X



トップページ数学
1002コメント517KB
不等式への招待 第9章 [無断転載禁止]©2ch.net
レス数が900を超えています。1000を超えると表示できなくなるよ。
0001不等式ヲタ ( ゚∀゚)
垢版 |
2017/09/13(水) 11:20:03.95ID:i1anpb+k
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html
0827132人目の素数さん
垢版 |
2018/10/18(木) 06:51:05.46ID:Dw4OfxmO
>>821

RMM 12 (Spring2019)

JP.173
 Prove that in any triangle ABC,
  1/a + 1/b + 1/c ≧ √{3/(2Rr)} ≧ (√3)/R.

JP.179
 In acute triangle ABC the following relationship hplds:
 3 ≦ sin(2A)/sin(2B) + sin(2B)/sin(2C) + sin(2C)/sin(2A) ≦ 3/{8cos(A)cos(B)cos(C)},

UP.171
 Find that in any acute-angled triangle ABC the following inequality holds:
 min{a/(b+c), b/(c+a), c/(a+b)} ≦ {cos(A) + cos(B) + cos(C)}/3 ≦ Max{a/(b+c), b/(c+a), c/(a+b)},

UP.175 (改)
 In acute triangle ABC the following relationship holds:
 (b+c)^2/(bb+cc-aa) + (c+a)^2/(cc+aa-bb) + (a+b)^2/(aa+bb-cc) ≧ 12,

等号成立は正△のとき、だろうな…
0828132人目の素数さん
垢版 |
2018/10/18(木) 07:52:45.35ID:Dw4OfxmO
>>819 >>823

RMM 11 (Winter2018)

JP.158 (訂正)
 Let a,b,c>0. Prove that:
  (1/a + 1/b + 1/c) + a/(bb+cc) + b/(cc+aa) + c/(aa+bb) ≧ 3/(a+b) + 3/(b+c) + 3/(c+a),

(略証) チェビシェフしたあと、
 (1/x + 1/y)/2 + (x+y)/{2(xx+yy)} - 3/(x+y)
 = (x+y)/(2xy) + (x+y)/{2(xx+yy)} - 3/(x+y)
 = (x+y)(xx+xy+yy)/{2xy(xx+yy)} - 3/(x+y)
 = (x-y)^2 (xx-xy+yy)/{2xy(xx+yy)(x+y)}
 ≧ 0,
0829132人目の素数さん
垢版 |
2018/10/18(木) 15:11:32.69ID:k/D5nzuI
>>822
√{2(x^4+y^4+z^4)(x^2+y^2+z^2)} にCSを使うと、使い方次第で
≧ (√2)(x^3+y^3+z^3) にも
≧ x^2√(y^2+z^2) + y^2√(z^2+x^2) +z^2√(x^2+y^2) にもなるんだな。
0830132人目の素数さん
垢版 |
2018/10/19(金) 11:50:11.00ID:UmCMoNsS
>>822 >>829
 コーシーとチェビシェフの合わせ技(?)

〔補題〕
 (a,b,c) と (p,q,r) が同順序のとき
 √(aa+bb+cc) √(pp+qq+rr) ≧ (ap+bq+cr) ≧ (a+b+c)(p+q+r)/3 ≧ (aq+ar+bp+bq+cp+cq)/2,

 (a,b,c) と (p,q,r) が逆順序のとき
 √(aa+bb+cc) √(pp+qq+rr) ≧ (aq+qr+bp+br+cp+cq)/2 ≧ (a+b+c)(p+q+r)/3 ≧ (ap+bq+cr),
0831132人目の素数さん
垢版 |
2018/10/23(火) 15:23:49.80ID:QCR0wRAh
z∈C が |z + 1/2| < 1/2 をみたすとき、
任意の n∈N に対して |1 + z + z^2 + … + z^n|^2 < 1.
0832132人目の素数さん
垢版 |
2018/10/23(火) 16:45:18.22ID:foOj88Cn
>>831

題意より、
|z| ≦ |z+1/2| + (1/2) < 1,
∴ |1-z|^2 = (1-z)(1-z~)
 = (3/2) - 2|z+1/2|^2 + 3|z|^2
 > 1 + 3|zz|
 > 1 + 2|zz| + |zz|^2
 = (1+|zz|)^2,
∴ |1-z| > 1 + |zz| > 1 + |z|^(n+1) ≧ |1 - z^(n+1)|.

東工大-2000 前期 Q.2
[第7章.114,116,160]
Inequalitybot [183]
0834132人目の素数さん
垢版 |
2018/10/24(水) 04:35:15.90ID:RiX0WTIF
>>831
この問題の結論の不等式って、|1 + z + z^2 + … + z^n| < 1 と書かずに、
あえて2乗にしているのは、何か意味があるのかな?
0835132人目の素数さん
垢版 |
2018/10/24(水) 22:16:00.49ID:LB37fX3V
>>627 (Nesbitt-Igarashi)

(略証)
各辺に ab+bc+ca を掛けると コーシー型になる:

{a(bb+bc+cc) + b(cc+ca+aa) + c(aa+ab+bb)} {a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb)}
 ≧ {a(b+c) + b(c+a) + c(a+b)} {a/(b+c) + b/(c+a) + c/(a+b)}
 ≧ (a+b+c)^2,

そこで ラグランジュの恒等式
 (ax + by + cz)(a/x + b/y + c/z) - (a+b+c)^2 = (ab/xy)(x-y)^2 + (bc/yz)(y-z)^2 + (ca/zx)(z-x)^2,
を使う。

・左辺は
 x = bb + bc + cc,
 y = cc + ca + aa,
 z = aa + ab + bb,
 ax + by + cz = (a+b+c)(ab+bc+ca),     >>621
 (左辺) - (a+b+c)^2 = {a(a+b+c)/(bb+bc+cc)}{b(a+b+c)/(cc+ca+aa)}(a-b)^2 + …

・中辺は
 x = b + c,
 y = c + a,
 z = a + b,
 ax + by + cz = 2(ab+bc+ca),
 (中辺) - (a+b+c)^2 = {a/(b+c)}{b/(c+a)}(a-b)^2 +{b/(c+a)}{c/(a+b)}(b-c)^2 + {c/(a+b)}{a/(b+c)}(c-a)^2,

ここで、
 (a+b+c)/(bb+bc+cc) > (b+c)/(bb+bc+cc) > 1/(b+c),
 (a+b+c)/(cc+ca+aa) > (c+a)/(cc+ca+aa) > 1/(c+a),
 (a+b+c)/(aa+ab+bb) > (a+b)/(aa+ab+bb) > 1/(a+b),
だから
 (左辺) ≧ (中辺).

* (x,y,z) はもっと改良できるかも…
0836132人目の素数さん
垢版 |
2018/10/25(木) 12:43:20.62ID:0sa6guuR
>>835 *

 x = (b^n - c^n)/(b-c),
 y = (c^n - a^n)/(c-a),
 z = (a^n - b^n)/(a-b),
とすると
 x-y = -(a-b) D_n /,
 y-z = -(b-c) D_n /,
 z-x = -(c-a) D_n /,
ここに
 D_n = det{ [1,1,1] [a,b,c] [a^n,b^n,c^n] }
  = (a-b)(b-c)(c-a) = D_2,   … Vandermonde の行列式
0837132人目の素数さん
垢版 |
2018/10/26(金) 11:32:25.02ID:QcEpehDd
>>836

3文字のとき
 D_n = det{ [1,1,1] [a,b,c] [a^n,b^n,c^n] }
   = (c-b)a^n + (a-c)b^n + (b-a)c^n,

特性多項式
 (λ-a)(λ-b)(λ-c) = λ^3 -s・λ^2 + tλ -u,
 ただし s = a+b+c,t = ab+bc+ca,u = abc,

漸化式
 D_n = s・D_{n-1} - t・D_{n-2} + u・D_{n-3},

D_n/ = Σ {すべての(n-2)次積}
  … (n-2)個の重複組み合わせに対応

D_0 / = 0,
D_1 / = 0,
D_2 / = 1,
D_3 / = a+b+c = s,
D_4 / = aa+ab+ac+bb+bc+cc = ss-t,
D_5 / = s^3 -2st +u,
D_6 / = s^4 -3sst +tt +2su,
D_7 / = s^5 -4s^3・t +3stt +3ssu -2tu,
0838132人目の素数さん
垢版 |
2018/10/26(金) 17:18:14.29ID:QcEpehDd
>>837

まづ
 x_1 = y_1 = z_1 = 1,
 x_2 = b+c,y_2 = c+a,z_2 = a+b,
 x_3 = bb+bc+cc,y_3 = cc+ca+aa,z_3 = aa+ab+bb,
 ……
 x_n = b^(n-1) + b^(n-2)c + …… + c^(n-1),
とおく。

ラグランジュの恒等式から
 (ax+by+cz)(a/x + b/y + c/z) - (a+b+c)^2
 = (a/x)(b/y)(x-y)^2 + (b/y)(c/z)(y-z)^2 + (c/z)(a/x)(z-x)^2
 = (D_n/)^2 {(a/x_n)(b/y_n)(a-b)^2 + (b/y_n)(c/z_n)(b-c)^2 + (c/z_n)(a/x_n)(c-a)^2},  >>835

そこで
 (D_n/)/x_n,(D_n/)/y_n,(D_n/)/z_n
がnについて単調増加であることを示そう。

F_n = x_n (D_{n+1}/) - x_{n+1} (D_n/)
= {(b-a)(ab)^2 + (c-b)(bc)^2 + (a-c)(ca)^2} /
= (D_{-n}/)u^n
= Σ {ab,bc,ca の (n-1)次積}
≧ 0,
∴ nについて単調増加。
 (D_{n+1}/) / x_{n+1} ≧ (D_n/) / x_n ≧ …… ≧ (D_2/) / x_2 = 1/(b+c),

これを Nesbitt-Igarashi 列とか呼ぼう。

 F_0 = 0,
 F_1 = 1,
 F_2 = t,
 F_3 = tt -su,
 F_4 = t^3 -2stu +uu,
漸化式
 F_n = t F_{n-1} - su F_{n-2} + uu F_{n-3},
0842132人目の素数さん
垢版 |
2018/10/27(土) 02:35:22.24ID:4A6u4AJ8
>>841
うーむ。
Nesbitt's inequality の英語のwikiを見てきたが、どこの国の人か分からんなあ。

ところで Nesbitt's inequality の一般化について、このスレでやったことあったっけ?
0843132人目の素数さん
垢版 |
2018/10/29(月) 23:18:40.58ID:YnG/8gLh
不等式ぢゃないが、次の等式を手計算で証明するのはキツそうでござるかな?

(6a^2 - 4ab + 4b^2)^3 + (3b^2 + 5ab - 5a^2)^3
= (6b^2 - 4ab + 4a^2)^3 + (3a^2 + 5ab - 5b^2)^3
0844132人目の素数さん
垢版 |
2018/10/30(火) 03:45:36.60ID:bXAGzjkG
>>843
(6aa-4ab+4bb)^3 - (6bb-4ab+4aa)^3 = (3aa+5ab-5bb)^3 - (3bb+5ab-5aa)^3,

(略証)
x^3 - y^3 = (x-y)(xx+xy+yy),
から
(maa-nab+nbb)^3 - (naa-nab+mbb)^3
= (m-n)(a-b)(a^3+b^3) {(mm+mn+nn)(aa+ab+bb) -3(m+n)n・ab}
= (a-b)(a^3+b^3) {(m^3 - n^3)(aa+ab+bb) - 3(m-n)(m+n)n・ab},

(m,n) = (6,4) (3,-5) のときは
 m^3 - n^3 = 152,
 (m-n)(m+n)n = 80,
となり、相等しい。
0845132人目の素数さん
垢版 |
2018/10/30(火) 04:35:23.11ID:XhFYWByL
>>844
おぉ有難い。上手にやりましたね。
それにしても、この等式を見つけ出したラマヌジャンは変態ジャン。
0846132人目の素数さん
垢版 |
2018/10/30(火) 06:59:54.63ID:XhFYWByL
>>844
> = (a-b)(a^3+b^3) {(m^3 - n^3)(aa+ab+bb) - 3(m-n)(m+n)n・ab},

ここは
= (a-b)(a^3+b^3) {(m^3 - n^3)(aa+ab+bb)}
じゃないですか?
0847132人目の素数さん
垢版 |
2018/11/02(金) 01:22:59.67ID:im1SI6w9
>>843

 6^3 + (-4)^3 + (-3)^3 + (-5)^3 = 0,
 4^3 + (-6)^3 + 5^3 + 3^3 = 0,
から推して
 (6aa+pab+4bb)^3 + (-4aa-pab-6bb)^3 + (-3aa+qab+5bb)^3 + (-5aa-qab+3bb)^3 = 0,
と予想する。(p,q は或る定数)
ab=0 のときは明らか。

6ab(aa-bb){2(5p-4q)(aa+bb) + (84+pp-4qq)ab} = 0,

5p -4q = 0, 84 +pp -4qq = 0,

p = ±4, q=±5  (複号同順)

(例)
a = ±1,b = ±2,p=±4,q=±5 (複号同順)のとき
 ±{30,-36,27,-3} = ±3{10,-12,9,-1}
0848132人目の素数さん
垢版 |
2018/11/02(金) 02:51:41.47ID:im1SI6w9
>>847

12^3 - 10^3 = 9^3 - 1^3 = 8^3 - (-6)^3 = 728,
のような珍例を「ナニワ数」と云う。…っちゅうのは冗談やけどな。

・系列解は他にもある。
 {7aa-16ab-3bb,14aa+4ab+6bb,-14aa+4ab-6bb,-7aa-16ab+3bb} (Dickson)
 (maa-pab-nbb)^3 + (-maa-pab+nbb)^3 = -6pab(maa-nbb)^2 -2ppp(ab)^3
 m → km,n' → -kn,p' → -p/kk とすれば 6pab(maa+nbb)^2 + 2(p/kk)^3 (ab)^3
 辺々たすと 2p{12mn - (1 - 1/k^6)pp}(ab)^3,
 12mn - (1 - 1/k^6)pp = 0 ならば成立。

 {aa-7ab+63bb,8aa-20ab-42bb,6aa+20ab-56bb,-9aa+7ab-7bb}

http://www.maroon.dti.ne.jp/fermat/dioph1.html

・Fermat cubic surface とか云うらしい。
http://www.math.harvard.edu/~elkies/4cubes.html
0849132人目の素数さん
垢版 |
2018/11/03(土) 05:17:44.99ID:/E6xXixt
m^3 - n^3 = m’^3 - n’^3 のとき、 ラマヌジャン系列

(maa+pab+nbb)^3 - (naa+pab+mbb)^3
= (m-n)(a^2-b^2){(mm+mn+nn)(a^4+aabb+b^4) + 3(m+n)p ab(a^2+b^2) + 3(pp+mn) aabb}
= (m^3 - n^3) (a^6 - b^6) + 3(m^2-n^2)p ab(a^4 - b^4) + 3(m-n)(pp+mn) aabb(a^2-b^2),

→ m^3 - n^3,(m^2-n^2)p,(m-n)(pp+mn) が等しいとき、相等しい。

(maa+qab-nbb)^3 - (naa+qab-mbb)^3
= (m-n) (a^2+b^2){(mm+mn+nn)(a^4-aabb+b^4) + 3(m+n)q b(a^2-b^2) + 3(qq-mn) aabb}
= (m^3 - n^3) (a^6 + b^6) + 3(m^2-n^2)q ab(a^4 - b^4) + 3(m-n)(qq-mn) aabb(a^2 + b^2),

→ m^3 - n^3,(m^2-n^2)q,(m-n)(qq-mn) が等しいとき、相等しい。
0852132人目の素数さん
垢版 |
2018/11/05(月) 04:57:42.95ID:mrtyuQkn
>>851
この出題者が出していた大量の不等式の問題は、もう削除されて見れないんだよな。
実に惜しいことをした。
0853132人目の素数さん
垢版 |
2018/11/08(木) 02:11:08.99ID:PxlSRNgU
bot.62
x,y,z∈[0,1] のとき、sqrt|x-y| + sqrt|y-z| + sqrt|z-x| の最大値

どぉやるんでせうか?
0854132人目の素数さん
垢版 |
2018/11/09(金) 03:38:15.13ID:UXVKU4RE
(3/4)*(1 + A/H)^2 ≧ (A/G)^3 + (G/H)^3

この手の不等式が胸やけ起こしそうなくらい沢山載ってる本ないかな?
0855132人目の素数さん
垢版 |
2018/11/09(金) 06:52:20.28ID:pvdoV3Z4
>>853 [62]

yはxとzの中間にあるとする。コーシーで
 (√|x-y| + √|y-z|)^2 ≦ (1+1) (|x-y|+|y-z|) = 2|x-z|,
(左辺) ≦ (1+√2)|z-x| ≦ 1+√2,
等号は(0,1/2,1) etc.

中国MO-2012 Round2-A.3
0856132人目の素数さん
垢版 |
2018/11/11(日) 22:10:14.90ID:+dEG2DHU
三角形の辺長 a,b,c に対して、
Σ[cyc] (a+b-c)(b+c-a)/(c+a-b) ≧ 3(aa+bb+cc)/(a+b+c).
0857132人目の素数さん
垢版 |
2018/11/12(月) 08:15:22.35ID:TKDy5P8X
>>856

b+c-a = x, c+a-b = y, a+b-c = z,
とおく。(Ravi変換)
2a = y+z, 2b = z+x, 2c = x+y, a+b+c = x+y+z,

(左辺) = xy/z + yz/x + zx/y = (xxyy+yyzz+zzxx)/xyz,

(右辺) = 3(aa+bb+cc)/(a+b+c)^2 = 6(xx+yy+zz+xy+yz+zx)/{4(x+y+z)},

4(x+y+z)(xxyy+yyzz+zzxx) - 6xyz(xx+yy+zz+xy+yz+zx)
= (3x+y+z)[x(y-z)]^2 + (x+3y+z)[y(z-x)]^2 + (x+y+3z)[z(x-y)]^2 ≧ 0,
かな。
0859132人目の素数さん
垢版 |
2018/11/12(月) 19:53:45.29ID:TKDy5P8X
>>854

(3/4)(1 + A/H)^2 - (A/G)^3 - (G/H)^3 -1 = (1/108){(a-b)(b-c)(c-a)/abc}^2 ≧ 0,

(略証)
s = a+b+c, t = ab+bc+ca, u = abc,  = (a-b)(b-c)(c-a),
とおくと
A = s/3, G = u^(1/3), H = 3u/t,
A/H = st/9u, A/G = s/{3u^(1/3)}, G/H = t/{3u^(2/3)},
ゆえ
(左辺) = (3/4)(1+st/9u)^2 - s^3/27u - t^3/27uu -1
 = (1/108uu){(st+9u)^2 -4s^3u -4t^3 -108uu}
 = (1/108uu)竸2,
0860132人目の素数さん
垢版 |
2018/11/13(火) 09:14:18.15ID:btM1CEFR
>>859
(3/4)*(1 + A/H)^2 ≧ (A/G)^3 + (G/H)^3 + 1

3変数の場合に上式を証明しているけど、これは一般の場合にも成り立つのかな?
>>854では、右辺に +1がないのには意味があるのかな?
0863132人目の素数さん
垢版 |
2018/11/13(火) 22:03:59.25ID:btM1CEFR
[2] かんどころ P.121定理6.7 は、証明ついてないようだけど、どうやればいいか分かりますか?
0864132人目の素数さん
垢版 |
2018/11/14(水) 00:54:00.60ID:uakH23jG
>>860
右辺に +1 が無いと緩くなります。

2変数の場合は
 (3/4)(1 + A/H)^2 - (A/G)^2 - (G/H)^2 -1 = (3a+b)(a+3b){(a-b)/8ab}^2 ≧ 0,

∵ (A/G)^2 = (G/H)^2 = A/H = (a+b)^2 /4ab,
0865132人目の素数さん
垢版 |
2018/11/14(水) 03:43:20.66ID:uakH23jG
余談ですが、n変数の (A-G)/(G-H) の下限は
 n=2  1.0
 n=3  0.90096030150908885
 n=4  0.7761577683742073233
 n=5  0.67617485
 n=6  0.59845640
 n=7  0.53716474
 n=8  0.48781223
 n=9  0.44727765
 n=10  0.41339822
ぐらいかな。

http://suseum.jp/gq/question/2646, 2948
0868132人目の素数さん
垢版 |
2018/11/14(水) 14:58:31.03ID:fnsD9k3Y
>>867
あまりにもショボすぎるので、改造してみた。

a,b,c,d,x,y,z∈R, a≧d≧0, b≧c≧0, x≧y≧0 に対して、
(ax+cy+z)(bx+dy+z)≧{(a+b)x+z}{(c+d)y+z}.

後ろのzも pz+qw, rz+sw にできぬか?

                l三`ー 、_;:;:;:;:;:;:j;:;:;:;:;:;:_;:;:;_;:-三三三三三l
               l三  r=ミ''‐--‐';二,_ ̄    ,三三三彡彡l_   この感じ・・・・
              lミ′   ̄    ー-'"    '=ミニ彡彡/‐、ヽ
                  l;l  ,_-‐ 、    __,,.. - 、       彡彡彳、.//  
_______∧,、_‖ `之ヽ、, i l´ _,ィ辷ァ-、、   彡彡'r ノ/_ ______
 ̄ ̄ ̄ ̄ ̄ ̄ ̄'`'` ̄ 1     ̄フ/l l::. ヽこ~ ̄     彡彳~´/  ̄ ̄ ̄ ̄ ̄ ̄
                 ヽ   ´ :l .l:::.         彡ィ-‐'′
                ゝ、  / :.  :r-、        彡′
              / ィ:ヘ  `ヽ:__,ィ='´        彡;ヽ、
          _,,..-‐'7 /:::::::ヽ   _: :_    ヽ      ィ´.}::ヽ ヽ、
      _,-‐'´    {  ヽ:::::::::ヘ `'ー===ー-- '   /ノ /::::::ヘ, ヽー、
0869132人目の素数さん
垢版 |
2018/11/14(水) 16:19:40.82ID:fnsD9k3Y
できた ( ゚∀゚) ウヒョッ

a,b,c,d,p,q,r,s,x,y,z.w∈R,
a≧d≧0, b≧c≧0, p≧s≧0, q≧r≧0, x≧y≧0, z≧w≧0 に対して、
(ax+cy+pz+rw)(bx+dy+qz+sw)≧{(a+b)x+(p+q)z}{(c+d)y+(r+s)w}.
0870132人目の素数さん
垢版 |
2018/11/14(水) 16:53:56.03ID:fnsD9k3Y
話を元に戻すと、>>867 を使ったAM-GMの証明 ([2] かんどころP.118)で、
1回目に>>867を使うところは分かる。

(a_1 + a_2 + (a_3+…+a_n))(a_1 + a_2 + (a_3+…+a_n))
≧(2a_1 + (a_3+…+a_n))(2a_2 + (a_3+…+a_n))

2回目に>>867を使うところ、どこが対応しているのか分からんのですが、どうなってるのですか?

(2a_1 + (a_3+…+a_n))(a_1 + a_2 + (a_3+…+a_n))
≧(3a_1 + (a_4+…+a_n))(2a_3 + (a_2+a_4+…+a_n))

以下続けて (k*a_1+ a_{k+1}+…+a_n) と (a_1 + a_2 + (a_3+…+a_n)) に>>867を使って
最終的に n*a_1 と S-a_1+a_k (k=2.3.…,n) になるまで続けるんだけど、そこが分かりませぬ。
0871132人目の素数さん
垢版 |
2018/11/15(木) 01:35:19.26ID:BIkI04V5
>>870

>>867 を使わなくても出せるでござる。
A-S≧0,d≧0 のとき
 (A-d)S - A(S-d) = d(A-S) ≧ 0,

ここで
 S = a_1 + a_2 + … + a_n,
 A = k・a_1 + a_{k+1} + … + a_n, (k=n のとき A=n・a_1)
 d = a_1 - a_k ≧ 0,
とおいて
{(k-1)a_1 +(a_k + … +a_n)}S - (k・a_1 +a_{k+1} + … +a_n)(S -a_1 +a_k) = (a_1 -a_k)(k・a_1 -S) ≧ 0,    (k=2,3,…,n)
0872132人目の素数さん
垢版 |
2018/11/15(木) 01:39:19.56ID:BIkI04V5
>>866
〔Jacobsthalの不等式〕
(n-1)個の正の実数 x_1, x_2, …, x_(n-1) の相加平均をA '、相乗平均をG ' とする。
それに x_n (>0) を追加した n個組の相加平均をA_n、相乗平均をG_n とする。このとき
 n(A_n - G_n) ≧ (n-1)(A '-G '),  …[1]
 (A_n/G_n)^n ≧ (A '/G ')^(n-1),  …[2]

(略証)
A_n, G_n, x_n を A, G, x と略記する。
[1]
 n A - (n-1)A '= x,
 n G - (n-1)G '= G '{n(G/G ') - (n-1)} ≦ G '(G/G ')^n = x, (← Bernoulli)
辺々引く。
[2]
 A '(A/A ')^n ≧ A '{n(A/A ') - (n-1)} = n - (n-1)A '= x, (← Bernoulli)
 G '(G/G ')^n = x,
辺々割る。

[1] または [2] を n=1 まで繰り返すと A ≧ G が出る。

ニコニコ大百科
http://dic.nicovideo.jp/a/jacobsthalの不等式
0873132人目の素数さん
垢版 |
2018/11/15(木) 05:32:47.02ID:Kjq0ut8v
>>871
ありがとうございます。
なるほど、>>867を使わずにできますね。
>>871の不等式を使って、残りも同様にしていけばいいんですね。
つまり prime132氏が新証明(?)をしたわけですな。

Guha が1967年に>>867を繰り返し使ってAM-GMを証明した方法も知りたい。
「Guha 1967 AM-GM」をgoogleで検索して一番上に出る
When Less is More: Visualizing Basic Inequalities
のPP.31-32に n=4のときに、Guha's inequality を繰り返し使った例があり、
それを見ても、2回目以降にどう使っているのか分かりません。

Guha's inequality
a≧0, p≧q≧0, x≧y≧0, then
(px+y+a)(x+qy+a)≧((p+1)x+a)((q+1)y+a).

(4A_4)^4
= (a+b+c+d)(a+b+c+d)(a+b+c+d)(a+b+c+d)
≧ (2a+c+d)(2b+c+d)(a+b+c+d)(a+b+c+d) …(1)
≧ (3a+d)(2b+c+d)(b+2c+d)(a+b+c+d)   …(2)
≧ 4a(2b+c+d)(b+2c+d)(b+c+2d)      …(3)
≧ 4a(3b+d)(3c+d)(b+c+2d)         …(4)
≧ 4a(4b)(3c+d)(c+3d)            …(5)
≧ 4a(4b)(4c)(4d)               …(6)
= (4G_4)^4

と書かれているんですが、(1)は(p,q,x,y,a) = (1,1,a,b,c+d)で理解できる。
(2)〜(6)はどう適用したのか謎。
たとえば(2)で (2a+c+d)(a+b+c+d)≧(3a+d)(b+2c+d) となるには
(p,q,x,y,a)に何を対応させているのか?x=a, y=c 以外が謎。
左辺第1因子の形からp=2,q=1でないといけないけど、第2因子に2がない。
0874132人目の素数さん
垢版 |
2018/11/15(木) 06:40:30.77ID:Kjq0ut8v
(3)→(4)は (p,q,x,y,a) = (2,2,b,c,d)で
(5)→(6)は (p,q,x,y,a) = (3,3,c,d,0)か。

じゃあ、残り3ヵ所は、どう適用したんだろう?
(1)→(2) (2a+c+d)(a+b+c+d)≧(3a+d)(b+2c+d)
(2)→(3) (3a+d)(a+b+c+d)≧(4a)(b+c+2d)
(4)→(5) (3b+d)(b+c+2d)≧(4b)(c+3d)

実は使ってないってオチなのか?
0875132人目の素数さん
垢版 |
2018/11/15(木) 08:38:51.30ID:Kjq0ut8v
本人の論文を探すしかないな。
U.C.Guha, arithmetric mean-geometric mean inequality, Mathematical Gazette, 51(1967),pp.14-146

というのは分かったけど、ネットに転がってないかな
0876132人目の素数さん
垢版 |
2018/11/15(木) 09:20:07.76ID:Kjq0ut8v
Handbook of Means and Their Inequalities, pp.101-102 を見たら、
Guhaの不等式を使った証明の数式部分が、省略している部分も含めて
[2] かんどころ P.118と全く同じだった。
0877132人目の素数さん
垢版 |
2018/11/17(土) 07:54:31.62ID:js5kwOKA
(1)
|x|≦1, |y|≦1 (x,y∈R) に対して、
0≦ xx + yy - 2xxyy + 2xy*√{(1-xx)(1-yy)} ≦1.

(2)
m>n>1 (m,n∈Z) に対して、
(m+n+1)!/(m!*n!) > {(m+n)^{m+n}}/{(m^m)(n^n)} > 2^{2n-1}.
0878132人目の素数さん
垢版 |
2018/11/17(土) 11:12:15.05ID:js5kwOKA
(3)
a,b∈C に対して、
|a+b|/(1+|a+b|) < (|a|+|b|)/(1+|a|+|b|) < |a|/(1+|a|) + |b|/(1+|b|)
0879132人目の素数さん
垢版 |
2018/11/18(日) 02:10:29.27ID:ENzLbcND
>>877
(1)
 x = sinθ, y = sinφ (-π/2≦θ,φ≦π/2) とおく。
 √(1-xx) = cosθ, √(1-yy) = cosφ,
 x√(1-yy) + y√(1-xx) = sinθcosφ + sinφcosθ = sin(θ+φ),
両辺を2乗する。

(2)(左)
 log{(m+n+1)!} -(m+n)log(m+n) > (3/2)log(m+n) -(m+n) +0.8918
 log(m!) - m・log(m) < (1/2)log(m) -m +1,
 log(n!) - n・log(n) < (1/2)log(n) -n +1,
辺々引くと
 log{(m+n+1)!} -log(m!) -log(n!) -(m+n)log(m+n) +m・log(m) +n・log(n)
 > (3/2)log(m+n) - (1/2)log(mn) - 1.1082
 > (1/2)log(m+n) + (1/2)log{(m+n)^2 /4mn} + log(2) - 1.1082
 ≧ (1/2)log(m+n) - 0.41505
 ≧ (1/2)log(3) - 0.41505 (m+n≧3)
 = 0.549306

(2)(右)
 (m+n)^{m+n} = (m+n)^{m-n} (m+n)^{2n}
 ≧ m^{m-n} (4mn)^n
 = m^m (4n)^n,

∴ (m+n)^(m+n)/(m^m・n^n) ≧ 4^n,

>>878
(3)
 x/(1+x) は x≧0 で単調増加 (x∈R)
 |a+b| ≦ |a| + |b|
∴ φ(|a+b|) ≦ φ(|a|+|b|)
 = |a|/(1+|a|+|b|) + |b|/(1+|a|+|b|)
 ≦ φ(|a|) + φ(|b|),
0880132人目の素数さん
垢版 |
2018/11/18(日) 02:17:09.96ID:ENzLbcND
>>879 (2) (左)

〔補題〕
log(m!) < (m+1/2) log(m) -m+1,
(略証)
{log(k-1) + log(k)}/2 < ∫[k-1,k] log(x)dx より
log(m!) = Σ[k=2,m] log(k)
< ∫[1,m] log(x)dx + (1/2)log(m)
= [ x・log(x) -x ](x=1,m) + (1/2)log(m)
= (m+1/2)log(m) -m +1,

log(n!) < (n +1/2) log(n) -n+1,
(略証)
{log(k-1) + log(k)}/2 < ∫[k-1,k] log(x)dx より
log(n!) = Σ[k=2,n] log(k)
< ∫[1,n] log(x)dx + (1/2)log(n)
= [ x・log(x) -x ](x=1,n) + (1/2)log(n)
= (n+1/2)log(n) -n +1,

log{(m+n+1)!} > (m+n+3/2) log{(m+n+1)!}
= Σ[k=2,m+n+1] log(k)
> ∫[3/2,m+n+3/2] log(x)dx
= [ x・log(x) -x ](x=3/2,m+n+3/2)
= (m+n+3/2) log(m+n+3/2) -(m+n) -(3/2)log(3/2)
> (m+n+3/2) log(m+n) +(3/2) - (m+n) - (3/2)log(3/2)
= (m+n+3/2) log(m+n) - (m+n) + 0.8918023378
0881132人目の素数さん
垢版 |
2018/11/18(日) 02:23:36.94ID:ENzLbcND
>>879 (2)(左)

log {(m+n+1)!} > (m+n+3/2) log(m+n) - (m+n) + 0.8918
(略証)
log(k) > ∫[k-1/2,k+1/2] log(x)dx より
log{(m+n+1)!} = Σ[k=2,m+n+1] log(k)
> ∫[3/2,m+n+3/2] log(x)dx
= [ x・log(x) -x ](x=3/2,m+n+3/2)
= (m+n+3/2) log(m+n+3/2) -(m+n) -(3/2)log(3/2)
> (m+n+3/2) log(m+n) +(3/2) - (m+n) - (3/2)log(3/2)
= (m+n+3/2) log(m+n) - (m+n) + 0.8918023378
0882132人目の素数さん
垢版 |
2018/11/18(日) 20:34:10.43ID:Fcj0HO3Z
>>877
(1)
右辺-中辺 = [xy - √{(1-xx)(1-yy)}]^2 ≧0,
中辺-左辺 = {x√(1-yy) + y√(1-xx)}^2 ≧0.

 (゚∀゚ )
  ノヽノ) =3 プゥ
  くく
0886132人目の素数さん
垢版 |
2018/11/18(日) 23:25:53.36ID:Fcj0HO3Z
a,b,c>0, a+b+c=1に対して、(1+ 1/a)(1+ 1/b)(1- 1/c) の取りうる値の範囲を求めよ。
0888132人目の素数さん
垢版 |
2018/11/19(月) 01:54:17.81ID:eL1RQpps
〔問題168〕
a,b,c>0 のとき
 (aa-bc)(b+c)^r + (bb-ca)(c+a)^r + (cc-ab)(a+b)^r ≧ 0, (0<r<1)
                          ≦ 0, (r>1, r<0)
  V.Cirtoaje:"Algeblaic inequalities"、1-1-7
 inequalitybot [168]
0889132人目の素数さん
垢版 |
2018/11/19(月) 02:03:20.14ID:eL1RQpps
>>888

 x = (b+c)^r,
 y = (c+a)^r,
 z = (a+b)^r,
とおくと
 a = (y^{1/r} + z^{1/r} - x^{1/r})/2,
 b = (z^{1/r} + x^{1/r} - y^{1/r})/2,
 c = (x^{1/r} + y^{1/r} - z^{1/r})/2,

 aa-bc = {y^(2/r) +z^(2/r) -x^(1/r)[y^(1/r) + z^(1/r)]}/2,
 bb-ca = {z^(2/r) +x^(2/r) -y^(1/r)[z^(1/r) + x^(1/r)]}/2,
 cc-ab = {x^(2/r) +y^(2/r) -z^(1/r)[x^(1/r) + y^(1/r)]}/2,

(左辺) = (aa-bc)x + (bb-ca)y + (cc-ab)z
 = {x^(2/r)y +xy^(2/r) -(x+y)(xy)^(1/r)}/2 + ……
 = (x^{1/r} - y^{1/r})(x^{1/r -1} - y^{1/r -1})xy + ……
0890132人目の素数さん
垢版 |
2018/11/19(月) 09:27:44.83ID:eL1RQpps
>888 訂正

〔問題168〕
a,b,c>0 のとき
 (aa-bc)(b+c)^r + (bb-ca)(c+a)^r + (cc-ab)(a+b)^r > 0, (r<1)
                          < 0, (r>1)
                          = 0, (r=1)
0891132人目の素数さん
垢版 |
2018/11/19(月) 09:57:43.41ID:eL1RQpps
>>885
y>0 とする。
 (1 + y/2)^2 > 1+y > 1,
∴ 1/(1+y/2)^2 < 1/(1+y) < 1,
0〜y で積分すると
 y/(1+y/2) < log(1+y) < y,
∴ (1+y)^(1/y) < e < (1+y)^(1/y + 1/2),
y=1/x とおく。
0894132人目の素数さん
垢版 |
2018/11/19(月) 10:34:04.63ID:eL1RQpps
>>892

log(k) > (1/2)log(kk-dd) = {log(k+d) + log(k-d)}/2,

y=log(x) は上に凸だから、x=kでの接線より下側にある。
k-d<x<k+d かつ接線より下の台形の面積は(接線の傾きによらず)2d log(k)
∴ 2d log(k) > ∫[k-d,k+d] log(x)dx
0897132人目の素数さん
垢版 |
2018/11/19(月) 13:19:03.28ID:Merao6vt
>>896
無理だった。

>>881
> = (m+n+3/2) log(m+n+3/2) -(m+n) -(3/2)log(3/2)
> > (m+n+3/2) log(m+n) +(3/2) - (m+n) - (3/2)log(3/2)

の部分で、以下はどうやって分かるのですか?
(m+n+3/2) log(m+n+3/2) > (m+n+3/2) log(m+n) + (3/2)
0900132人目の素数さん
垢版 |
2018/11/20(火) 00:02:55.19ID:5+1z6eBQ
>>899
さんくす。

x=a(>0) における log x の接線を考えて、
 (x-a)/a + log a ≧ log x.
x=1, a = (N+d)/N を代入すればいいのかな。
0902132人目の素数さん
垢版 |
2018/11/20(火) 02:59:32.68ID:5+1z6eBQ
>>877(2)左側

0≦x≦1 において f(x) = x^m (1-x)^n は x = m/(m+n) で最大値をとる.

I(m,n) = ∫[0,1] f(x)dx とおくと, I(m,n) ≦ f(m/(m+n)) より
(m!*n!)/{(m+n+1)!} ≦ {(m^m)(n^n)}/{(m+n)^{m+n}}

[東京医科歯科大学2013数学第3問]
0903132人目の素数さん
垢版 |
2018/11/21(水) 16:55:51.41ID:LdWYnCJ+
>>856-857
大昔のPutnumに、これより弱い不等式があったよね。

>>885
Moreau's inequality が思い浮かぶと同時に、一松先生を思い出す。(謎掛け)
0904132人目の素数さん
垢版 |
2018/11/21(水) 21:37:39.12ID:LdWYnCJ+
三角形の辺長 a,b,c に対して、
(1) Σ[cyc] aa(b+c-a) ≦3abc.
(2) Σ[cyc] aab(a-b) ≧0.

そもそも(1)は辺長でなくても非負実数で成り立つでおじゃるな。
0905132人目の素数さん
垢版 |
2018/11/22(木) 00:31:23.80ID:x/Au2Ugh
>>904
(1)
(右辺) - (左辺) = a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b) = F1(a,b,c) ≧ 0,
 △である必要はない。

(2)
a = y+z、b = z+x、c = x+y とおく。(Ravi変換)
(左辺) = aab(a-b) + bbc(b-c) + cca(c-a)
= 2(xyyy+yzzz+zxxx) - 2xyz(x+y+z)
= (2/7)(2xyyy +yzzz +4zxxx -7xxyz) + cyc.
≧ 0,
 IMO-1983, A.6
 文献[9] 佐藤(訳) (2013) 問題2.24
 Inequalitybot [24]
0908132人目の素数さん
垢版 |
2018/11/22(木) 02:23:23.48ID:x/Au2Ugh
>>856 >>903 >>906

27th Putnum-1966
A2.
A triangle has sides a, b, c. The radius of the inscribed circle is r. Show that
 1/(b+c-a)^2 + 1/(c+a-b)^2 + 1/(a+b-c)^2 ≧ 1/(2r)^2,
0913132人目の素数さん
垢版 |
2018/11/22(木) 16:30:26.57ID:x/Au2Ugh
>>910

√(x-1) = X,
√(y-1) = Y,
とおく。
XX-X+1 ≧ X,
YY-Y+1 ≧ Y,
(右辺) - (左辺) = xy - x√(y-1) - y√(x-1)
 = (XX+1)(YY+1) - (XX+1)Y - (YY+1)X
 = {(XX+1)-X} {(YY+1)-Y} - XY
 ≧ XY - XY
 = 0,

あるいは
x = (cosh u)^2, y = (cosh v)^2 とおく。
0917132人目の素数さん
垢版 |
2018/11/23(金) 11:36:47.43ID:hLVWs+G2
>>916 は「美しい不等式pp.69-70」にあるが、証明が美しくないよな。
普通に差をとったら綺麗にできるのになあ。
0920132人目の素数さん
垢版 |
2018/11/23(金) 15:59:31.52ID:eRIDJVQi
>>916 >>917
 x = (b+c-a)/2, y = (c+a-b)/2, z = (a+b-c)/2,
とおく。(Ravi変換)
普通に差をとったら出来ますね^^
 2bc - a(b+c-a) = 2(x+z)(x+y) - 2x(y+z) = 2xx + 2yz ≧ 0,

文献[9] 佐藤(訳) §2.2 例2.2.1 p.69 (2013)
0921132人目の素数さん
垢版 |
2018/11/23(金) 16:55:45.35ID:hLVWs+G2
>>917 >>920
なるほど、Ravi変換は無敵でござるな。

この問題を問題集で見て感じたのは、三角形の成立条件を使った例なのに、
三角形の成立条件が一目で分かりにくい小汚い計算をしていた点。

b,cについて対称だから b≧cとする所まではいい。次のようにした方が美しいと思わん?

aが最大または最小のとき、
 2bc - a(b+c-a) = bc + (a-b)(a-c) > 0.

aがbとcの間の数のとき、b≧a≧cだから、
 2bc - a(b+c-a) = (a-c)(c+a-b) + c(b+c-a) > 0.
0923132人目の素数さん
垢版 |
2018/11/24(土) 01:13:59.36ID:OpCiwKZy
>>922
a, b, c, r > 0 に対して (ab)^{r+1/2} (aa+bb-2cc) ≧ (ab-cc) (a+b) (cc)^r,

(略証)
(左辺) - (右辺)
≧ (a+b)(ab)^{r+1} - (a+b)(ab)^r・cc - (ab-cc)(a+b)(cc)^r
= (a+b)(ab-cc) [(ab)^r - (cc)^r]
≧ 0,
0924132人目の素数さん
垢版 |
2018/11/24(土) 01:30:44.11ID:R0eGczxp
>>915 + >>922
a, b >0 に対して、aabb(aa+bb-2) ≧ ab(ab-1)(a+b) ≧ (ab-1)(a+b).

つまり改造後の不等式は、より強い式でござる ( ゚∀゚) ウヒョッ!
調子に乗って、さらに改造すると、

a, b >0 に対して、{√(ab)}*(aa+bb-2) ≧ (ab-1)(a+b).
0926132人目の素数さん
垢版 |
2018/11/24(土) 04:44:14.38ID:OpCiwKZy
>>923
(左辺) ≧ (a+b)(ab)^{r+1} - (a+b)(ab)^r・cc
= (a+b)(ab-cc)(ab)^r
≧ (a+b)(ab-cc)(ab)^(r-1) cc
≧ ……
≧ (a+b)(ab-cc)(ab)(cc)^(r-1)
≧ (a+b)(ab-cc)(cc)^r
= (右辺),
レス数が900を超えています。1000を超えると表示できなくなるよ。

ニューススポーツなんでも実況