X



トップページ数学
1002コメント302KB
【専門書】数学の本第76巻【啓蒙書】
■ このスレッドは過去ログ倉庫に格納されています
0001132人目の素数さん
垢版 |
2018/03/26(月) 23:40:16.58ID:d8tCdO2g
数学書やその周辺の話題について語りましょう。

荒らしや煽りは禁止。
見ている人を不快にさせる書き込みはひかえてください。
人としての基本的な礼節を守って、皆で楽しみましょう。

前スレ
【専門書】数学の本第75巻【啓蒙書】
http://itest.5ch.net/rio2016/test/read.cgi/math/1515687474
0647132人目の素数さん
垢版 |
2018/05/14(月) 10:50:58.02ID:Fh7T7WZf
>>646
ポントリャーギンは純粋数学でも応用数学でも業績をあげているという意味じゃないの
0648132人目の素数さん
垢版 |
2018/05/14(月) 21:37:13.91ID:x2CCXR8a
>>644だけど、ソ連の数学者は教育も重視する。
ポントリャーギンやゲルファントほどの大物が
初等、中等教育用の教材を書いたりしてる。
こういうところは、日本人も見習って欲しい。
0650132人目の素数さん
垢版 |
2018/05/14(月) 21:47:42.50ID:eHajXI01
>>646
> >>642
> ポントリャーギンは数学者だろ

もちろんだよ、誰が見ても一流の数学者でしょ

>>640>>637の最適化理論を「工学板に行け」と書いてたから、
いやそうじゃないでしょ、工学のための数学つまり応用数学も立派な数学だよという意味で
誰もが一流と認める数学者であるポントリャーギンの名前を挙げたんだよ
だって彼は>>640が工学(の数学)だと主張するであろう最適過程・最適制御の数学に関する専門書や入門書も書いているからね
0652132人目の素数さん
垢版 |
2018/05/14(月) 22:11:34.82ID:x2CCXR8a
私も本を書いてるけど、入門書を書いたり
初級の授業をするのに実力が問われると思う。
0656132人目の素数さん
垢版 |
2018/05/15(火) 00:57:24.74ID:BuiAHx+R
>>648
同感だね。書いてるもの見てもスケール感が違う
教育に関してはコルモ大先生なんか言わずもがな

で、誰も「連続群論」の名前出さないのはなぜ?
東大の某先生はこれを穴あくほど読み込んで研究者になれたそうな
0661132人目の素数さん
垢版 |
2018/05/15(火) 14:12:36.40ID:VgoAkx/1
離散凸解析って何ですか?
0662132人目の素数さん
垢版 |
2018/05/15(火) 15:01:48.49ID:VgoAkx/1
Michael Spivak著『Calculus』を読んでいます。

第4部の級数のところを読んでいますが、最高ですね。

Spivakさんにもっといろいろと数学の本を書いてほしいです。
0663132人目の素数さん
垢版 |
2018/05/15(火) 15:03:29.04ID:VgoAkx/1
そういえば、以前、藤重悟さんは、数理解析研究所の所長でしたよね。

藤重悟さんは数学者ではないですよね?
0664132人目の素数さん
垢版 |
2018/05/15(火) 15:25:06.17ID:VgoAkx/1
スチュワートの微分積分の本の一部が翻訳されましたが、
そんな本の翻訳はやめて、Michael Spivak著『Calculus』の
翻訳をすべきではないでしょうか?
0665132人目の素数さん
垢版 |
2018/05/15(火) 15:51:19.83ID:ptH19KnX
>>656
ああ、連続群論の一冊だけでもポントリャーギンの名前は半永久的に残るに値すると思う
そのことが念頭にあって、応用数学の業績もある一流(いや超一流と書くべきだったか、まあ修飾語なんでどうでも良い)の数学者の典型例として彼の名前を挙げたんだよ

共産主義時代のソ連はアメリカや西欧に抗してやって行くために富国強兵というか国防・産業や国民教育などが非常に重視されてたという社会的圧力もあったのだろうが
超の付く一流の数学者や理論物理学者の少なからずが応用面でも業績を挙げ教科書や専門書を書いたり優れた入門教科書や啓蒙書を書いたりしているのが興味深い
この辺りは世俗の世間や民衆を切り捨て象牙の塔に籠ることこそが己の仕事の格の高さの証しと勘違いしている日本の数学屋や理論屋たちも見習ってもらいたいものだ
0667132人目の素数さん
垢版 |
2018/05/15(火) 16:23:44.84ID:C7A6kXck
爺さんもポントリャーギンの時代に生まれるか、同程度の数学の才能があればよかったのにね
0668132人目の素数さん
垢版 |
2018/05/15(火) 17:43:23.85ID:R3h3GNcx
ソ連では純粋と応用も区別はなかったのでは?
0669132人目の素数さん
垢版 |
2018/05/15(火) 18:00:27.11ID:pohhmLtS
純粋数学原理主義者に何言っても無駄
それだけが心の拠り所なんだから
0670132人目の素数さん
垢版 |
2018/05/15(火) 18:13:13.51ID:VgoAkx/1
ポントリャーギンの『連続群論』って古すぎるという話ですよね。
0671132人目の素数さん
垢版 |
2018/05/15(火) 18:47:42.86ID:j0q7+E4u
東京大学理学部数学科に入りたいけど、
白チャートの数学UBの最初の方から分からない。
二項定理って何なんだよ・・・・・。
さっぱり分からん・・・・・。
何か良さそうな本は無いですかね?
0673132人目の素数さん
垢版 |
2018/05/15(火) 18:59:28.16ID:j0q7+E4u
>>672
なんとか2〜3年でできないですかね・・・?
0675132人目の素数さん
垢版 |
2018/05/15(火) 19:14:10.18ID:VgoAkx/1
そこまでして読む価値はあるのでしょうか?

最新の本のほうがいいのではないでしょうか?
0676132人目の素数さん
垢版 |
2018/05/15(火) 19:25:59.16ID:VgoAkx/1
Michael Spivakさんの微分幾何の本もいい本ですか?
0677132人目の素数さん
垢版 |
2018/05/15(火) 20:07:02.10ID:VgoAkx/1
『Calculus on Manifolds』よりも『Calculus』のほうを訳すべきでしたね。
0678132人目の素数さん
垢版 |
2018/05/15(火) 20:15:02.52ID:VgoAkx/1
やはり自分で自分の本を出版する出版社を作ってしまうくらいの情熱がないと
あんないい本は作れませんね。
0679132人目の素数さん
垢版 |
2018/05/15(火) 20:41:04.68ID:vg6Fbd6S
私本で翻訳版地下出版してネットにも流してくれ。
粗探しと並行してやってくれ。
0681132人目の素数さん
垢版 |
2018/05/15(火) 22:07:31.65ID:2YMOwVF/
>>665
>世俗の世間や民衆を切り捨て象牙の塔に籠ることこそが己の仕事の格の高さの証しと勘違いしている日本の数学屋や理論屋たち

いや〜、単に無能すぎて人目に触れることは
できないんだよ、奴らは。
0682ソ連の数学者スレ賛成
垢版 |
2018/05/16(水) 00:03:03.47ID:pC/oJVwO
>>665
流石だな、そういう熱いレス待ってたよ

『超の付く一流の数学者や理論物理学者の少なからずが応用面でも業績を挙げ教科書や専門書を書いたり優れた入門教科書や啓蒙書を書いたりしているのが興味深い
この辺りは世俗の世間や民衆を切り捨て象牙の塔に籠ることこそが己の仕事の格の高さの証しと勘違いしている日本の数学屋や理論屋たちも見習ってもらいたいものだ』

これはいくら強調しても強調し過ぎることはないだろうな
その数学力は言わずもがな、何が違うかって社会的自我の成熟度に天地の差があるんだよな
かのKolmogorovも強烈な磁力を持った魅力的な人格の持ち主だったようで、その彼を慕う人が集まってセンターが形成されたそうな
数学板の稚拙な書き込みを見ていたら暗澹たる気持ちになるよ
0683132人目の素数さん
垢版 |
2018/05/16(水) 00:20:02.22ID:lEX+9FUj
清純派数学
0684132人目の素数さん
垢版 |
2018/05/16(水) 02:19:48.87ID:PcMnFn9i
>>682
> その数学力は言わずもがな、何が違うかって社会的自我の成熟度に天地の差があるんだよな

「社会的自我の成熟度の違い」、なるほど言い得て妙だな
そうなんだよ、日本の場合、視野が狭くて世間と隔絶したオタク的なのが良い研究者だという錯覚あるいは誤解がある
だから社会的自我が子供のレベルのままのが平気でいられるわけだが、向うの連中の大半は精神的にちゃんと大人として社会とのインタフェースを確立してるんだよな

> かのKolmogorovも強烈な磁力を持った魅力的な人格の持ち主だったようで、その彼を慕う人が集まってセンターが形成されたそうな

なるほどね、Kolmogorovも幅の広い数学者だよね、しかもその幅広い様々な分野で後世に残るとても重要な業績を残しているのが本当に素晴らしい
0687132人目の素数さん
垢版 |
2018/05/16(水) 09:17:48.43ID:sMlHlPVL
>>644だけど、ソ連の数学者スレを立てよう
としたけど、また失敗したよ。
誰か立ててくれんか?

こんな感じでどう?↓

タイトル:ソ連の数学者
本文:ポントリャーギン、コルモゴロフ、ゲルファントら、ソ連、ロシアの数学者やその著作などについて語りましょう。
0688132人目の素数さん
垢版 |
2018/05/16(水) 09:19:43.78ID:wrcnERm0
ポントリャーギンの微積分の本を2冊読んだことがありますが、あまり良くありませんでした。
0691132人目の素数さん
垢版 |
2018/05/16(水) 11:38:51.41ID:wrcnERm0
ポントリャーギンの連続群論ですが、以前は、アマゾンの商品紹介ページに
いまでは歴史的な価値しかないがみたいなことが書いてあったのに、ポジティブ
な商品説明に変更しましたね。

あの商品説明は誰が書いていたんですかね?
0692132人目の素数さん
垢版 |
2018/05/16(水) 12:26:29.35ID:51pfCBQB
ポントリャーギンの連続群論オンデマンドになってんだな
コルモゴロフ・フォミーンの函数解析の基礎とかも岩波だから再販かオンデマンドあるだろうけど
ペトロフスキーの偏微分方程式論は東京図書だから再販ないだろうな
それにしてもポントリャーギンの常微分方程式とかスミルノフ高等数学教程を絶やさない共立はどうなってるんだ?
0693132人目の素数さん
垢版 |
2018/05/16(水) 14:20:52.59ID:pC/oJVwO
>>687
代理で建てました
スレ主さんが中心となって大人なセンターを形成しましょう、応援してます
https://rio2016.5ch.net/test/read.cgi/math/1526447946/

>>684
あなたの見識も素晴らしい、是非新スレを牽引されてください
>だから社会的自我が子供のレベルのままのが平気でいられるわけだが、向うの連中の大半は精神的にちゃんと大人として社会とのインタフェースを確立してるんだよな
前者は、これは本人も含め社会(本邦数学界)が是認しているという構造の問題(予算も然り)が大きいと思う
応用数学を一段下に見るとか全く情けない話で、向社会性の成熟した米国に周回遅れの状況ももういい加減終わりにしないといけない

>>692
一旦オンデマンド化されたら再刊は絶望的だろうね
函数解析の基礎も極上の入門書だと思う、続けてブレジス読めば概ね道具が揃っちまう
共立は本当によく頑張っていると思う、以前も書いたが東京図書はもうナントカして欲しいw
0696132人目の素数さん
垢版 |
2018/05/16(水) 15:41:33.61ID:wrcnERm0
齋藤正彦著『齋藤正彦微分積分学』を読んでいます。


1 + 1/2 - 1/3 - 1/4 + 1/5 + 1/6 - 1/7 - 1/8 + …

が収束することを示し、和を求めよ

という問題があります。

その解答ですが、


問題の級数を Σa_n とする。

Σa_n = (1 - 1/3 + 1/5 - …) + (1/2) * (1 - 1/2 + 1/3 - …) = π/4 + (1/2)*log(2)

この解法は正しくない。


などと書かれていますが、正しいですよね。
0697132人目の素数さん
垢版 |
2018/05/16(水) 15:52:42.11ID:wrcnERm0
sign を以下で定義する:

n ≡ 1 or 2 (mod 4) のとき
sign(n) = 1

n ≡ 3 or 0 (mod 4) のとき
sign(n) = -1


S_n := 1 + 1/2 - 1/3 - 1/4 + 1/5 + 1/6 - 1/7 - 1/8 + … + sign(n) * 1/n

Q_n := 1 - 1/3 + 1/5 - 1/7 + … + (-1)^(n+1)/(2*n-1)
R_n := 1/2 - 1/4 + 1/6 - 1/8 + … + (-1)^(n+1)/(2*n)

明らかに、

Q_n → π/4
R_n → (1/2)*log(2)
S_(2*n) = Q_n + R_n → π/4 + (1/2)*log(2)
S_(2*n+1) = S_(2*n) + (-1)^n/(2*n+1) → π/4 + (1/2)*log(2) + 0 = π/4 + (1/2)*log(2)

よって、 {S_n} は π/4 + (1/2)*log(2) に収束する。
0698132人目の素数さん
垢版 |
2018/05/16(水) 15:56:13.39ID:wrcnERm0
この解法は正しくない。級数の項の順序をかえたり、カッコでくくったりすることは、
絶対値収束する級数にしか許されない。

などと書いています。

恥ずかしい人です。
0699132人目の素数さん
垢版 |
2018/05/16(水) 16:00:29.15ID:wrcnERm0
齋藤正彦著『齋藤正彦微分積分学』ですが、級数を重視しているのはいい点ですね。

最初に、初等的な方法で、

1 - 1/2 + 1/3 - 1/4 ± … = log(2)
1 - 1/3 + 1/5 - 1/7 ± … = π/4

を導いています。

そして、ずっと後で、アーベルの定理を済ませた後で、アーベルの定理を使って、
別証明を与えています。

こういう展開はいいですね。
0700132人目の素数さん
垢版 |
2018/05/16(水) 16:06:09.22ID:wrcnERm0
Michael Spivakさんも級数の部の最初のところで、

arctan(x) = x - x^3/3 + x^5/5 - x^7/7 ± …

を初等的に導いています。

齋藤正彦さんの導入の仕方は、

1 - 1/2 + 1/3 - 1/4 ± … = log(2)
1 - 1/3 + 1/5 - 1/7 ± … = π/4

と計算できる。どうだ、すごいだろう?

という感じですね。

Spivakさんは違います。
0701132人目の素数さん
垢版 |
2018/05/16(水) 16:11:32.62ID:wrcnERm0
Spivak さんは、まず、テイラー多項式を定義し、

sin(x), cos(x) , exp(x), log(x) の x = 0 でのテイラー多項式は簡単に計算できることを
示して見せます。

続いて、 arctan(x) の x = 0 でのテイラー多項式の計算を同様の方法で試みます。

arctan(x) の高次導関数は簡単な形にはならないことがすぐに分かり、強引な計算法では、
その x = 0 でのテイラー多項式を計算することはできないことを見せます。
0702132人目の素数さん
垢版 |
2018/05/16(水) 16:22:20.02ID:wrcnERm0
次に、

arctan(x)
=
x - x^3/3 ± … (-1)^n*x^(2*n+1)/(2*n+1)
+
[(-1)^(n+1) * ∫ t^(2*n+2)/(1+t^2) dt from t = 0 to t = x]

を導き、

[(-1)^(n+1) * ∫ t^(2*n+2)/(1+t^2) dt from t = 0 to t = x] / x^(2*n+1) → 0 (x → 0)

を示します。

そして、テイラー多項式の一意性から、

x - x^3/3 ± … (-1)^n*x^(2*n+1)/(2*n+1)

が arctan(x) のテイラー多項式であると結論します。

定義により、 arctan(x) のテイラー多項式は、

arctan(0) + arctan'(0) + arctan^(2)(0)/2! * x^2 + … + arctan^(2*n+1)(0)/(2*n+1)! * x^(2*n+1)

です。

これより、 arctan(x) の n 次導関数の x = 0 での値が求まります。

Spivak さんのほうは、直接計算では不可能に見えた計算が簡単に求まってしまった。
どうだ、すごいだろう?という感じですね。
0703132人目の素数さん
垢版 |
2018/05/16(水) 16:39:03.06ID:wrcnERm0
齋藤正彦さんもストーリーを持たせることが割とうまいと思いますが、
スピヴァックさんの足元にも及ばないと思います。
0707132人目の素数さん
垢版 |
2018/05/17(木) 01:16:51.90ID:C0k52nmm
>>693
ソ連の数学者スレ立て乙です

> 一旦オンデマンド化されたら再刊は絶望的だろうね

岩波のオンデマンドは酷いよなあ
オンデマンドは本来なら在庫負担がない(しかも岩波の場合、ソフトカバー化して表紙も味気ない標準化されたものに統一してしまっている)ので
普通の再刊よりも安くできるはずなのが、岩波のオンデマンドは再刊よりもずっと値段を吊り上げて出す

貧すれば鈍するという言葉があるが、今の岩波には正にこの言葉がピッタリだと思う

> 共立は本当によく頑張っていると思う、以前も書いたが東京図書はもうナントカして欲しいw

同意です
理工系の主要出版社の中では共立が一番良心的でまともな出版活動をしていると思う
長く品切れになっていた古い名著・好著のデジタル技術を使った復刊でも共立のは復刊の印刷の解像度が高くて見やすいように感じる
これが森北あたりになると安くオンデマンド版を出してくれるのは良い(岩波も森北を見習え!)んだが、印刷は自分でコピー機で複写したほうが綺麗だと感じるのが少なくない
裳華房や朝倉あるいは吉岡も復刊時や増刷時にしばしば印刷品質が酷いのを平気で出すので困りもの

東京図書については仰る通り論外のレベルですね
数学や物理学であれだけ大量の名著の翻訳を平気で絶版(でなく恐らくは品切れ放置プレイ?)しているのは学術に対する冒涜だ

もちろん学術書とは言っても商業出版社だから実際に増刷すると赤字になるのなら放置プレイでも仕方ないが、トントンか少し黒にはできるタイトルも少なくないのに
全く増刷しないというのは理解に苦しむ(東京図書の若社長によればそういう地道な仕事をして小銭を稼ぐのは効率が悪いのでやらないそうだ、大量に売ってまとまった利益を
稼ぐ効率の良い仕事をしろということらしい、そしてその方針に頭に来て退職した理学書担当のベテラン編集者もいたと聞く)

(多分、ランダウ・リフシッツの多くの巻は増刷すれば黒字にはなるだろう、ブルバキの全巻増刷をしたらさすがに赤字になってしまうだろうが、増刷する巻を選べば
黒字になる巻はいくつもあると思う)

と好き勝手に長文を書いてしまったが御寛恕下されば幸いです
0709132人目の素数さん
垢版 |
2018/05/17(木) 03:46:38.40ID:C0k52nmm
共立は本当に偉いよね、スミルノフ全巻を品切れさせずにずっと出し続けている
0710132人目の素数さん
垢版 |
2018/05/17(木) 05:12:45.15ID:vBYEsGtz
専門書の事業モデルは全然知らないんだが
いっそ1冊1000円ちょいで全国の数学科で大量に売りに回ったらどうなの?
で大学初年度レベルの本は高校の普通科に1000円以下で売りにもまわる
薄利多売だろうけど
0713132人目の素数さん
垢版 |
2018/05/17(木) 16:54:27.34ID:vBYEsGtz
https://rio2016.5ch.net/test/read.cgi/math/1515687474/119

  ∀U⊆X[∀x∈U ∃V∈O x∈V⊆U ⇒ U∈O]  (★)
と書いたらもっと分かりやすい

それはそうと、なぜ数学書は★のように書けば瞬時にして分かるような物を
  「X の部分集合 U で、 U の任意の元 x に対し x ∈ V ⊂ U をみたす V ∈ O が
  存在するという条件をみたすものはすべて、 O の元である。」
のようにグダグダ書くんですか?頭おかしいんですか?
0714132人目の素数さん
垢版 |
2018/05/17(木) 17:08:15.32ID:GZHXPQLt
スミルノフの本はどこがいいのか分かりません。

厳密じゃないがゆえに分かりにくいですよね。
0715132人目の素数さん
垢版 |
2018/05/17(木) 17:10:06.74ID:GZHXPQLt
共立出版というと他の出版社に比べて、安いような印象があるのですが、どうですか?

培風館、岩波書店あたりは高い印象があります。

野村隆昭著『微分積分学講義』なんて安いですよね。
0717132人目の素数さん
垢版 |
2018/05/17(木) 17:31:36.39ID:GZHXPQLt
>>716

横浜図書は安いですが、品質が悪いですね。
内容については分かりません。
0719132人目の素数さん
垢版 |
2018/05/17(木) 18:42:55.77ID:iN6s+SGb
裳華房
松嶋与三の多様体論と新しい組版で出しただろ
あれはよかったと思う
0720132人目の素数さん
垢版 |
2018/05/17(木) 19:11:50.17ID:GZHXPQLt
松島さんのその本は難しい本だそうですが、どこが難しいのでしょうか?
0721132人目の素数さん
垢版 |
2018/05/17(木) 19:22:23.14ID:GZHXPQLt
磯崎洋 他著『微分積分学入門』を読んでいます。

∫ log(x) / sqrt(1 + x^2) dx from x = 1 to x = ∞

は収束するか発散するかという問題が載っています。

解答が以下のようなものです:

∫ log(x) / sqrt(1 + x^2) dx from x = 1 to x = R



∫ log(x) / [sqrt(2)*x] dx from x = 1 to x = R

=

(log(R))^2 / (2*sqrt(2)) → +∞
0722132人目の素数さん
垢版 |
2018/05/17(木) 19:23:40.07ID:GZHXPQLt
この解答はひどすぎないでしょうか?

x ≧ 1 のとき log(x) ≧ 0, 0 < sqrt(1 + x^2) ≦ sqrt(2)*x

だからそうなるということで、確かに間違ってはいません。
0723132人目の素数さん
垢版 |
2018/05/17(木) 19:26:22.73ID:GZHXPQLt
x が大きいとき、

2*x > sqrt(1 + x^2)

∴x が大きいとき、

1/(2*x) < 1 / sqrt(1 + x^2) < log(x) / sqrt(1 + x^2)

∫1/(2*x) dx from x = 1 to x = ∞

は発散するから、

∫ log(x) / sqrt(1 + x^2) dx from x = 1 to x = ∞

も発散。
0724132人目の素数さん
垢版 |
2018/05/17(木) 19:27:40.94ID:GZHXPQLt
>>723

分子の log(x) は被積分関数を複雑に見せるための飾りにすぎないですね。

解答だけでなく、問題自体もひどいことがわかります。
0725132人目の素数さん
垢版 |
2018/05/17(木) 19:38:11.09ID:GZHXPQLt
∫ x * (log(1/x))^100 dx from x = 0 to x = 1

↑の収束、発散を判定せよ

という問題も載っています。

その解答が↓これです:

x ∈ (0, 1] に対して y = log(1/x) とおくと y ≧ 0 であり、
exp(y) ≧ Σ y^k / k! from k = 0 to k = 100 ≧ y^100 / 100! より、
x ∈ (0, 1] のとき

x * (log(1/x))^100 = exp(-y) * y^100 ≦ 100!

したがって収束する。
0726132人目の素数さん
垢版 |
2018/05/17(木) 19:41:01.87ID:GZHXPQLt
>>725

これでは、非常に簡単な問題が、ややこしいトリッキーな問題であるかのよう見えます。

x * (log(1/x))^100 = (log(1/x))^100 / (1/x) → 0 (x → +0)

だから、

x ≠ 0 のとき、 f(x) := x * (log(1/x))^100
x = 0 のとき、 f(x) = 0

と定義すれば、 f(x) は [0, 1] で連続であるから、

∫ x * (log(1/x))^100 dx from x = 0 to x = 1

は収束する。
0727132人目の素数さん
垢版 |
2018/05/17(木) 19:42:32.96ID:GZHXPQLt
こういう本で勉強しても何も身につかないのではないでしょうか?

悪意すら感じられるひどい本です。
0729132人目の素数さん
垢版 |
2018/05/17(木) 21:28:13.22ID:C0k52nmm
>>718
> ランダウリフシッツって今絶版なんか?

力学と場の古典論の2つの巻だけは出続けてるが残りは久しく出てないね
絶版(ならば東京図書は翻訳の出版権を放棄し印刷原版を破棄したことになるので永久に再刊されない)なのかあるいは品切れ放置状態なのかどちらかは知らん
0731132人目の素数さん
垢版 |
2018/05/18(金) 07:26:42.07ID:uyAuGu51
ランダウ・リフシッツの力学の本を読むのに必要な数学的予備知識は何ですか?
0733132人目の素数さん
垢版 |
2018/05/18(金) 09:06:17.08ID:539vwTx6
>>725

 y = log(1/x) とおくと

(与式) = ∫[0,∞] y^100 exp(-2y) dy
 = ∫[0,∞] t^100 e^(-t) dt / (2^101)
 = Γ(101) / (2^101)
 = (100!) / (2^101)
 = 9.33262×10^157 / 2.5353012×10^30
 = 3.68107×10^127

したがって収束する。
0735132人目の素数さん
垢版 |
2018/05/18(金) 10:33:29.08ID:Th93pmXW
>>731
微分積分いい気分
0736132人目の素数さん
垢版 |
2018/05/18(金) 18:21:41.69ID:uyAuGu51
https://page.auctions.yahoo.co.jp/jp/auction/k307172207

↑この出品者はどうやってこんな綺麗な中古本を手に入れているのでしょうか?

この集合と位相の本に限らず、岩波の基礎数学の綺麗な中古本を
何度も何度も出品しています。

ミステリーです。
0737132人目の素数さん
垢版 |
2018/05/18(金) 18:27:46.07ID:i54mOA7u
自作ボードゲーム市場に詳しい「ペンとサイコロ」というブログの
「ゲムマ2017秋・アンケート結果 第二弾:2016→2017年比較」の記事によると

ゲームマーケットに出品した人の半分が赤字で半分が黒字でちょうど半々だそうだ
50万以上の儲けが5%いるが逆に50万以上赤字なのも5%いる
そして初参加の人の7割が赤字なのに対して、ノウハウありや知名度や固定ファン層が居る
中堅サークル7割が黒字になってる
継続性とブランド力構築とノウハウが大事だという事だと思う
初参加の人は作る個数と需要を見極めツイッターやユーチューブでの宣伝がカギになる
最初は50〜100個ぐらいをいかに金かけないで作って売るかの勝負になる

これがゲムマ2016・2017年(初の二日開催)の販売数
https://cdn-ak.f.st-hatena.com/images/fotolife/r/roy/20171220/20171220211924.png
これが販売金額
https://cdn-ak.f.st-hatena.com/images/fotolife/r/roy/20171220/20171220212902.png
これがイベントでの利益
https://cdn-ak.f.st-hatena.com/images/fotolife/r/roy/20171220/20171220213109.png
0738132人目の素数さん
垢版 |
2018/05/19(土) 11:04:18.05ID:YQuja1ks
石田信の代数学入門はどうですか?ちなみに、線形代数と集合論しか知りません
0740132人目の素数さん
垢版 |
2018/05/19(土) 13:32:03.68ID:TObpIiEU
>>738
目次や前書きを見ると、講義で使うガロア理論に向けた早く分かるための代数学入門、という感じ。
但し、内容的には不十分なところがある。
将来にわたり半永続的に手元に置いて長く使えるか? というと疑問符が付くといわざるを得ない。
0742132人目の素数さん
垢版 |
2018/05/19(土) 14:48:04.95ID:TObpIiEU
>>741
あの本には、群の空間への作用やホモロジー代数が載ってなさそうだもん。
表現論をしたりホモロジー代数を使うような人には、向かない。
0743132人目の素数さん
垢版 |
2018/05/19(土) 16:11:25.15ID:l63EZZYP
多様体の入門をしたいのですが、森田茂之「例題形式で探求する微分積分学の基本定理」はいかがですか?
0744132人目の素数さん
垢版 |
2018/05/19(土) 17:55:32.58ID:T/AT1kgs
多様体の入門といったら
松本幸夫
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況