X



トップページ数学
1002コメント517KB
不等式への招待 第9章 [無断転載禁止]©2ch.net
■ このスレッドは過去ログ倉庫に格納されています
0001不等式ヲタ ( ゚∀゚)
垢版 |
2017/09/13(水) 11:20:03.95ID:i1anpb+k
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html
0571132人目の素数さん
垢版 |
2018/05/19(土) 05:31:14.93ID:xhdfIuy0
>>549

〔問題8〕の解答

h(x) = e^(-Lx) ∫[0,x] f(t)dt とおくと題意により
 h(x) ≧ 0 = h(0)   …… (1)
また h(x) は(0,1) 上で微分可能で
 h '(x) ≦ 0,
∴ h(x) = h(0) + ∫[0,x] h '(t)dt ≦ h(0)  …… (2)
(1) (2) により [0,1] 上で h(x) = h(0) = 0 が成り立つ。
したがって、[0,1] 上のすべての実数xにおいて
 0 ≦ f(x) ≦ L ∫[0,x] f(t)dt = 0,
より、f(x) = 0 である。   ■

http://www.toshin.com/concours/mondai/mondai8.php
0572132人目の素数さん
垢版 |
2018/05/19(土) 07:16:34.16ID:xhdfIuy0
>>549

〔問題12〕の解答

(左側)
 任意の正の整数mに対し、
 log(m!) = Σ[L=1,m-1] log(L+1) ≧ Σ[L=1,m-1] ∫[L,L+1] log(t)dt = ∫[1,m] log(t)dt = m{log(m) -1} +1,
∴ log(m) - 1 ≦ (1/m)log(m!)

(右側)
実数xに対し、x以下の最大の整数を [x] で表わす。
また、0でない整数nと素数pに対し、v_p(n) で、nの素因数分解に現れるpの回数を表わすものとする。
ここで、m! はm以下の素数しか素因数に持たないので、
 log(m!) = Σ[i=1,k] v_pi(m!) log(p_i)
と表わされる。ここで、
 v_p(m!) < m/(p-1)
が分かるのでこれを上の式と組み合わせて
 (1/m)log(m!) < Σ[i=1,k] log(p_i)/(p_i -1)
が示された。(終)

http://www.toshin.com/concours/mondai/mondai12.php
0573132人目の素数さん
垢版 |
2018/05/19(土) 07:59:43.93ID:xhdfIuy0
>>549

〔問題32〕の解答

(a_{k+1})^2 / a_k ≧ 2k・a_{k+1} - kk・a_k,
辺々たして
Σ[k=1,n-1] (a_{k+1})^2 / a_k ≧ Σ[k=2,n] 2(k-1) a_k - Σ[k=1,n-1] kk・a_k
 = nn・a_n - Σ[k=1,n] a_k - Σ[k=1,n] (k-1)^2・a_k
 = nn・a_n - 1 - Σ[k=1,n] (k-1)^2・a_k
を導く。等号成立条件は、各 k=1,2,…,n-1 で a_{k+1} = k・a_k である場合だから、すべての i=1,2,…,n に対し
 a_i = (i-1)! /{Σ[k=1,n] (k-1)!}
が成立することである。

http://www.toshin.com/concours/mondai/mondai32.php
0576132人目の素数さん
垢版 |
2018/05/20(日) 18:26:26.97ID:1IiDnvUy
>>575 [192]

任意の実数a,b,cに対し、
(a-b)(a-c)(aa-bc)^2 + (b-c)(b-a)(bb-ca)^2 + (c-a)(c-b)(cc-ab)^2 ≧ 0,
を示せ。

 //www.casphy.com/bbs/highmath/不等式2-188 (じゅー)
0577132人目の素数さん
垢版 |
2018/05/20(日) 18:37:09.27ID:1IiDnvUy
>>574 [104]

s = a+b+c,t = ab+bc+ca,u = abc, = (a-b)(b-c)(c-a) とおく。
ss-3t≧0,
(左辺) = (ss-2t)^2 -tt
 = (ss-t)(ss-3t)
 = (1/3){2ss + (ss-3t)}(ss-3t)
 ≧ {(2√2)/3}|s|(ss-3t)^(3/2),
 ≧ (√6)|s處,
∵ 4(ss-3t)^3 = 27刧 + {(a+b-2c)(b+c-2a)(c+a-2b)}^2 ≧ 27刧,
等号成立は等間隔かつ ss+3t = 0 より{1-√6,1,1+√6}

http://www.casphy.com/bbs/highmath/ 不等式2-197
0578132人目の素数さん
垢版 |
2018/05/20(日) 19:27:29.09ID:1IiDnvUy
>>572 (右側) 補足

自然数nと素数pに対し、v_p(n) で、nの素因数分解に現れるpの回数を表わすものとする。
 v_pi(m!) = [ m/p ]+ [ m/p^2 ] + [ m/p^3 ] + … + [ m/p^d ]
ここに、d = [ log(n)/log(p) ].

これもルジャンドルの定理と云うらしい。
http://mathtrain.jp/legendretheorem

〔補題12〕
 v_p(m!) < m/(p-1)

(略証)
d = [ log(n)/log(p) ] とおくと
 v_pi(m!) ≦ m/p + m/p^2 + m/p^3 + … + m/p^d < m/(p-1),
0579132人目の素数さん
垢版 |
2018/05/20(日) 20:56:05.37ID:TfngVWLR
a, b, c > 0 に対して、a/(b+c) + 20b/(c+a) + 17c/(a+b) > 8

best possible かどうか分からん
0582132人目の素数さん
垢版 |
2018/05/21(月) 04:03:40.39ID:9YF4F+CN
>>581

B.4925 (改) (KoMaL,h=201801)
 0<a<n のとき
 a/{a^(n+1) + (n-a)} ≦ 1/n

(略解)
 a^(n+1) -(n+1)a + n
 = (a-1){a^n + a^(n-1) + … + a -n}
 = Σ[k=1,n] (a-1)(a^k -1)
 ≧ 0,


B.4931 (KoMaL,h=201802)
 {aa(b+c) + bb(a+c)}/abc > 3,

(略解)
 aa(b+c) + bb(a+c) = ab(a+b-c) + (a-b)^2・c + 3abc ≧ 3abc,


B.4953 (KoMaL,h=201804)
 log(n) + Σ[k=2,n] √{(k-1)/k} < Σ[k=2,n] √{k/(k-1)},

(略解)
 x>0 ⇒ x < sinh(x),
 a>1 ⇒ 2log(a) < a - 1/a,
 a = √{k/(k-1)} とおく。
 log(k) - log(k-1) < √{k/(k-1)} - √{(k-1)/k},
k=2 から k=n までたす。


Math. Excalibur,Vol.21,No.4,p.1 (2018)
Problem 1.
 a,b,c >0,a+b+c=1 のとき
 a√(2b-1) + b√(2c+1) + c√(2a+1) ≦ √{2-(aa+bb+cc)},

(略解)
関数f(x) = √x は上に凸ゆえ、Jensenで
(左辺) ≦ √{a(2b+1) + b(2c+1) + c(2a+1)}
 = √{(a+b+c) + 2(ab+bc+ca)} / (a+b+c)
 = √{1 +2(ab+bc+ca)}
 = (右辺)
等号成立は (a,b,c) = (1/3,1/3,1/3) および (1,0,0) など。
0583132人目の素数さん
垢版 |
2018/05/21(月) 15:35:20.78ID:9YF4F+CN
>>579

左辺が最小になる点では
(b+c)^2 : (c+a)^2 : (a+b)^2 = 1 : 20 : 17,
(b+c) : (c+a) : (a+b) = √1 : √20 : √17,
b+c = √1,
c+a = √20,
a+b = √17,
a = (-√1 +√20 +√17)/2,
b = (+√1 -√20 +√17)/2,
c = (+√1 +√20 -√17)/2,

(左辺) ≧ a√1 + b√20 + c√17
 = √(1・20) +√(20・17) +√(17・1) -19
 = 8.0343304952
0584132人目の素数さん
垢版 |
2018/05/21(月) 18:58:12.63ID:9YF4F+CN
>>579 >>583

b+c = A,c+a = B,a+b = C とおくと

(左辺) = 1・(B+C-A)/(2A) + 20(C+A-B)/(2B) + 17(A+B-C)/(2C)
 = (1/2)(1・B/A + 20A/B) + (1/2)(20C/B + 17B/C) +(1/2)(1・C/A + 17A/C) - (1+20+17)/2
 ≧ √(1・20) + √(20・17) + √(17・1) - 19  (← AM-GM)
等号成立は A:B:C = √1:√20:√17
0586132人目の素数さん
垢版 |
2018/05/22(火) 05:22:53.47ID:RuE2vaj6
>>486 >>487 (3)

 文献[9] 佐藤(訳) (2013) p.48 演習問題 1.101

・p=1,q=2 の例
 文献[9] 佐藤(訳) (2013) p.48 例 1.6.7 及び p.131 問題 3.30
 チェコ-スロバキアMO-1999
0587132人目の素数さん
垢版 |
2018/05/22(火) 05:40:43.12ID:RuE2vaj6
>>575 >>576 [192]

一次式:φ(x) = (a+b+c)x−(ab+bc+ca)により、
A = φ(a) = aa-bc,
B = φ(b) = bb-ca,
C = φ(c) = cc-ab.
A - B = (a+b+c)(a-b)、etc.
i)a+b+c≠0 のとき、
 (左辺) = {AA(A-B)(A-C) + BB(B-C)(B-A) + CC(C-A)(C-B)}/(a+b+c)^2 = F_2(A、B、C)/(a+b+c)^2 ≧0、
ii)a+b+c=0 のとき、A=B=C.

 http://www.casphy.com/bbs/highmath/ 不等式2-188
0588132人目の素数さん
垢版 |
2018/05/22(火) 21:32:13.53ID:+yEhb6+c
一松のじっちゃんが「大学への数学2018年6月号」に不等式の記事を書いておられる。
エルデシュの不等式とか
0589132人目の素数さん
垢版 |
2018/05/27(日) 01:54:57.05ID:4AQyIVUB
不等式と聞ゐちゃあ捨て置けねゑ…。このためだけに買ってきた。

タイトル 「三角形に関する不等式のいくつか」、4ページ

レムスの不等式と、求角不等式。
内角のcosの等式から、a^2+b^2+c^2 と8R^2の大小関係。
 (中略)
エルデシュの不等式。
過去スレで見たことある不等式。

あと、「老人のグチだが、(中略)近年お数学検定で、不等式の証明問題は成績が悪い傾向が見られる。」
とあるが、検定問題で出題されている不等式を全て公開してほしい。
0590132人目の素数さん
垢版 |
2018/05/27(日) 05:51:38.11ID:pjauAWRB
ここで不等式解いてる人って50後半の会社員だったりする?
0593132人目の素数さん
垢版 |
2018/05/28(月) 09:56:02.44ID:TTo2rnUU
>>589

(aa+bb+cc) - 8RR = 4RR {sin(A)^2 + sin(B)^2 + sin(C)^2 - 2}
= 4RR {1 - cos(A)^2 - cos(B)^2 - cos(C)^2}
= 8RR cos(A) cos(B) cos(C),

〔補題〕
A+B+C = π のとき
 cos(A)^2 + cos(B)^2 + cos(C)^2 + 2cos(A)cos(B)cos(C) = 1,

〔ライプニッツの不等式〕
 9RR - (aa+bb+cc) = 9(OG)^2 ≧ 0,
 O:外心 G:重心

・文献[9] 佐藤(訳) 朝倉書店 (2013) p.87-89 定理2.4.4 定理2.4.5
0594132人目の素数さん
垢版 |
2018/05/29(火) 02:45:55.24ID:n11ck1yy
>>591 は相加-相乗平均(AM-GM)で出るらしい。 (出題者・談)

{1,1,…,(n-1)/n} ⇒ a_n > a_{n-1} > … > a_1 = 2

{1,1,…,n/(n-1)} ⇒ b_n < b_{n-1} < … < b_1 = 4

しかし c_n = (1 + 1/n)^(n +1/2) が減少するのを出すのは難しい。
2項定理を使うか?
0595132人目の素数さん
垢版 |
2018/05/29(火) 03:01:10.20ID:n11ck1yy
>>594

2項定理により、

(1 - 1/nn)^(2n+1) = 1 -2/n + 1/nn -1/(3n^3) +2/(3n^4) -3/(5n^5) +53/(90n^6) -…

 < (1 - 1/n)^2
0597132人目の素数さん
垢版 |
2018/05/30(水) 08:18:45.80ID:FdL02lRD
Crux PROBLEMS
(2012年のが公開された。5年以内のはパスワードがないと見れない)

3690, 3703, 3706, 3709
https://cms.math.ca/crux/v38/n1/Problems_38_1.pdf

3712, 3715, 3719(←破棄)
https://cms.math.ca/crux/v38/n2/Problems_38_2.pdf

3719(←Replacement), 3723, 3726, 3729
https://cms.math.ca/crux/v38/n3/Problems_38_3.pdf

3731, 3735, 3737, 3740
https://cms.math.ca/crux/v38/n4/Problems_38_4.pdf

3741, 3744, 3747, 3749
https://cms.math.ca/crux/v38/n5/Problems_38_5.pdf

3752, 3754, 3757, 3759
https://cms.math.ca/crux/v38/n6/Problems_38_6.pdf

3763, 3767, 3769
https://cms.math.ca/crux/v38/n7/Problems_38_7.pdf

3773, 3774, 3776, 3779
https://cms.math.ca/crux/v38/n8/Problems_38_8.pdf

(3781), 3783, (3784), (3786), 3788, 3789
https://cms.math.ca/crux/v38/n9/Problems_38_9.pdf

3793, 3795, 3797,
https://cms.math.ca/crux/v38/n10/Problems_38_10.pdf

(*゚∀゚)=3ハァハァ
0598132人目の素数さん
垢版 |
2018/06/01(金) 08:31:09.16ID:PJfeGZ2B
>>597 から

3690.(v38_n1)
 Let a, b, and c be three distinct positive real numbers with a+b+c=s. Show that
  (5xx-6xy+5yy)(a^3+b^3+c^3) + 12(xx-3xy+yy)abc > (x-y)^2・s^3,

3709.(v38_n1)
 Let a, b, and c be non-negative real numbers, k and L≧0 and define
  (a+b)/2 - √ab = k^2,  (a+b+c)/3 - (abc)^(1/3) = L^2.
 Prove that
  max(a,b,c) - min(a,b,c) ≧ (3/2)(k-L)^2.

3712.(v38_n2)
 Prove that for any positive numbers a,b,c
  √{a(aa+bc)/(b+c)} + √{b(bb+ca)/(c+a)} + √{c(cc+ab)/(a+b)} ≧ a+b+c.

3719.(v38_n3,Replacement)
 Prove that if a,b,c>0, then
 a/√{bb+(1/4)bc+cc} + b/√{cc+(1/4)ca+aa} + c/√{aa+(1/4)ab+bb} ≧ 2.

3723.(v38_n3)
 Let a,b,c be positive real numbers such that a+b+c=s. If n is a positive integer, prove that
 (3a)^n /{(b+s)(c+s)} + (3b)^n /{(c+s)(a+s)} + (3c)^n /{(a+s)(b+s)} ≧ (27/16)s^(n-2).

3731.(v38_n4)
 Let a,b,c be positive real numbers such that a+b+c=s. Prove that
  a^(n+1) + b^(n+1) + c^(n+1) ≧ (aa+bb+cc)^n / s^(n-1),
 for all non-negative integers n.

3737.(v38_n4)
 Four non-negative real numbers a,b,c,d are given. Show that
  1/(a^3+b^3) + 1/(b^3+c^3) + 1/(c^3+d^3) + 1/(a^3+c^3) + 1/(b^3+d^3) + 1/(a^3+d^3) ≧ 243/{2(a+b+c+d)^3},
 Equality: {a,b,c,d} = {0,1,1,1}

3741.(v38_n5)
 Find the largest value of a and the smallest value of b for which the inequalties
  ax/(a+xx) < sin(x) < bx/(b+xx)
 hold for all 0<x<π/2.

3744.(v38_n5)
 Let a,b,c be positive real numbers with sum s. Prove that
  (a^8+b^8)/(aa+bb)^2 + (b^8+c^8)/(bb+cc)^2 + (c^8+a^8)/(cc+aa)^2 ≧ (a^3+b^3+c^3-abc)s/4.

3752.(v38_n6)
 Show that if n≧2 is a positive integer then
 (1/2)(1 +1/n -1/nn)^2 < (1 - 1/2^3)(1 - 1/3^3) … (1 - 1/n^3).

Crux mathematicorum, Vol.38 (2012)、一部改作
0599132人目の素数さん
垢版 |
2018/06/01(金) 08:45:52.63ID:PJfeGZ2B
>>597 から

3763.(v38_n7)
 Let a,b,c be positive real numbers. Prove that
  a/(2a+b+c) + b/(2b+c+a) + c/(2c+a+b) ≦ a/(2b+2c) + b/(2c+2a) + c/(2a+2b).

3793.(v38_n10)
 Let a, b, and c be positive real numbers such that
  √a + √b + √c = 2014/√2.
 Show that
  2014 ≦ √(a+b) + √(b+c) + √(c+a) ≦ 2014√2,
 Equality:(LHS) √a = √b = √c = 2014/(3√2),(RHS) √a = 2014/√2,b=c=0,

・三角形関係

3726.(v38_n3)
 Let a,b,c,s,r,R represent the angles (measured in radians),the semi-perimeter,the in-radius and the circum-radius of a triangle,respectively.
 Prove that
  (A/B + B/C + C/A)^3 ≧ 2ss/(Rr).

3729.(v38_n3)
 If a,b,c are the side lengths of a triangle,prove that
  (b+c)/(aa+bc) + (c+a)/(bb+ca) + (a+b)/(cc+ab) ≦ 3(a+b+c)/(ab+bc+ca).

3757.(v38_n7)
 Let A, B, C be the angles (measured in radians),R the circum-radius and r the in-radius of a triangle.
 Prove that
 1/A + 1/B + 1/C ≦ (9/2π)(R/r).

3767.(v38_n7)
 Let R,r be the circum-radius and in-radius of a right-angled triangle.
 Prove that
  R/r + r/R ≧ 2√2.

3776.(v38_n8) 別名「富士山」
 In △ABC prove that
 tan(A/2) + tan(B/2) + tan(C/2) ≧ (1/2){1/cos(A/2) + 1/cos(B/2) + 1/cos(C/2)}.

Crux mathematicorum, Vol.38 (2012)、一部改作
0600132人目の素数さん
垢版 |
2018/06/01(金) 11:22:47.44ID:PJfeGZ2B
>>598

3690.
軸を45°回して (x+y)/√2 = u,(x-y)/√2 = v とおく。
5xx-6xy+5yy = 2uu +8vv,
12(xx-3xy+yy) = -6uu +30vv,
(x-y)^2 = 2vv,
これを入れて
(左辺) - (右辺) = (2uu+8vv)(a^3+b^3+c^3) + (-6uu+30vv)abc -2vv(a+b+c)^3
 = 2(a^3+b^3+c^3 -3abc)uu + 6F_1(a,b,c)vv   (←シューア)
 ≧ 0,

>>3723.
通分すると
(分子) = (a+s)(3a)^n + (b+s)(3b)^n + (c+s)(3c)^n
 ≧ (4s/3){(3a)^n + (3b)^n + (3c)^n}  (←チェビシェフ)
 = (4s)(3^n)(a^n + b^n + c^n)/3
 ≧ (4s)s^n,
(分母) = (a+s)(b+s)(c+s) ≦ (4s/3)^3,   (← GM-AM)
(左辺) ≧ (27/16)s^(n-2),

>>3731.
コーシーの拡張より
 (a+b+c)(a+b+c) … (a+b+c){a^(n+1) + b^(n+1) + c^(n+1)} ≧ (aa+bb+cc)^n,
    (n-1)個
0601132人目の素数さん
垢版 |
2018/06/02(土) 06:34:19.54ID:qc99k5Fr
>>598

3741.
a = ππ/{2(π-2)} = 4.322734721
 b = 6

 cos(t) < 1 を [0,x] で逐次積分すると、
 sin(x) < x,  (x>0)
-cos(x) < -1 + xx/2!,
-sin(x) < -x + (x^3)/3!,  (x>0)
 cos(x) < 1 - xx/2! + (x^4)/4!,
 sin(x) < x - (x^3)/3! + (x^5)/5!
  = {x - ((14-xx)/720)x^5}/(1+xx/6)
  < x/(1+xx/6),   (0<x<π/2)

3752.
 a_n = 1 +1/n -1/nn = (nn+n-1)/nn,
とおく。
 a_n / a_{n-1} = (n-1)^2・(nn+n-1)/{nn(nn-n-1)}
 = 1 - (nn-3n+1)/{nn(nn-n-1)}
 ≦ 1 - 1/(2nn)     (n≧5)

∵ 2(nn-3n+1) - (nn-n-1) = n(n-5) + 3 ≧ 3  (n≧5)

 (a_n / a_{n-1})^2 ≦ {1 - (1/2nn)}^2
 = 1 - 1/nn + 1/(4n^4)
 < 1 - 1/n^3,
0602132人目の素数さん
垢版 |
2018/06/02(土) 13:03:43.11ID:bqWw3wOw
正整数nと1より大きい正の実数xに対し、
Σ[k=1,n]{kx}/[kx]<Σ[k=1,n]1/(2k-1)
{kx}はkxの小数部分を表し、[kx]はkxの整数部分を表すものとする
0603132人目の素数さん
垢版 |
2018/06/05(火) 10:01:49.78ID:RI7aB28L
>>599

3763.
(左) HM-AM より
 a/(2a+b+c) ≦ (1/4){a/(a+b) + a/(a+c)},
 b/(2b+c+a) ≦ (1/4){b/(b+c) + b/(b+a)},
 c/(2c+a+b) ≦ (1/4){c/(c+a) + c/(c+b)},
辺々たすと
 (左辺) ≦ 3/4,

(右)
 a/(2b+2c) = (a+b+c)/(2b+2c) - 1/2
 b/(2c+2a) = (a+b+c)/(2c+2a) - 1/2
 c/(2a+2b) = (a+b+c)/(2a+2b) - 1/2
辺々たすと
 (右辺) = (a+b+c){1/(2b+2c) + 1/(2c+2a) + 1/(2a+2b)} - 3/2
 ≧ (a+b+c)・9/{4(a+b+c)} - 3/2 (← AM-HM)
 = 9/4 - 3/2
 = 3/4,      (Nesbitt,Shapiro-3)
0604132人目の素数さん
垢版 |
2018/06/06(水) 08:56:29.19ID:xxwxn7ab
>>593

〔Chapple - Euler の不等式〕
外接円の半径をR、内接円の半径をrとするとき
 R(R-2r) = OI^2 ≧ 0
 O:外心 I:内心
0605132人目の素数さん
垢版 |
2018/06/06(水) 17:21:28.63ID:xxwxn7ab
>>602

 x → x+1 とすれば分母が k 増えるので左辺は減少する。1≦x≦2 で考える。
 (m-1)/n ≦ {x} < m/n となるmをとる。
 m = [nx] - n[x] +1, (1≦m≦n)

〔補題〕
 Σ[k=1,n] {kx}/[kx] < Σ[k=1,m-1] 1/(2k-1) + ({x} - (m-1)/n)/(2m-1),

右辺は、(1,0) - (1+1/n,1) - (1+2/n,1+1/3) - …… - (1+m/n,Σ[k=1,m] 1/(2k-1)) - …… (2,Σ[k=1,n] 1/(2k-1)) を結んだ折れ線を表わす。
0606132人目の素数さん
垢版 |
2018/06/09(土) 21:53:12.92ID:TZRRIZyQ
bot[195]
6(x^3 + y^3 + z^3)^2 ≦ (x^2 + y^2 + z^2)^3

これはシュワちゃんと関係あるん?
0607132人目の素数さん
垢版 |
2018/06/10(日) 17:09:15.57ID:KetZUwRK
>>606 [195]

x+y+z = 0 より
 x^3+y^3+z^3 = 3xyz,
 xx+yy+zz = [(x-y)^2 + 3zz]/2,
xとyは同符号とすれば
0 ≦ 4xy ≦(x+y)^2 = zz,

(左辺) = 6(3xyz)^2 = 54(xy)(xy)(zz) ≦ (3zz/2)^3 ≦ {[(x-y)^2 +3zz]/2}^3 = (xx+yy+zz)^3.

 蕪湖市数学競技会
0609132人目の素数さん
垢版 |
2018/06/12(火) 00:18:29.69ID:BRfgTgz+
以下、x、y、z∈R とする。

(1) (x^2 + y^2 + z^2)^3 ≧ 6(x^3 + y^3 + z^3)^2
(2) (x^2 + y^2 + z^2)^3 ≧(x^3 + y^3 + z^3 - 3xyz)^2 + (ab+bc+ca)^3
(3) (x^2 + y^2 + z^2)^3 ≧ 2{(x-y)(y-z)(z-x)}^2
(4) 2(x^2 + y^2)(y^2 + z^2)(z^2 + x^2) ≧ {(x-y)(y-z)(z-x)}^2
(5) 合体 or 改造できるかな?

出典
(1) >>606、bot195、蕪湖市数学競技会
(2)(3)(4)は過去に扱ったと思うが、元ネタを記録していないので詳細不明

  ∧_∧
  ( ;´∀`) < むむむ…、我慢できないでござる!
  人 Y /   
 ( ヽ し
 (_)_)
0612132人目の素数さん
垢版 |
2018/06/12(火) 16:00:37.51ID:YFJLrlqV
>>609

(1) x+y+z=0 のとき、…

(2)
 xx+yy+zz = S2,xy+yz+zx = t,
とおく。
 S2 - t = {(x-y)^2 + (y-z)^2 + (z-x)^2}/2 ≧ 0,
(S2)^3 - t^3 = {(S2)^2 + S2・t +tt}(S2-t)
 ≧ {(S2)^2 + S2・t - 2tt}(S2-t)
 = (S2+2t)(S2-t)^2
 = (x+y+z)^2・{(xx+yy+zz) -(xy-yz-zx)}^2
 = (x^3+y^3+z^3 -3xyz)^2,

(3)
 yはxとzの中間にあるとしてよい。
 0 ≦ (x-y)(y-z) ≦ (1/4)(x-z)^2,
 xx+yy+zz = (1/2)(x+z)^2 + (1/2)(x-z)^2 + yy ≧ (1/2)(x-z)^2,
 (左辺) ≧ (1/8)(x-z)^6 ≧ 2(x-z)^2 {(x-y)(y-z)}^2 = (右辺),
0613132人目の素数さん
垢版 |
2018/06/14(木) 22:38:12.04ID:6IyvuHHw
Asia Pacific Mathematical Olympiad APMO 2004
でググって5番目あたりに出てくるPDFの Problem 5。

模範解答がワケワカメ…。
これより強い不等式を、前スレでやったような排気ガス…
0614132人目の素数さん
垢版 |
2018/06/15(金) 00:29:19.87ID:UYSEHwOg
数学セミナーエレガントな解法2月号にある不等式の問題の正解率が異様に低かったらしい
そもそも問題すら理解してない回答が多かったって講評だった
0615132人目の素数さん
垢版 |
2018/06/15(金) 02:05:18.57ID:mm39PC7P
>>609
(4)
(1-i)(x+iy)(y+iz)(z+ix) = (1-i){-(xyy+yzz+zxx-xyz) +i(xxy+yyz+zzx-xyz)}
= -(x-y)(y-z)(z-x) +i{(x+y)(y+z)(z+x)-4xyz},
絶対値の2乗をとって
 2(xx+yy)(yy+zz)(zz+xx) = {(x-y)(y-z)(z-x)}^2 + {(x+y)(y+z)(z+x) -4xyz}^2,

>>613
 [前スレ.456]
(abc)^2 +aa +bb +cc +2 -2(ab+bc+ca)≧ 0 を使う?
文献[9] 佐藤(訳)、問題3.85改、練習問題1.90(i)
0616132人目の素数さん
垢版 |
2018/06/15(金) 02:30:14.62ID:d1fXPxbR
なるほど!

>>613
x、y、z∈R のとき、(aa+2)(bb+2)(cc+2) ≧ 9(ab+bc+ca)

[前スレ.456]
x、y、z∈R のとき、(aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2

合体!
(aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2 ≧ 9(ab+bc+ca)
0617132人目の素数さん
垢版 |
2018/06/15(金) 02:32:47.15ID:mm39PC7P
>>609 (4) >>615
 s = x+y+z,
 t = xy+yz+zx,
 u = xyz,
  = (x-y)(y-z)(z-x),
で表わせば
 2(ss-2t)(tt-2su) -2uu = 刧 + (st-5u)^2,
0618132人目の素数さん
垢版 |
2018/06/15(金) 02:38:30.76ID:d1fXPxbR
左辺を見て、昨夏の不等式三昧の夜を思い出す ( ゚∀゚) ウヒョッ!

[前スレ.469前後]
x、y、z∈R 、k≧0 のとき、(aa+k)(bb+k)(cc+k) ≧ (3kk/4)*(a+b+c)^2 などなど…
0620132人目の素数さん
垢版 |
2018/06/17(日) 01:22:10.06ID:8Ln3gkjC
立ち読みで疎覚えだが、数蝉NOTE。

a、b、c >0、a+b+c=1 のとき、Σ[cyc] a/(b^2+bc+c^2) ≧3.
0621132人目の素数さん
垢版 |
2018/06/17(日) 01:33:38.57ID:lI+JiKnS
>>619

〔Igarashi の不等式〕
 a,b,c>0 のとき、
 a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb) ≧ (a+b+c)/(ab+bc+ca) ≧ 3/(a+b+c),
 2018年7月号NOTE

(略証)
 a ' = bb + bc + cc,
 b ' = cc + ca + aa,
 c ' = aa + ab + bb,
とおくと
 aa ' + bb ' + cc ' = (a+b+c) (ab+bc+ca),  … これがミソ(?)
コーシーにより
 (左辺) = a/a ' + b/b' + c/c' ≧ (a+b+c)^2 /(aa ' + bb ' + cc ') = (a+b+c)/(ab+bc+ca),
0622132人目の素数さん
垢版 |
2018/06/17(日) 01:44:34.71ID:8Ln3gkjC
>>621
おお、これだ。さんくす。
解説でZZZが一般化してたけど、なんかよく分からなかった…。
0623132人目の素数さん
垢版 |
2018/06/17(日) 01:45:36.54ID:lI+JiKnS
>>620 >>621
 被りました。

 f(x) = 1/x は下に凸だから、Jensenにより
 (左辺) = a f(a ') + b f(b ') + c f(c ')
  ≧ (a+b+c) f((aa'+bb'+cc')/(a+b+c))
  = (a+b+c) f(ab+bc+ca)
  = (a+b+c)/(ab+bc+ca),
0624132人目の素数さん
垢版 |
2018/06/17(日) 01:46:16.03ID:8Ln3gkjC
>>621
>  a ' = bb + bc + cc,
>  b ' = cc + ca + aa,
>  c ' = aa + ab + bb,
> とおくと
>  aa ' + bb ' + cc ' = (a+b+c) (ab+bc+ca),  … これがミソ(?)

この変形は初めて見た。コレクションに入れておこう。
0625132人目の素数さん
垢版 |
2018/06/17(日) 01:48:52.60ID:8Ln3gkjC
あと一松じっちゃんの不等式の解説で、s(2(s^2-2t)-5t)+27u の因数分解があったような。
立ち読みだったんで s、t、u で覚えて帰ったから怪しいが…。
手計算で因数分解しようとして挫折した。 手計算でできるのか?
0627132人目の素数さん
垢版 |
2018/06/18(月) 22:44:29.14ID:wEh7fB1P
>>622
Nesbittと合体したでござるか…

〔Nesbitt-Igarashi の不等式〕
 a,b,c>0 のとき、
 (a+b+c) {a/(bb+bc+cc) + b/(cc+ca+aa) + c/(aa+ab+bb)}
 ≧ 2 {a/(b+c) + b/(c+a) + c/(a+b)}
 ≧ (a+b+c)^2 /(ab+bc+ca)
 ≧ 3,
 数セミ、2018年7月号NOTE-改
0628132人目の素数さん
垢版 |
2018/06/19(火) 02:28:33.39ID:8eLVrD8z
>>614
よく分からぬ難しげな不等式で、攻めづらかったかも。
この式が出てきた背景は、解説で触れていたけれど。
0631132人目の素数さん
垢版 |
2018/06/19(火) 13:57:17.17ID:8eLVrD8z
>>630 [101]

a〜d>0、a+b+c+d-1=0 のとき
 6(a^3 + b^3 + c^3 + d^3) ≧ aa+bb+cc+dd + 1/8.
 フランス TeamSelectionTest-2007 Q.2

(略解)
 f(x) = 6x^3 - (xx + 1/32)
 = (5/8)(x-1/4) + 2(3x+1)(x-1/4)^2
 ≧ (5/8)(x-1/4),
より
 f(a) + f(b) + f(c) + f(d) ≧ (5/8)(a+b+c+d-1) = 0.

{x = 1/4 で接線を曳く。f '(1/4) = 5/8}
0632132人目の素数さん
垢版 |
2018/06/19(火) 17:30:30.95ID:/rZEmPAN
>>631
さんくす。4月から見てるけど、101だけ出てこないのだ。
画像のない192は頻繁に出てくるのにな。偏りすぎている。
0633132人目の素数さん
垢版 |
2018/06/20(水) 02:26:05.78ID:ZoYl55O4
>>632 [192]
 
任意の実数a,b,cに対し、
 (a-b)(a-c)(aa-bc)^2 + (b-c)(b-a)(bb-ca)^2 + (c-a)(c-b)(cc-ab)^2 ≧ 0,
を示せ。
 casphy! - highmath(高校数学) - 不等式2-188
 じゅー君が高校生のとき作ったヤツ(?)

(略証)
i)a+b+c≠0 のとき、
 A = aa-bc,B = bb-ca,C = cc-ab,
とおくと
 A-B = (a+b+c)(a-b),etc.
(左辺) = {AA(A-B)(A-C)+BB(B-C)(B-A)+CC(C-A)(C-B)}/(a+b+c)^2
 = F_2(A,B,C)/(a+b+c)^2  (←シューア)
 ≧0,
ii)a+b+c=0 のとき、
 A = B = C,
 (左辺) = AA F_0(a、b、c) ≧ 0.
これで ☆9 だって。
0634132人目の素数さん
垢版 |
2018/06/20(水) 23:16:58.87ID:ZoYl55O4
>>613 >>615

〔補題〕
a,b,c≧0 のとき
(abc)^2 +aa +bb +cc +2 -2(ab+bc+ca)≧ 0,

(略証)
a = A^(3/2),b = B^(3/2),c = C^(3/2) とおくと
 (abc)^2 + 2 -3ABC = (ABC)^3 +1 +1 -3ABC ≧ 0,  (←AM-GM)
 A(A-B)(A-C) + B(B-C)(B-A) + C(C-A)(C-B) = F1(A,B,C) ≧ 0,
 AB(A+B) -2ab = AB(√A - √B)^2 ≧ 0,etc.
辺々たす。
0638132人目の素数さん
垢版 |
2018/06/23(土) 18:12:52.09ID:BnO9HX6O
〔問題677〕

Pを凸多面体とし、Pの辺を L_1,L_2,…,L_n とする。
各 1≦i≦n について L_i を辺にもつPの2つの面を考え、
その2つの面のなす角を外側から測ったものを θ_i とする。
(2面の外向き法線のなす角。2面角)

このとき、Σ[i=1,n] θ_i ≧ 3π であることを示せ。

JMO夏季セミナー
http://jmoss.jp/mon/old.php → 第9回 (G,入江)

面白スレ26-677
0639132人目の素数さん
垢版 |
2018/06/23(土) 22:49:56.64ID:BnO9HX6O
[213]
正の実数列 {a_k} が各自然数kに対して
a_{k+1} ≧ k・a_k / {(a_k)^2 + (k-1)}
を満たすとする。すべての n≧2 に対して
a_1 + a_2 + … + a_n ≧ n,
を示せ。
 IMO Shortlist 2015 A.2 ☆2
0640132人目の素数さん
垢版 |
2018/06/23(土) 23:13:45.08ID:BnO9HX6O
>>639 [213]
nについての帰納法による。

・n=2 のとき
 a_1 + a_2 ≧ a_1 + 1/a_1 ≧ 2  (← AM-GM)

・n>2 のとき
 a_n ≧1 のときは明らかに成立つ。
 a_n ≦1 のとき 題意より
 k/a_{k+1} ≦ (k-1)/a_k + a_k,
 a_k ≧ k/a_{k+1} - (k-1)/a_k,
 k=1,…,n-1 でたす。
 a_1 + a_2 + … + a_{n-1} ≧ (n-1)/a_n,
 a_1 + a_2 + … + a_n ≧ (n-1)/a_n + a_n
  = n + (n-1 - a_n)(1 - a_n)/a_n
  ≧ (n-2) + 1/a_n + a_n
  ≧ n,   (← 0 < a_n ≦1)
0641132人目の素数さん
垢版 |
2018/06/23(土) 23:13:45.10ID:BnO9HX6O
>>639 [213]
nについての帰納法による。

・n=2 のとき
 a_1 + a_2 ≧ a_1 + 1/a_1 ≧ 2  (← AM-GM)

・n>2 のとき
 a_n ≧1 のときは明らかに成立つ。
 a_n ≦1 のとき 題意より
 k/a_{k+1} ≦ (k-1)/a_k + a_k,
 a_k ≧ k/a_{k+1} - (k-1)/a_k,
 k=1,…,n-1 でたす。
 a_1 + a_2 + … + a_{n-1} ≧ (n-1)/a_n,
 a_1 + a_2 + … + a_n ≧ (n-1)/a_n + a_n
  = n + (n-1 - a_n)(1 - a_n)/a_n
  ≧ (n-2) + 1/a_n + a_n
  ≧ n,   (← 0 < a_n ≦1)
0643132人目の素数さん
垢版 |
2018/06/24(日) 05:10:52.64ID:dz2BpZ6O
>>642
きたか…!!

  ( ゚д゚ ) ガタッ
  .r   ヾ
__|_| / ̄ ̄ ̄/_
  \/    /
0644132人目の素数さん
垢版 |
2018/06/24(日) 05:15:05.23ID:dz2BpZ6O
あとは消失した192を作り直してもらうことと、224問目以降を作ってもらうことだな
0645132人目の素数さん
垢版 |
2018/06/25(月) 23:38:45.92ID:qOAzU6BU
>>611 >>637

基本対称式を x+y+z = s,xy+yz+zx = t,xyz = u とおく。
 xx-yz = xs-t,yy-zx = ys-t,zz-xy = zs-t,
より
 (左辺) - (右辺) = (ss-2t)^3 - 8(xs-t)(ys-t)(zs-t)
 = (ss-2t)^3 - 8(us^3 - t^3)
 = ss{(ss-3t)^2 + (8/3)(tt-3su) + (1/3)tt}
 ≧ 0,
等号成立は x+y+z = 0.
0646132人目の素数さん
垢版 |
2018/06/25(月) 23:48:14.02ID:qOAzU6BU
>>611 の〔類題〕

x,y,z ∈ R のとき
-(35+13√13)/486 ≦ (xx-yz)(yy-zx)(zz-xy)/(xx+yy+zz)^3 ≦ 1/8,
 -0.1684612481

 左側等号は (x,y,z) = ((3-√13)/2,1,1) など。  -0.302775637732
0647132人目の素数さん
垢版 |
2018/06/29(金) 11:42:15.93ID:kgKL/5Ht
正の実数a,b,cはa+b+c=3を満たす。このとき、
1/(2+aa+bb)+1/(2+bb+cc)+1/(2+cc+aa)≦3/4

2009 イランTST
0649132人目の素数さん
垢版 |
2018/07/01(日) 11:44:56.53ID:o+nodY1/
>>647

左辺を f(a,b,c) とおく。
1≦c とし、(a+b)/2 = (3-c)/2 = m とおく。
 f(a,b,c) ≦ f(m,m,c) ≦ 3/4
を示す。

(左)
aa+bb ≧ 2mm より
1/(2+aa+bb) = 1/{2 +2mm +(1/2)(a-b)^2} ≦ 1/(2+2mm),
1/(2+cc+bb) + 1/(2+cc+aa) = 2{2+cc+(aa+bb)/2}/{(2+cc+bb)(2+cc+aa)}
 ≦ 2/(2+cc+mm),
∵ (2+cc+bb)(2+cc+aa) -(2+cc+mm){2+cc+(aa+bb)/2}
 = (1/4)(a-b)^2 (2+cc-3mm) + (1/16)(a-b)^4
 = (1/4)(a-b)^2 {2+cc-(3/4)(3-c)^2} + (1/16)(a-b)^4
 = (1/32)(a-b)^2 (19+c)(c-1) + (1/16)(a-b)^4
 ≧ 0,   (← c≧1)

(右)
 f(m,m,c) = 1/(2+2mm) + 2/(2+cc+mm)
 = (3/4){1 - (c-1)^2・(5cc-26c+37)/[8(2+2mm)(2+cc+mm)] }
 ≦ 3/4.
0650132人目の素数さん
垢版 |
2018/07/01(日) 14:00:30.20ID:AVymxtb0
実数x_1,x_2,…,x_nに対して次の不等式が成立することを示せ
Σ[i,j=1,n]|x_i+x_j|≧nΣ[i=1,n]|x_i|

2006 イランTST
0652132人目の素数さん
垢版 |
2018/07/02(月) 07:40:46.47ID:dZnBLmxp
>>650

x_1, x_2, …, x_p > 0,
x_{p+1}, …, x_n ≦ 0, とする。(0≦p≦n)

(左辺) = Σ[i,j=1,p] |x_i+x_j| + Σ[i,j=p+1,n] |x_i+x_j| + Σ[i=1,p][j=p+1,n] |x_i+x_j|
= Σ[i,j=1,p] (|x_i|+|x_j|) + Σ[i,j=p+1,n] (|x_i|+|x_j|) + Σ[i=1,p][j=p+1,n] |x_i+x_j|
= 2p S_p + 2(n-p) S_n + 2S~,
ここに
 S_p = Σ[i=1,p] |x_i|, S_n = Σ[j=p+1,n] |x_j|, S~ = Σ[i=1,p][j=p+1,n] |x_i+x_j|,
とおいた。

・p = n/2 のときは成立する。(S~≧0)

・0 ≦ p < n/2 のとき
 S~ ≧ Σ[i=1,p][j=p+1,n] (|x_i|-|x_j|) = (n-p) S_p - p S_n,
 0 < (n-2p)/(n-p) ≦ 1 を掛けて
 S~ ≧ {(n-2p)/(n-p)}S~ ≧ (n-2p){S_p - [p/(n-p]S_n},
 (左辺) ≧ n S_p + {n + (n-2p)^2 /(n-p)}S_n ≧ n(S_p + S_n),

・n/2 < p ≦ n のとき
 S~ ≧ Σ[i=1,p][j=p+1,n] (|x_j|-|x_i|) = -(n-p) S_p + p S_n,
 0 < (2p-n)/p ≦ 1 を掛けて
 S~ ≧ {(2p-n)/p}S~ ≧ (2p-n){-[(n-p)/p]S_p + S_n},
 (左辺) ≧ {n + (2p-n)^2 /p}S_p + n S_n ≧ n(S_p + S_n),
0653132人目の素数さん
垢版 |
2018/07/02(月) 16:23:14.90ID:dZnBLmxp
>>652 訂正

はじめの方で
(左辺) = … + … + 2Σ[i=1,p][j=p+1,n] |x_i+x_j| 
の係数2が抜けてました。(後の論証に影響ないと思いますが…)
0654132人目の素数さん
垢版 |
2018/07/03(火) 11:38:56.42ID:F6g7HQZx
>>652
混乱しているので修正

(左辺) = 2p S(+) + 2(n-p) S(-) + 2S~,
ここに
 S(+) = Σ[i=1,p] |x_i|, S(-) = Σ[j=p+1,n] |x_j|, S~ = ……
とおいた。

結論は
 (左辺) ≧ …… ≧ n{S(+) + S(-)},
0655132人目の素数さん
垢版 |
2018/07/05(木) 18:50:30.31ID:da/jl28d
非負実数a,b,c,dと1≦p≦2なる実数pに対して、次の不等式が成立することを示せ
(a+b)^p+(c+d)^p+(a+c)^p+(b+d)^p≦a^p+b^p+c^p+d^p+(a+b+c+d)^p
0658132人目の素数さん
垢版 |
2018/07/06(金) 08:14:08.28ID:Fbh8MKIz
>>37(1) >>40 >>41 >>44

〔Redhefferの不等式〕
a_1 〜 a_n >0 のとき
G_k = (a_1・a_2…a_k)^(1/k) とおくと
G_1 + G_2 + …… + G_n ≦ Σ[k=1,n] (1+1/k)^k・a_k - n・G_n,

 和書[3] (大関, 1987) p.114-115 例題3
 文献 Ray Redheffer: Proc. London Math. Soc., Vol. s3-17, Iss. 4, p.683-699 (1967/Oct)
    "Recurrent inequalities"
0659132人目の素数さん
垢版 |
2018/07/13(金) 09:38:28.60ID:/EP6VcDe
>>658

(G_{k-1},G_{k-1},…,G_{k-1},(1+1/k)^k・a_k)のk個ででAM-GM する。
  (k-1)個

 (k+1)G_k - (k-1)G_{k-1} ≦ (1+1/k)^k・a_k,

k=1〜n でたす。(便宜上、G_0=0)
0661132人目の素数さん
垢版 |
2018/07/14(土) 22:00:02.78ID:fIrZynJm
>>660

「円に外接する三角形の面積だろ!」
とかツッコミたくないが。
 
その場合は
 a = {cot(B/2)+cot(C/2)} r/2 などより、
S = {cot(A/2)+cot(B/2)+cot(C/2)} rr
 ≧ 3cot((A+B+C)/6) rr  (←下に凸)
 = 3cot(π/6) rr
 = (3√3) rr,
0662132人目の素数さん
垢版 |
2018/07/15(日) 22:13:34.38ID:8ME/vsb7
>>609 (2)
>>612 (2)

 [x,y,z] [x,z,y] [S2,t,t]
 |z,x,y| |y,x,z| = |t,S2,t|
 [y,z,x] [z,y,x] [t,t,S2]
の行列式は
 D(x,y,z)^2 = D(S2,t,t).
ここに
 D(x,y,z) = x^3 + y^3 + z^3 -3xyz
 = (x+y+z)(xx+yy+zz-xy-yz-zx)
 = (x+y+z)(S2-t).
0665132人目の素数さん
垢版 |
2018/07/17(火) 23:51:33.85ID:GyPvcBOe
>>662
F(x,y,z) は既約かつ対称な多項式で
 F(x,y,z)^2 = F(xx+yy+zz,xy+yz+zx,xy+yz+zx)
を満たすとする。

F(x,y,z) = x+y+z,
F(x,y,z) = xx+yy+zz -xy-yz=zx,
以外にも解があるかな。
0666132人目の素数さん
垢版 |
2018/07/18(水) 22:49:25.94ID:QRQo+1y+
>>655 >>656

f(x) = x^(p-1) とおくと、
x>0 で f '(x) = (p-1)x^(p-2) > 0, f "(x) = (p-2)(p-1)x^(p-3) ≧0.

f"(x) ≧ 0(下に凸)だから、(*)
 f(a+b) + f(a+c) ≦ f(a) + f(a+b+c),
 f(a+b) + f(b+d) ≦ f(b) + f(a+b+d),
 f(a+c) + f(c+d) ≦ f(c) + f(a+c+d),
f(b+d) + f(c+d) ≦ f(d) + f(b+c+d),
各式に a,b,c,d を掛けて足す。
f '(x) >0(単調増加)を使うと
 g(a+b) + g(c+d) + g(a+c) + g(b+d) ≦ g(a)+g(b)+g(c)+g(d) + g(a+b+c+d),
ここに g(x) = x・f(x)

(略証)
 0 < ∫[0,b]∫[0,c] f "(a+u+v) du dv
  = f(a+b+c) + f(a) - f(a+b) - f(a+c),
0667132人目の素数さん
垢版 |
2018/07/24(火) 00:24:54.43ID:jKOHqerG
一辺の長さが1である辺を奇数個もつ任意の多角形の面積をSとすると次の不等式が成立
S≧√3/4
0669132人目の素数さん
垢版 |
2018/07/24(火) 03:44:42.26ID:6NVSU4Ku
〔問題2018〕
a>0,b>0,c>0,a+b+c=3 のとき次を示せ。

 a^(1/2018) + b^(1/2018) + c^(1/2018) + (2/√3) √{a(1-b)+b(1-c)+c(1-a)} ≧ 3,

 (K. Chikaya, 2018/June/19)
すうじあむ //suseum.jp/gq/question/2884 を改良
 casphy.com/bbs/highmath/472060/ 不等式2-304
0671132人目の素数さん
垢版 |
2018/07/24(火) 07:01:13.36ID:jKOHqerG
>>668
偶数角形でもいい
例としては四角形のうち三つの辺が長さ1で他は長さ1ではないものだったり、一つの辺のみが1でほかは長さ1でないようなもの
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況