>>188
おっちゃん、どうも、スレ主です。
レスありがとう(^^

>>180より)
”定理1.7 (422 に書いた定理)
f : R → R とする.
Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
と置く: もしR−Bf が内点を持たない閉集合の高々可算和で被覆できるならば、 f はある開区間(a, b) の
上でリプシッツ連続である.”

この定理1.7の面白さは
”系1.8 有理数の点で不連続, 無理数の点で微分可能となるf : R → R は存在しない.”(>>184
を著しく拡張しているところだ

つまり、系1.8において、
1)不連続→リプシッツ連続でない
2)微分可能→リプシッツ連続
3)稠密:有理数と無理の稠密性→もっと一般な稠密性(但し、片方は可算無限濃度限定)

の3つの特性で、系1.8を拡張したものが定理1.7になっているってこと

これに匹敵する結果は、>>41-42に書いたが
”Let f:R --> R be such that the sets of points at which f is continuous and discontinuous are each dense in R.
Let E be the set of points at which f is continuous and where at least one of the four Dini derivates of f is infinite.
Then E is co-meager in R (i.e. the complement of a first category set).
This was proved in H. M. Sengupta and B. K. Lahiri, "A note on derivatives of a function",
Bulletin of the Calcutta Mathematical Society 49 (1957), 189-191 [MR 20 #5257; Zbl 85.04502]. ”

つまり、一般な稠密性(但し、H. M. Sengupta and B. K. Lahiriは、可算非可算に関係なく)
”the sets of points at which f is continuous and discontinuous are each dense in R.”なのだが
しかし、この discontinuous →リプシッツ連続でないという、上記1)の特性で、定理1.7は拡張されているのだ

そこが、この定理1.7の面白さであり、斬新さだ
成り立てばだがね(^^