>>375 つづき

さらに
1/w(q)→1/q^ν としてみよう

The modefied ruler function f is defined by
f(x) = 0 if x is irrational,
f(0) = 1, and
(さらに有理数で場合けして)
f(x) = 0    if q>= m, x = p/q ∈Q
f(x) = 1/q^ν if q< m, x = p/q ∈Q
where p and q are relatively prime integers with q > 0.
ここに、ν>=0の実数とする

この場合も、mが有限の値の場合、不連続点は、分母q がある値m以下の場合のみの有限個になる
この場合も、「定理1.7 (422 に書いた定理)」が常に成り立ち
”R−Bf が内点を持たない閉集合の(有限個の)可算和で被覆でき、 f はある開区間の上でリプシッツ連続である.”となる

しかし、m→∞を考えると、f(x) = 1/q^νの場合のp/qは、任意のQの元まで拡大される
この場合
1)ν= 0の場合、いわゆるディリクレ関数になり、f(x)は至る所不連続
2)ν= 1の場合、いわゆるトマエ関数になり、f(x)は無理数で連続、有理数で不連続となる
3)ν>= 2の場合、f(x)は無理数の多くで微分可能(微分不可能な無理数点も残る)、有理数で不連続

となる
なにが言いたいかというと、
f(x)の無理数側の決めは不変だが、有理数側の決めが変わることによって、f(x)全体の特性(連続、不連続、微分可否など)が全く変わってしまうということ

これで、「定理1.7 (422 に書いた定理)」の不備が見えるだろう
「定理1.7 (422 に書いた定理)」の証明は、無理数側(定理ではBf側)の関数しか扱っていない。
それで証明が完了としている。が、それは上記数理に反するってことだ

以上