>>539
これを踏まえて

>>529より)
定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、
f はある開区間の上でリプシッツ連続である.
(引用終わり)

ここで、”f : R → R ”の定義域は、当然R
R−Bfは、Bfの補集合だから、”={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }”であってはいけない

即ち
R−Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|= +∞ }であるべき

”f はある開区間の上でリプシッツ連続である”の、「リプシッツ連続なるある開区間」が存在しうるとすれば、Bf内にしかありえない
(∵R−Bfは、リプシッツ連続を満たさない集合であることは明白だから)