>>40
続き

The absolute Galois group and its invariants
The two choices of a lead to two Belyi functions f1 and f2. These functions, though closely related to each other, are not equivalent, as they are described by the two nonisomorphic trees shown in the figure.

However, as these polynomials are defined over the algebraic number field Q(√21), they may be transformed by the action of the absolute Galois group Γ of the rational numbers. An element of Γ that transforms √21 to -√21 will transform f1 into f2 and vice versa, and thus can also be said to transform each of the two trees shown in the figure into the other tree.

More generally, due to the fact that the critical values of any Belyi function are the pure rationals 0, 1, and ∞, these critical values are unchanged by the Galois action, so this action takes Belyi pairs to other Belyi pairs. One may define an action of Γ on any dessin d'enfant by the corresponding action on Belyi pairs; this action, for instance, permutes the two trees shown in the figure.

Due to Belyi's theorem, the action of Γ on dessins is faithful (that is, every two elements of Γ define different permutations on the set of dessins),[10] so the study of dessins d'enfants can tell us much about Γ itself.

The two Belyi functions f1 and f2 of this example are defined over the field of moduli, but there exist dessins for which the field of definition of the Belyi function must be larger than the field of moduli.[11]
(引用終り)
以上