X



トップページ数学
658コメント688KB

現代数学の系譜 工学物理雑談 古典ガロア理論も読む49

■ このスレッドは過去ログ倉庫に格納されています
0001現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2017/12/27(水) 21:14:10.23ID:JqNELMW3
“現代数学の系譜 物理工学雑談 古典ガロア理論も読む”

数学セミナー時枝記事は、過去スレ39 で終わりました。
39は、別名「数学セミナー時枝記事の墓」と名付けます。

皆さまのご尽力で、伝統あるガロアすれは、
過去、数学板での勢いランキングで、常に上位です。(勢い1位の時も多い(^^ )

このスレは、現代数学のもとになった物理工学の雑談スレとします。たまに、“古典ガロア理論も読む”とします。
それで良ければ、どうぞ。
後でも触れますが、基本は私スレ主のコピペ・・、まあ、言い換えれば、スクラップ帳ですな〜(^^

話題は、散らしながらです。時枝記事は、気が向いたら、たまに触れますが、それは私スレ主の気ままです。
“時枝記事成立”を支持する立場からのカキコや質問は、基本はスルーします。それはコピペで流します。気が向いたら、忘れたころに取り上げます。

なお、
小学レベルとバカプロ固定
サイコパスのピエロ(不遇な「一石」https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
(参考)http://blog.goo.ne.jp/grzt9u2b/e/c1f41fcec7cbc02fea03e12cf3f6a00e サイコパスの特徴、嘘を平気でつき、人をだまし、邪悪な支配ゲームに引きずり込む 2007年04月06日
High level people
低脳幼稚園児のAAお絵かき
お断り!
小学生がいますので、18金よろしくね!(^^

High level people は自分達で勝手に立てたスレ28へどうぞ!sage進行推奨(^^;
また、スレ43は、私が立てたスレではないので、私は行きません。そこでは、私はスレ主では無くなりますからね。このスレに不満な人は、そちらへ。 http://rio2016.2ch.net/test/read.cgi/math/1506152332/
旧スレが512KBオーバー(又は間近)で、新スレ立てる
(スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。関連のアーカイブの役も期待して。)
0096132人目の素数さん
垢版 |
2018/01/02(火) 00:34:32.73ID:okX91MtS
>>95
>リウヴィル数をイメージしてもらえば、良いのでは? 稠密分散で、”a nonempty open set”の集まり
R\Qは?
0097132人目の素数さん
垢版 |
2018/01/02(火) 00:36:21.27ID:okX91MtS
>>95
>Since it is the intersection of countably many such open dense sets
0098現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 10:01:09.76ID:p6PjQh75
>>96-97
>R\Qは?

(>>82より再録)
"で、”a nonempty open set”(ordinary open neighborhood )が、結構重要キーワードじゃないかな?
R中のQのように稠密分散で、
R\Qは、”a nonempty open set”の集まりになるけれども
(似た状況は、上記の「the Lebesgue measure of the sets R \ Cν and R \ Dν is 0, but the four sets Cν, R \ Cν, Dν, and R \ Dν are dense in R.」とある通りで)
「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えるかどうかだ?"

R\Qも、リウヴィル数に同じ

つまり、屋上屋の説明だが、RからQを抜く(Qは、孤立点の集合(内点を持たない閉区間の集合))
Rは至る所開(”a nonempty open set”(ordinary open neighborhood )の集合)

R\Qの各”a nonempty open set”(ordinary open neighborhood )は、ここにはq∈Qは含まれない
故に、このような場合には、「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えないのでは?
0100132人目の素数さん
垢版 |
2018/01/02(火) 10:25:50.08ID:okX91MtS
>>98
>R\Qも、リウヴィル数に同じ
まずリュービル数全体は
>Since it is the intersection of countably many such open dense sets
のようですので
開集合とは言えませんし実際開集合ではありません
内点を持たないからです
内点を持つなら有理数の稠密性によりリュービル数である有理数がそんざいしてしまいますよ
次に
R\Qですが
Qは孤立点の集合ではありません
どの有理数の近傍にも必ず有理数が存在するからです
また閉集合でもありません
閉包がRだからです
ですのでR\Qもまた開集合にはならないのです
0101現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 10:25:56.29ID:p6PjQh75
>>87
どうも。スレ主です。
ID:9ORABeV3くんは、ピエロかな?

まあ、今年もよろしくね(^^

(参考)
https://textream.yahoo.co.jp/personal/history/comment?user=_SrJKWB8rTGHnA91umexH77XaNbpRq00WqwI62dl
サイコパスのピエロ(=不遇な「一石」 表示名:ムダグチ博士 Yahoo! ID/ニックネーム:hyperboloid_of_two_sheets (Yahoo!でのあだ名が、「一石」)
0102現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 10:33:26.53ID:p6PjQh75
>>100
ID:okX91MtSさん、どうも。スレ主です。
レスありがとう

なるほど、”Since it is the intersection of countably many such open dense sets”からは、開集合は言えないのか?
でも、”「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えかどうか”については、どうですか?
0104132人目の素数さん
垢版 |
2018/01/02(火) 11:18:53.68ID:okX91MtS
>>102
>でも、”「422に書いた定理」の系1.8の背理法証明に使えるような、区間(a, b)が取れると言えかどうか”については、どうですか?
前にも書きましたが
無理数で微分可能→開区間で連続→矛盾→無理数で微分可能ではない
という証明の流れですよ
0105現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 11:45:25.56ID:p6PjQh75
>>104
やっぱ、「ぷふ」さんか(^^
あなたと、例の「422に書いた定理」の人は、本当にレベル高いね
(書かれた証明にいちゃもんを付けるのは、数十分の一の能力できる。作曲や演奏はできないのに、音楽の批評ができるみたいにね(^^ (当然、数学の証明はそれで良いのだが・・。敬意を表して一言))

>無理数で微分可能→開区間で連続→矛盾→無理数で微分可能ではない
>という証明の流れですよ

ところで、いままでも散々出ているし、>>90などにもあるけど
トマエ関数の改良版が実例としてあって、
有理数の1/q^n で、n>2 で、nを十分大きく取ると、無理数の殆どで微分可能になる。リュービル数だけは、微分不能で残る

この場合、有理数の1/q^nで不連続点は、稠密分散のまま
だから、”無理数で微分可能→開区間(a, b)で連続”のところが、厳密な証明になっていないのでは? と思っています
0106現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 11:45:40.78ID:p6PjQh75
>>100
ところで、追加質問で悪いが

>まずリュービル数全体は
>Since it is the intersection of countably many such open dense sets
>のようですので
>開集合とは言えませんし実際開集合ではありません
>内点を持たないからです

とすると、リュービル数全体は
「422に書いた定理」中の
「S は内点を持たない閉集合で被覆できる」(非可算に緩和してだが)に当てはまりますか?
0107132人目の素数さん
垢版 |
2018/01/02(火) 12:31:32.66ID:YXYfIwXt
>>105
それも散々指摘されていたと思いますが
微分可能点全体の補集合が非可算であり
可算この疎な閉集合で覆えませんので
件の定理は使えないのです
0109132人目の素数さん
垢版 |
2018/01/02(火) 12:36:17.11ID:YXYfIwXt
>>106
非可算に緩和したら証明の根幹が崩れますよ
0110132人目の素数さん
垢版 |
2018/01/02(火) 12:37:09.96ID:YXYfIwXt
>>108
それは言えますが意味ありますか?
0111現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 12:51:51.69ID:p6PjQh75
>>108 追加

それで、
1.Qは、「内点を持たない閉集合の高々可算和で被覆できる」
2.R\Qは、「内点を持たない閉集合」では、被覆できない。(「内点を持つ開集合の高々可算和で被覆できる」? 当たり前か・・)

ですかね?
0112 ◆QZaw55cn4c
垢版 |
2018/01/02(火) 12:55:44.49ID:ql5PO6mi
>>91
いえいえ、遥か後方から追いかけていくつもりですので、お気が向かわれるようでしたら、相手してやってください‥
0113132人目の素数さん
垢版 |
2018/01/02(火) 13:00:11.03ID:okX91MtS
>>111
>1.Qは、「内点を持たない閉集合の高々可算和で被覆できる」
はい
>2.R\Qは、「内点を持たない閉集合」では、被覆できない。
高々可算個ではできそうにありませんね
>(「内点を持つ開集合の高々可算和で被覆できる」? 当たり前か・・)
それはムリです
0115現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 13:06:42.96ID:p6PjQh75
>>113
ご丁寧にレスありがとうございます。ちょっと、考えてみます(^^

お手間を取らせて悪いが
で、「422に書いた定理」中の定理1.7の証明中で

「系1.4 により, あるi に対してAiは内点を持つか, もし
くは, あるN,M >= 1 に対してB_N,M は内点を持つかのいずれかである. 各Aiは内点を持たないの
だったから, あるN,M >= 1 に対してB_N,M が内点を持つことになる.
特に, (a, b) ⊆ B_N,M なる開区間(a, b) が取れる.」


B_N,M が内点を持つことになる.
 ↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.

にギャップないですか?
つまり、R−BfがQのような稠密分散集合で、よって、BfがR\Qのような集合になりますと

このような場合、「内点を持つから、開区間(a, b) が取れる」と言えますか?
0117132人目の素数さん
垢版 |
2018/01/02(火) 13:15:13.20ID:okX91MtS
>>115
>にギャップないですか?
内点を持つことの定義です
>つまり、R−BfがQのような稠密分散集合で、よって、BfがR\Qのような集合になりますと
>このような場合、「内点を持つから、開区間(a, b) が取れる」と言えますか?
もしかすると
背理法による証明を理解していないのかも知れませんね
Aを仮定して矛盾が起こるためAが否定されるのですよ
この場合の矛盾とは「開区間が取れるはずなのにそれはあり得ない」ということです
0119132人目の素数さん
垢版 |
2018/01/02(火) 14:37:52.28ID:kCdh3Yzn
新年からみっともないなスレ主は
わからないなら勉強しろよ
人に一から十まで聞くなよ
0120132人目の素数さん
垢版 |
2018/01/02(火) 18:14:00.10ID:okX91MtS
>>113
>>2.R\Qは、「内点を持たない閉集合」では、被覆できない。
>高々可算個ではできそうにありませんね
ベールのカテゴリー定理より高々可算個では無理と分かりますね
0121現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 22:59:26.64ID:p6PjQh75
>>117
あなたは、「ぷふ」さんではなさそうですね
前スレ 592で、「件の定理は無理数で可微分有理数でリプシッツ不連続な関数は存在しないという結論を導いていますよ」と書いた人ですね

>背理法による証明を理解していないのかも知れませんね

定理1.7 (422 に書いた定理)の段階では、背理法はまだ使っていませんよね
背理法は、系1.8の証明からですよ

で、>>115に戻ると

”B_N,M が内点を持つことになる.
 ↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.”

の”反例が、R\Qではないか”と思っています

つまり、R\Qは、内点を持つが、
系1.8の背理法に使えるような開区間(a, b) を取ると、そこにはR−Bfの点が入ることになる(∵R−Bfが稠密だから)

もう少し説明をすると
定理1.7のターゲットは、「系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R」だ

だから、Q vs R\Q(=無理数点)の集合としての性質が問題になる

この場合、Qは、内点を持たない有理数点の加算和。なので、R\Q(無理数)は、内点を持つ集合になる(ベールの範疇定理の典型例)
上記の定理1.7との対応で、QがR−Bfに対応しリプシッツ不連続。R\QがBfに対応しリプシッツ連続だ。

ところで、R\Q(無理数)は、上記の通りで、内点を持つ集合だが、ある開区間(a, b) を取ると、そこには必ずQの点が入る
この性質は、リプシッツだとか微分だとか、関数の性質とは無関係だ

よって、ベールの範疇定理だけでは、
Qの補集合であるR\Q(=無理数点の集合)は、内点を持つ集合までは言えるが、
ある開区間(a, b) を取れるとまでは言えないことがわかる

繰返すが、
”B_N,M が内点を持つことになる.
 ↓
(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.”
は、言えない
0122現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
垢版 |
2018/01/02(火) 23:21:30.13ID:p6PjQh75
>>120

>>>2.R\Qは、「内点を持たない閉集合」では、被覆できない。
>>高々可算個ではできそうにありませんね
>ベールのカテゴリー定理より高々可算個では無理と分かりますね

正しい引用は(>>111より)
2.R\Qは、「内点を持たない閉集合」では、被覆できない。(「内点を持つ開集合の高々可算和で被覆できる」? 当たり前か・・)
(引用終り)

ですね。
ああ、非可算まで広げると、”被覆”の意味が訳分からなくなるので、”可算しばりを入れろ!”ということか・・・(^^
なお、「内点を持つ開集合の高々可算和で被覆できる」は、通常の距離を入れたRが、第二可算的空間あるいは、第一可算的空間ですから・・、当然

https://ja.wikipedia.org/wiki/%E7%AC%AC%E4%BA%8C%E5%8F%AF%E7%AE%97%E7%9A%84%E7%A9%BA%E9%96%93
第二可算的空間
(抜粋)
数学の位相空間論おける第二可算空間(だいにかさんくうかん、英: second-countable space)とは、第二可算公理を満たす位相空間のことである。空間が第二可算公理を満たすとは「その位相が可算な開基を持つ」ということを言う。

「素性のよい」空間のほとんどは第二可算的である。例えば、普通の位相を入れたユークリッド空間 (Rn) がそうである。全ての開球体を考える通常の開基をとるとこれは可算ではないけれども、半径が有理数で中心が有理点であるような開球体全体のなす集合を考えると、これは可算であり、開基も成す。

https://ja.wikipedia.org/wiki/%E7%AC%AC%E4%B8%80%E5%8F%AF%E7%AE%97%E7%9A%84%E7%A9%BA%E9%96%93
第一可算的空間
(抜粋)
数学の位相空間論において、第一可算空間(だいいちかさんくうかん、英: first-countable space)とは、"第一可算公理"を満たす位相空間のこと。位相空間 X が第一可算公理を満たすとは「各点 x が高々可算な近傍からなる基本近傍系(局所基)をもつこと」を指す。

普通に使われる空間のほとんどは第一可算的である。特に、距離空間はすべて第一可算的である。というのは、各点 x に対し、それを中心とする半径 1/n (n は正の整数) の開球の系列は x の可算な基本近傍系となっている。
0123132人目の素数さん
垢版 |
2018/01/02(火) 23:59:09.89ID:okX91MtS
>>121
>前スレ 592で、「件の定理は無理数で可微分有理数でリプシッツ不連続な関数は存在しないという結論を導いていますよ」と書いた人ですね
そうですよ?
そしてあなたに「ぷふ」と呼ばれている者のようですね
>”B_N,M が内点を持つことになる.
> ↓
>(a, b) ⊆ B_N,M なる開区間(a, b) が取れる.”
内点とは何かを学ぶべきです
といいますか
それを理解していないのであれば
これまでのすべての話は正しく理解することは出来ないのでは?

>>122
>ああ、非可算まで広げると、”被覆”の意味が訳分からなくなるので、”可算しばりを入れろ!”ということか・・・(^^
そうではありません
ベールのカテゴリー定理を使うためです
それとRの部分集合なのですから
非可算に広げると何でも内点を持たない閉集合(1点)の合併になってしまい
条件を付けることになりませんよ?
0124132人目の素数さん
垢版 |
2018/01/03(水) 00:05:43.29ID:fOPEnBcc
>>121
>この場合、Qは、内点を持たない有理数点の加算和。なので、R\Q(無理数)は、内点を持つ集合になる(ベールの範疇定理の典型例)
その定理を使うためには
疎な閉集合の可算和でRを表す必要がありますが
R\Qはどうするのですか?
使えない状況で定理を使った気になってはいけません
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況