>>475の続き

ほとんどのケースでニュートン法と同じくらいの演算回数で算出されます。
ただし、初期値の絶対値が>>475の第二式の下限又は上限に近いときは、
本方法の方が多くなりやすいようです。
しかし、下限よりある程度大きく真の値より小さいときなどには、
逆に、少なくなりやすいようです。(特に指数が大きいとき)

精度も極めて良いです。(以下、普通の電卓を用います)
指数がよほど大きくない限り、電卓のケタ数と同数のケタ数において、例えば12ケタの電卓であれば、
上位12ケタ(限度内の全ケタ)の数字が全て一致するか、
上位12ケタ目(限度内で末位)の数字のみが(限度内では)1異なります。(2と1.999…9のような境目のケースも含む)

まず精度を確かめたければ、電卓のケタ数の半数以上、
つまり上位6ケタ以上の数字が真の値と一致する近似値をa_nとして
>>475の演算を一回もしくは二回行えばよいでしょう(指数がよほど大きくない限り)。

長文失礼しました。