>>312 つづき

で、
”Proposition 3.1. Let f be a function on R that is positive on the rationals and 0 on the irrationals.
Then there is an uncountable dense set of irrationals on which f is not differentiable.”

”As a corollary, no matter how quickly the sequence (ai) converges to zero (e.g., ai = 1/i^(i^i) ), there is always an uncountable dense subset on which T(ai ) is not differentiable.”

この論文の証明で論じているのは、Bf(無理数)に関係するB_N,Mではなく(∵つねに”0 on the irrationals”ですから、論じる必要もない)
Bf−R(有理数)に関する部分(”positive on the rationals ”)。

もっと言えば、Bf−R(有理数)側で、無理数aに収束する閉区間 In+1 | ”f (xn+1) >= |xn+1 ? x| ”∈ In+1 ですよ
f (xn+1)は、”positive on the rationals”側で、つまり、Bf−R(有理数)側

Bf−R(有理数)側のf (xn+1)が、早く減衰する場合でも、”uncountable dense subset”が、” not differentiable”
T(1/n^k)=1/n^k on the rationals, if x = m/n where m and n are coprime,
で、k<=2ではどこも微分不可、k > 2で、代数的数の集合で微分可、k=9でπなどほとんどの超越数で微分可。
但し、リュービル数は、ずっと微分不可で残る。

これらの議論中、Bf(無理数)での関数は、常に”0 on the irrationals”で、全く変化しないにも関わらず
指数kによって、Bf(無理数)側で、微分不可(各点リプシッツ連続でもない)から、至る所微分可になり、最後、リュービル数は、ずっと微分不可で残る。

これら、すべてBf−R(有理数)側の関数値fの変化が、Bf(無理数)側に影響を与えた結果ですよ
なので、論ずべきは、Bf−R(有理数)側の関数値fの変化であるべきでは?

以上