可換環の点を係数とする多項式全体の空間F[x]は可換環をなし、
多項式環F[x]のF-係数多項式の変数xは固定されている。
このとき、もしF-係数多項式1,x,1+xが可換環F上一次独立ならば、{1,x,1+x}はF-係数の多項式環F[x]の基底となる。
体Kはその上に定義された加法と乗法の各二項演算が、環Fに定義された加法と乗法の各二項演算+、・のときは、環Fと見なせるので、
上の議論でのF上をF=Kとすれば、多項式1,x,1+xが体K上一次独立とすると、
1,x,1+x{∈K[x]で、1,x,1+x}はK-係数の多項式環K[x]の基底となることがいえる。