>>268 つづき

だから、定理1.7は、二つに分けて
1.R−Bfが稠密でなく、Bfがある開区間(a, b) を含む場合
2.R−Bfが稠密で、Bfが全く開区間(a, b) を含まない場合
とすべき

1.の場合、”f はある開区間の上でリプシッツ連続である.”は自明。ほとんど、証明の必要もない
2.の場合、「非可算無限の集合E:”any specified pointwise modulus of continuity condition” & ”at least one of the four Dini derivates of f is infinite”が、存在することになるので、そのようなfは存在しえない」のような方向を目指すべき

2.の場合をさらに細分化する(>>194を一部修正)
R−Bf がR中で稠密な場合を更に、4つに細分する
 a)R−Bfが不連続、Bfが可微分(これが系1.8に当たる)
 b)R−Bfが不連続、Bfが一般のリプシッツ連続(除く可微分)*)
 c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
 d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)
(注*)一般のリプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|< +∞を満たすこと、一般の不リプシッツ連続とはlim sup y→x |(f(y) − f(x))/(y − x)|= +∞を満たすこと)

 系1.8は、定理1.7中の上記a)の場合。b)は下記。よって、a)b)のみが、既存の別証明がある*)。しかし、c)d)の2ケースは、既存の証明は見つかっていない
*)b)は、(>>189)H. M. Sengupta and B. K. Lahiriの結果より
”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”が成り立つことが分っている

 繰返すが、c)d)の2ケースで、有理数Qを想定して、R−Bf がR中で稠密かつ可算濃度の集合の場合に、ケースc)d)のような関数f : R → Rが存在するか否か
 そこが、まだ不明。

以上