さっきの方針に沿って一般化してみた.
f{0} := f(x_1,...,x_m) := -Σ[k=1..n] C{n,k}(-x_1***x_m)^{k} /k^m
f{m} := ∂[x_1]...∂[x_m] f = { 1-(1-x_1***x_m)^n } / { 1-(1-x_1***x_m) }
 = Σ[k_1=0..n-1] (1 -x_1***x_m)^k_1
f{m-1} = ∫ dx_1 f{m} = Σ[k_1=1..n] { 1 - (1 -x_1***x_m)^k_1 }/{ x_2***x_m) }
 = Σ[k_1=1..n] x_1 { 1 - (1-x_1***x_m)^k_1 }/{ 1 - (1-x_1***x_m) }
 = Σ[k_1=1..n] (x_1/k_1) Σ[k_2=0..k_1-1] (1-x_1*...*x_m)^k_2
f{m-2} = ∫ dx_2 f{m-1}
 = Σ[k_1=1..n](x_1/k_1) Σ[k_2=1..k_1] (x_2/k_2){ 1 - (1-x_1***x_m)^k_2 }/{ 1 - (1-x_1***x_m) }
 = Σ[k_1=1..n](x_1/k_1) Σ[k_2=1..k_1] (x_2/k_2) Σ[k_3=0..k_2-1] (1-x_1*...*x_m)^k_3
. . . ...
f{1} = Σ[1≦k_{m-1} ≦...≦k_1≦ n] (x_1***x_{m-1})/ (k_1***k_{m-1}) Σ[k_m=0..k_{m-1}-1] (1-x_1*...*x_m)^k_m
f = f{0} = ∫ dx_m f[1] = Σ[1≦k_m≦...≦k_2≦k_1≦n] { 1-(1-x_1*...*x_m)^k_m } /(k_1***k_m)

∴ Σ[k=1..n] C{n,k}(-1)^{k+1} /k^m = Σ[1 ≦ k_1 ≦ k_2 ≦...≦ k_m ≦ n] 1/(k_1*k_2**k_m)
なかなか面白い式が得られた.