>>341 つづき

>>180より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間の
上でリプシッツ連続である.”

上記との対応は、Q:R−Bf 、R \ Q:Bf だ
(余談だが、ついでに言うと、>>178の通り (X,O) → (X,d) → (R,d)ってことでしょう )

で、ある開区間(a, b)があって
いまR−BfがQのように、R中に稠密分散しているとする

(a, b)内のQ:R−Bfと 、R \ Q:Bf(無理数)とも、両者”内部も外部もΦ(空)で、境界と閉包はRそのものになる”

R \ Q:Bf(無理数)の部分集合であるリュービル数も、同様に”内部も外部もΦ(空)で、境界と閉包はRそのものになる”(まあ、リュービル数自信R中で稠密で、ルベーグ測度0は知られている)

で、集合としてのリュービル数も、開集合でも閉集合でもないし
非可算集合になるから、1点からなる閉集合では被覆できないことになる

なので、>>313のような”Modifications of Thomae’s function”で、特に急速減少関数では、Qとリュービル数の集合とのみが、” not differentiable”になる
が、ある開区間(a, b)が生じるわけでは、決してない

以上