>>195 補足

R−Bfを拡張して、Q+the set of Liouville numbers(これは、非可算だが、内点を持たない閉集合の和)を含むように、可算→非可算 まで考える
すると、(>>189)H. M. Sengupta and B. K. Lahiriの結果より
”Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).”
だから

 c)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが可微分
 d)R−Bfが一般の不リプシッツ連続(除く不連続)*)、Bfが一般のリプシッツ連続(除く可微分)*)

の2ケースとも、そのような「f : R → R は存在する!」( c)の具体例が>>190の PDF
"α(ai ) = ∞, T(ai ) is differentiable on the set of all non-Liouville numbers. "だ )

だから、R−Bfを縮小して、非可算→可算に落としたときに、
「f : R → R は存在しない!」になる数学的な背景があるや否やだが