X



トップページ数学
1002コメント417KB

不等式への招待 第10章

■ このスレッドは過去ログ倉庫に格納されています
0001不等式ヲタ ( ゚∀゚)
垢版 |
2018/12/18(火) 21:47:07.65ID:e1oKVpnI
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・不等式への招待 第9章 https://rio2016.5ch.net/test/read.cgi/math/1505269203/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html
0598132人目の素数さん
垢版 |
2021/02/23(火) 16:29:58.81ID:mfVhACbJ
Π[p≧11] cos(2π/p) > Π[p≧11] cos(2π/(p-1))
 > Π[n=5,∞] cos(π/n)
 = (2√2)Π[n=3,∞] cos(π/n)
 = (2√2)・0.114942        (*)
 = 0.3251052

*) 数セミ増刊「数学の問題」第2集, 日本評論社 (1978)
 ●117 によれば
 Π[n=3,∞] cos(π/n) = 0.114942044853296…
0599132人目の素数さん
垢版 |
2021/03/03(水) 14:15:42.03ID:SY070HAY
(2)
 |cosθ| ≦ 1/2  ⇔  cos(2θ) ≦ -1/2,
 |cosθ| ≧ 1/2  ⇔  cos(2θ) ≧ -1/2,

(4)
 |cosθ| ≦ cos(72)  ⇔  cos(4θ) ≧ cos(72),
 |cosθ| ≧ cos(72)  ⇔  cos(4θ) ≦ cos(72),

[分かスレ466-119]
0600132人目の素数さん
垢版 |
2021/03/03(水) 14:37:41.92ID:SY070HAY
(2)
 cos(2θ) + 1/2 = 2 [(cosθ)^2 - 1/4],

(4)
 cos(4θ) - cos(72) = 8 [cos(18)^2 - (cosθ)^2] [cos(72)^2 - (cosθ)^2]

∴ |cosθ| ≦ cos(72)  ⇒  cos(4θ) ≧ cos(72),

[分かスレ466-129]
0601132人目の素数さん
垢版 |
2021/03/06(土) 19:39:49.08ID:dHW5XVEt
(4)
 |cosθ| ≦ cos(72)  ⇒  cos(4θ) ≧ cos(72),
 |cosθ| ≧ cos(72)  ←  cos(4θ) ≦ cos(72),
0602132人目の素数さん
垢版 |
2021/03/06(土) 19:43:07.41ID:dHW5XVEt
〔問題157〕
x>0, y>0, z>0 ならば
 (x+y)^z + (y+z)^x + (z+x)^y >2,

[分かスレ466-157, 178]
0603132人目の素数さん
垢版 |
2021/03/06(土) 19:53:41.41ID:VMjWPceO
>>178
そのわかすれの178のレスでx+y,y+z,z+xのうち1以上のものが少なくとも一つあるとしてるけど、それらのケースに帰着できるわけじゃないよね?
最小値はx=y=z=0.184付近だし
単にすぐに除外していいケース述べてるだけだよね?
0604132人目の素数さん
垢版 |
2021/03/07(日) 06:25:23.53ID:gfZuqlK8
全部1未満のとき
 0 < x, y, z < 1.
 f(z) = a^(1-z) (a>0) は下に凸だから
 f(z) < f(0)(1-z) + f(1)z,  (0<z<1)
 a^(1-z) < a(1-z) + z < a+z,
 a^z > a/(a+z),   … ベルヌーイの不等式
∴ (x+y)^z > (x+y)/(x+y+z),
 巡回的にたす。
0606132人目の素数さん
垢版 |
2021/03/10(水) 06:18:44.76ID:dMP4wwTf
〔問題596〕
正の実数 a,b,c が a+b+c = 1 を満たすとき
 (1/a - a)(1/b - b)(1/c - c) ≧ (3 - 1/3)^3,
 等号成立は a=b=c = 1/3.
を示せ。

[高校数学の質問スレ410-596,599,610]
0607132人目の素数さん
垢版 |
2021/03/10(水) 22:08:55.30ID:NWVdDcAf
「任意の自然数nに対して、n<2^nが成立」
これを色々な方法で証明せよ

よくある証明方法は帰納法、二項定理の利用、微分によるなどあるが、それ以外もあるんかな
0608132人目の素数さん
垢版 |
2021/03/11(木) 06:14:13.22ID:JY2ui+vd
帰納法
 2^n = 2^{n-1} + 2^{n-1} > (n-1) + 1 = n,
あるいは
 2^n = 2^{n-1} + 2^{n-2} + ・・・・ + 2 + 1 + 1 ≧ n + 1,
           (n+1)項

a_1, a_2, ・・・・, a_n ≧ 0 のとき
(1+a_1)(1+a_2)・・・・(1+a_n) = 1 + s_1 + ・・・・ + s_n ≧ 1 + s_1,
  s_k は k次の基本対称式
  s_1 = a_1 + a_2 + ・・・・ + a_n,
より
 2^n ≧ 1 + n
0609132人目の素数さん
垢版 |
2021/03/11(木) 12:04:01.19ID:qBeEcW7U
俺が考えていた証明

n(1/n-1/2^n)=1-n/2^n
=(Σ1/2^i)-n/2^n
>(Σ1/2^i)-(1/2+…+1/2^n)>0
よりn>0だから
1/n-1/2^n>0⇔n<2^n
0612132人目の素数さん
垢版 |
2021/03/17(水) 08:27:58.15ID:Rkkg81B/
>>606
a+b+c = 1 より
 G = (abc)^{1/3} ≦ 1/3,     (AM-GM)

 1/y - y = (1+y)・(1/y - 1),
より
(1/a - 1)(1/b - 1)(1/c - 1) = (1-a -b -c)/(abc) + (1/a + 1/b + 1/c) - 1
 = 1/a + 1/b + 1/c - 1
 ≧ 3/G - 1
 ≧ 2(1/G + 1)   (G≦1/3)
 = 2(1/3G + 1/3G + 1/3G + 1)
 ≧ (2/(3G)^{1/4})^3,

(1+a)(1+b)(1+c) ≧ (1+G)^3  (コーシー)
 = (1/27)(3G+1+1+1)(1+3G+1+1)(1+1+3G+1)
 ≧ ((4/3)(3G)^{1/4})^3,

辺々掛けて (左辺) ≧ (8/3)^3.
0613132人目の素数さん
垢版 |
2021/03/17(水) 08:34:06.62ID:Rkkg81B/
〔問題3204〕
a≧b≧c≧d≧0 のとき
 (a+2b) (aa+bb) ≦ (a+b)^3
 (a+2b+3c) (aa+bb+cc) ≦ (a+b+c)^3,
 (a+2b+3c+4d) (aa+bb+cc+dd) ≦ (a+b+c+d)^3,

注) 5文字の場合は aa(b-d-2e) が出て来ます…orz

すうじあむ
 http://suseum.jp/gq/question/3204
0615132人目の素数さん
垢版 |
2021/04/08(木) 19:31:57.99ID:jAHOCp/v
〔例2.4.6〕
三角形の辺の長さを a,b,c, 面積を凾ニすると
  ≦ (3/4)abc/√(aa+bb+cc),

佐藤(訳), 文献9, 朝倉書店 (2013)  p.89
0616132人目の素数さん
垢版 |
2021/04/08(木) 20:11:29.99ID:jAHOCp/v
(略証)
  = (1/4)√{4(aabb+bbcc+ccaa) - (aa+bb+cc)^2}  (Heron)
  = (1/4)√{4(xy+yz+zx) - (x+y+z)^2}
  ≦ (1/4)√{9xyz/(x+y+z)}      (Schur-1)
  = (3/4)abc/√(aa+bb+cc),

* Schur-1
 F_1(x,y,z) = (x+y+z)^3 - 4(x+y+z)(xy+yz+zx) + 9xyz
  = x(x-y)(x-z) + y(y-z)(y-x) + z(z-x)(z-y) ≧ 0,
0618132人目の素数さん
垢版 |
2021/04/25(日) 04:42:31.91ID:We8cr6tt
〔問題〕
正の実数 a,b,c について、次が成り立つことを示せ。
 {aa(b+c)+4}/(a+2)^3 + {bb(c+a)+4}/(b+2)^3 + {cc(a+b)+4}/(c+2)^3 ≧ 2/3.
等号成立は (a,b,c) = (1,1,1) のとき
0619132人目の素数さん
垢版 |
2021/04/25(日) 05:46:51.43ID:We8cr6tt
(略証)
{aa(b+c) + 2 + 2} / (a+1+1)^3
 ≧ 1/ {(1+1+1)[a/(b+c) + 1/2 + 1/2)]}  (← コーシー)
 = (b+c) / {3(a+b+c)},
巡回的にたす。
0621132人目の素数さん
垢版 |
2021/04/25(日) 11:03:19.13ID:YeL676w3
>>619
作問者の天真(Twitter:@bon_miss_tenma)です
こんなにあっさり解かれるとは思ってませんでしたw
ついでに620さんの問題も僕のだったりします、是非挑戦してください!
0622132人目の素数さん
垢版 |
2021/04/25(日) 19:29:46.14ID:We8cr6tt
〔問題620〕
正の実数 a,b,c が aa+bb+cc=3 を満たすとき、次を示せ。
 (2a+1)/(b+c+1)^3 + (2b+1)/(c+a+1)^3 + (2c+1)/(a+b+1)^3 ≧ 1/3,
等号成立は (a,b,c)=(1,1,1) のとき。

(略解)
 (左辺) ≧ (b+c+1)/(b+c+1)^3 + (c+a+1)/(c+a+1)^3 + (a+b+1)/(a+b+1)^3
  = 1/(b+c+1)^2 + 1/(c+a+1)^2 + 1/(a+b+1)^2  (← チェビシェフ)
  ≧ 9/{(b+c+1)^2 + (c+a+1)^2 + (a+b+1)^2}  (← AM-HM / コーシー)
  ≧ 3/{(bb+cc+1) + (cc+aa+1) + (aa+b+1)}
  = 3/{2(aa+bb+cc)+3}
  = 1/3,      (← 題意)
0623132人目の素数さん
垢版 |
2021/04/26(月) 02:25:57.94ID:y9M7sTQu
(補足)
チェビシェフで
(a+1/2)/(b+c+1)^3 + (b+1/2)/(c+a+1)^3 - (a+1/2)/(c+a+1)^3 - (b+1/2)/(b+c+1)^3
 = (a-b) {1/(b+c+1)^3 - 1/(c+a+1)^3}
 ≧ 0,
循環的にたすと
 (左辺) - 1/(b+c+1)^2 - 1/(c+a+1)^2 - 1/(a+b+1)^2 ≧ 0,
0624132人目の素数さん
垢版 |
2021/04/28(水) 04:23:14.87ID:B9p/ERZg
>>618
>>620

〔問題34〕
a,b,c > 0 のとき
 (a(b+c)+1)/(b+c+1)^2 + (b(c+a)+1)/(c+a+1)^2 + (c(a+b)+1)/(a+b+1)^2 ≧ 1,
 Inequalitybot [34] ☆5
 JMO-2010 問4

Inequalitybot も問題番号で検索できるようになってます。
0625132人目の素数さん
垢版 |
2021/04/28(水) 07:27:45.63ID:B9p/ERZg
>>583
〔問題48〕
a,b,c >0 のとき
 (a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) ≧ (a+b+c)^3

 USAMO-2004, Q5
 Inequalitybot [48] ☆6
0626132人目の素数さん
垢版 |
2021/04/28(水) 16:58:32.60ID:B9p/ERZg
>>613
 (a+b)^3 - (a+2b)(aa+bb) = aab + (2a-b)bb ≧ 0,
 (a+b+c)^3 - (a+2b+3c)(aa+bb+cc) = aab + (2a-b)bb + (2a+b-2c)cc + 6abc ≧ 0,
 (a+b+c+d)^3 - (a+2b+3c+4d)(aa+bb+cc+dd)
= aa(b-d) + (2a-b-d)bb + (2a+b-2c-d)cc + (2a+b-3d)dd + 6(abc+abd+acd+bcd) ≧ 0,
0627132人目の素数さん
垢版 |
2021/04/28(水) 17:05:44.79ID:B9p/ERZg
これと以下を組み合わせた問題があった。
〔補題〕
a+b+c+… = 1 のとき
  (a^a)(b^b)… ≦ (aa+bb+…),
(略証)
a+b+c+… = s とおく。
y=log(x) は上に凸だから Jensen で
 a・log(a) + b・log(b) + ・・・・ ≦ s・log((aa+bb+・・・・)/s)
 (a^a)(b^b)… ≦ {(aa+bb+…)/s}^s,
s=1 とおく。
0628132人目の素数さん
垢版 |
2021/04/28(水) 19:31:51.11ID:B9p/ERZg
〔問題〕
 tan(1/2) > cos(1).
これの証明はどうすれば出来ますか?

 高校数学の質問スレ411- 028, 936
0629132人目の素数さん
垢版 |
2021/04/28(水) 23:28:33.43ID:Tu1Xrn91
t = tan(1/2)とおいて
tan(1/2)-cos(t)=(t^3+t^2+t-1)/(t^2+1)
なのでコレが+を言えば良い
tan(1/2)=0.546302.....
t^3+t^2+t-1は単調増大で0になるのはt=0.543689....
とりあえず5次までマクローリン展開して
tan(1/2)
>1/2+(1/3)(1/2)^3+(2/15)/(1/2)^5=131/240=0.54583333......
0630132人目の素数さん
垢版 |
2021/04/29(木) 02:03:41.02ID:mxa1BnUU
>>628
θ = 1/2 とおいて
tanθ - cos(2θ) = tanθ - 1 + 2(sinθ)^2
 = tanθ - 3/2 + {1/2 + 2(sinθ)^2}
 ≧ tanθ - 3/2 + 2sinθ  (AM-GM)
 = tanθ + 2sinθ - 3θ
 ≧ 0,   (Snellius-Huygensの式)
0631132人目の素数さん
垢版 |
2021/04/29(木) 02:45:36.56ID:NbeeKPJA
このスネル・ホイヘンスの不等式、以前からどうやって見つけたのか気になってるヤツだ
0636132人目の素数さん
垢版 |
2021/05/05(水) 05:39:50.22ID:16g2LNeV
〔簡易版〕
a,b,c>0 に対して
 (a+b+c)^3 ≧ 27abc{(aa+bb+cc)/(ab+bc+ca)}^(2/3).

(略証)
(a+b+c)^6 = {(aa+bb+cc) + (ab+bc+ca) + (ab+bc+ca)}^3
  ≧ 27(aa+bb+cc)(ab+bc+ca)^2,    (AM-GM)
2/3 乗して
(a+b+c)^4 ≧ 9(ab+bc+ca)^2 {(aa+bb+cc)/(ab+bc+ca)}^(2/3)
  ≧ 27(a+b+c)abc {(aa+bb+cc)/(ab+bc+ca)}^(2/3),

元の問題は解けぬwww
0637132人目の素数さん
垢版 |
2021/05/05(水) 05:41:42.08ID:16g2LNeV
〔問題3.85〕
実数a,b,cに対して
 (aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2,

 APMO-2004 A5.改
 文献[9] 佐藤(訳)、朝倉書店 (2013) 問題3.85 p.140
 Inequalitybot [20] ☆8
 [高校数学の質問スレ412−029,036,040]
0638132人目の素数さん
垢版 |
2021/05/05(水) 05:49:27.56ID:16g2LNeV
(解1)
(aa+2)(bb+2)(cc+2) - 3(a+b+c)^2
 = (1/3){(aa+5)(bc-1)^2 + (bb+5)(ca-1)^2 + (cc+5)(ab-1)^2
  + (ab+bc+ca-3)^2 + (a-b)^2 + (b-c)^2 + (c-a)^2}
 ≧0

(解2)
 (aa+2)(bb+2)(cc+2) - 3(a+b+c)^2
 = aa + bb + cc + 2abc + 1 - 2(ab+bc+ca)
 + (abc-1)^2
 + 2(ab-1)^2 + 2(bc-1)^2 + 2(ca-1)^2,

 文献[9] の演習問題1.90 (ii) p.41-42 に帰着する。
〔問題1.90〕(ii)
a,b,c を非負実数とする。このとき
 aa + bb + cc + 2abc + 1 ≧ 2(ab+bc+ca),
0640132人目の素数さん
垢版 |
2021/05/06(木) 05:59:11.34ID:Vi6k/Ft1
>>638
〔例題2.1.11〕
(7) a,b,c が非負実数のとき
 aa + bb + cc + 2abc + 1 ≧ 2(ab+bc+ca),


文献[8] 安藤, 数学書房 (2012) p.36
0641132人目の素数さん
垢版 |
2021/05/30(日) 05:50:26.45ID:EIfW8DuI
>602
{x+y, y+z, z+x} のうち1以上のものが

・2個以上のときは 明らか。
・1個以下のときは 1 > y+z, z+x より 0 < x, y, z < 1  >>604
0642132人目の素数さん
垢版 |
2021/05/30(日) 06:56:34.75ID:EIfW8DuI
>>631
マクローリン展開
 sinθ = θ - (1/3!)θ^3 + (1/5!)θ^5 - (1/7!)θ^7 + (1/9!)θ^9 - …
 tanθ = θ + (1/3)θ^3 + (2/15)θ^5 + (17/315)θ^7 + (62/2835)θ^9 + …
から思い付いたのかも。

>>100 にもあるよ。
 H = θ - (1/180)θ^5 - (1/1512)θ^7 - (1/25920)θ^9 - …
 G = θ + (1/45)θ^5 + (4/567)θ^7 + (1/405)θ^9 + …
 A = θ + (1/20)θ^5 + (1/56)θ^7 + (7/960)θ^9 + …
 A + H - 2G = (1/324)θ^7 + (1/432)θ^9 - …
 AH/GG = (2cosθ+1)/{(2+cosθ)(cosθ)^(1/3)}
    = 1 + (1/324)θ^6 + (1/648)θ^8 + …
0643132人目の素数さん
垢版 |
2021/05/30(日) 08:38:14.15ID:EIfW8DuI
ついでに…
s>0, t>0 とし
 A = (s+s+t)/3,
 G = (sst)^(1/3)
 H = 3st/(s+t+t),
とおくと
 H < G < A,
 AH > GG,   (0<s<t)
 A+H > 2G,   (0<s<t)
(略証)
 AH = (s+s+t)st/(s+t+t),
 G^3 = sst,
より
 (AH)^3 - G^6 = tt {t(s+s+t)^3 - s(s+t+t)^3}{s/(s+t+t)}^3
  = tt(s+t){(t-s)s/(s+t+t)}^3 > 0,
∴ AH > GG,

 (A+H)/2 = (ss+7st+tt)/[3(s+t+t)],
 G^3 = sst,
より
 {(A+H)/2}^3 - G^3 = {(t-s)^3 + 27stt}{(t-s)/[3(s+t+t)]}^3 > 0,
∴ A+H > 2G,
0644132人目の素数さん
垢版 |
2021/05/30(日) 18:54:47.33ID:SMLQU2Ye
>>642
テイラー展開は、あまり時代に合わんような気もする。まあ古くから、特殊な場合だけや結果だけ知られているということがよくあるのと、詳しくないので結論付けられない。

ホイヘンスによる証明があったわ。
円の大きさの発見 : 1654年ホイヘンスによる円周率の計算
https://www2.tsuda.ac.jp/suukeiken/math/suugakushi/sympo27/27_tanuma.pdf
(近似)式自体は、15世紀のニコラウス・クザーヌスまで遡れるらしい。

グレゴリーやニュートンが17世紀後半にべき級数展開したらしいから、ホイヘンスは知らないような気もする。代数計算得意じゃないとキツイし。
0646132人目の素数さん
垢版 |
2021/06/08(火) 05:51:17.44ID:Hilnv+E/
5.Sは3次元座標空間の有限個の点の集合である。
S_x, S_y, S_z はそれぞれ、Sの点の yz-平面, zx-平面, xy-平面への正射影からなる点の集合である。
次を証明せよ。
  | S |^2 ≦ |S_x|・|S_y|・|S_z|
ここに | A | は有限集合Aの要素の個数である。
0647132人目の素数さん
垢版 |
2021/06/08(火) 05:57:08.83ID:Hilnv+E/
>>280

f(x)は下に凸な関数とする。自然数nに対して不等式
 nΣ[k=0,n] f(2k) > (n+1)Σ[k=1,n] f(2k-1)
を示せ。

[面白スレ36.256-260]
0648132人目の素数さん
垢版 |
2021/06/08(火) 20:03:58.37ID:Hilnv+E/
>>645 >>646
z値の集合を {z1, …, zi, …, zn} とする。
S, Sy, Sx の点を z値で分類する。
S, Sy, Sx の点のうち z=zi をみたすものの個数を |Li|, ai, bi とする。

(1) |Li| ≦ ai・bi,

(2) |S| = |L1| + … + |Li| + … + |Ln|,

(3) |Sy| = a1 + … + ai + … + an,
  |Sx| = b1 + … + bi + … + bn,

(4) |Li| ≦ |Sz|,

(1) と (4) を掛けて
 |Li|^2 ≦ (ai・bi) |Sz|,
 |Li| ≦ √(ai・bi) √|Sz|,    ・・・・ (5)

(2), (5) より
|S|^2 ≦ {√(a1・b1) + … + √(ai・bi) + … + √(an・bn)}^2・|Sz|
  ≦ (a1 + … + ai + … + an)(b1 + … + bi + … + bn)|Sz|   コーシー
  = |Sy| |Sx| |Sz|,

http://www.youtube.com/watch?v=IzitrvYnNkc 11:08,
0652132人目の素数さん
垢版 |
2021/06/15(火) 20:42:53.54ID:iDQ7MEu/
>>650
0<k≦3 ゆえ x^(3/k) は下に凸。 x=1 で接線を曳いて、
 (3-k) + k・x^(3/k) ≧ 3x,
(左辺) - (右辺) ≧ aa+bb+cc - 2(ab+bc+ca) + 3(abc)^(2/3)
 ≧ aa+bb+cc - 2(ab+bc+ca) + 9abc/(a+b+c)    (AM-GM)
 = F1(a,b,c)/(a+b+c)
 ≧ 0,

*) Schurの不等式
F1(a,b,c) = a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b)
 = (a+b+c)^3 - 4(a+b+c)(ab+bc+ca) + 9abc ≧ 0.
0658132人目の素数さん
垢版 |
2021/07/25(日) 04:46:50.40ID:0rv1EuHc
(略解)
 t = ab+bc+ca < 3,
と仮定すると
 u = abc < 1,   (AM-GM)
となり題意に反する。
∴ 3 ≦ t < 4,
∴ s = a+b+c ≧ tt/3 ≧ 3,

(s-t)(ss+st+tt - 4t)
 = (4-t)(t-3)(t+3) + (s^3-4st+9u)
 = (4-t)(t-3)(t+3) + F1(a,b,c)
 ≧ 0,   (← Schur-1)
∴ s-t ≧ 0,
 [面白スレ37.704] にもあった。
0660132人目の素数さん
垢版 |
2021/07/25(日) 05:08:13.86ID:0rv1EuHc
〔類題184〕
a,b,c>0, a+b+c+abc=4 のとき a+b+c≧ab+bc+ca,

大数宿題 2010-Q7
[不等式スレ7.114-115,160]
Inequalitybot [184] ☆7
0661132人目の素数さん
垢版 |
2021/07/25(日) 05:12:18.46ID:0rv1EuHc
(略解)
s = a+b+c < 3 と仮定すると
 u = abc < 1   (AM-GM)
となり題意に反する。
∴ 3 ≦ s < 4.

4s(s-t) = (4-s)(s-3)(s+3) + 9(4-s-u) + (s^3 -4st +9u)
  = (4-s)(s-3)(s+3) + 9(4-s-u) + F1(a,b,c)
  ≧0,     (← Schur-1)
∴ s-t ≧ 0.
0662132人目の素数さん
垢版 |
2021/07/25(日) 06:48:26.36ID:0rv1EuHc
>>655
〔問題2.〕
 任意の実数 x1, x2, ・・・・, xn に対して、不等式
     Σ[i=1,n] Σ[j=1,n] √|xi-xj| ≦ Σ[i=1,n] Σ[j=1,n] √|xi+xj|,
が成り立つことを示せ。
0663132人目の素数さん
垢版 |
2021/07/25(日) 11:16:51.60ID:236oCq6r
実質極値がa=b=cの時でしかもそれが未定定数法で簡単に求まるやつはなんかもひとつやな
0665132人目の素数さん
垢版 |
2021/07/27(火) 19:25:05.18ID:gRrHTwn5
>>655
こんな良い不等式がまだ残ってるとは

これルートなくても成り立ちそうだけど、その場合は簡単に示せたりする?
0666132人目の素数さん
垢版 |
2021/07/29(木) 01:08:01.44ID:gaBM8HMZ
複素数 z (0≦arg(z) < 2π) に対して、
   |z-1| < |z| - 1 + |z|*arg(z).
( ゚∀゚) ウヒョッ!
0668132人目の素数さん
垢版 |
2021/07/29(木) 21:13:16.52ID:a7gJLkin
a_1≧a_2≧…≧a_n>0かつa_1+a_2+…+a_n=1のとき
a_1+2a_2+…na_nのとりうる値の範囲を求めよ.
0669132人目の素数さん
垢版 |
2021/07/30(金) 06:22:01.50ID:oWjQc2j0
f(a) = Σ[k=1,n] k・a_k とおく。
f(1, 0, …, 0) = 1 (最小)
f(1/n, 1/n, …, 1/n) = (n+1)/2 (最大)

(略証)
f(a) - 1 = (a_1+a_2+…+a_n - 1) + Σ[k=2,n] (k-1) a_k ≧ 0,
(n+1)/2 - f(a) = Σ[k=1,n] ((n+1)/2 - k) a_k
   = Σ[k'=1,n] (k' - (n+1)/2) a_{n+1-k'}
   = (1/2)Σ[k=1,n] ((n+1)/2-k) (a_k - a_{n+1-k})  (←同符号)
   ≧ 0,
0671132人目の素数さん
垢版 |
2021/07/30(金) 14:02:27.84ID:oWjQc2j0
>>669
(n+1)/2 - f(a) = ((n+1)/2) (1 - a_1 - a_2 - … - a_n)
      + (1/2) Σ[k=1,n-1] k(n-k) (a_k - a_{k+1})
     ≧ 0,
の方がいいか…
0675132人目の素数さん
垢版 |
2021/09/04(土) 18:23:48.83ID:KMsJe/e+
a, b, c が0以上かつ a^2 + b^2 + c^2 = 1 を満たすとき,
(a+bーc)^n + (b+c-a)^n + (c+a-b)^n (n は3以上の整数) 
の最大値と最小値を求めよ.
0676132人目の素数さん
垢版 |
2021/09/04(土) 21:02:15.78ID:HGuBdRDo
最大値 2^{n/2}
  a = 0, b = c = 1/√2 など。 (x=√2, y=z=0, etc.)
最小値 (1/3)^{n/2 - 1}
  a = b = c = 1/√3,  (x=y=z=1/√3)

x = b+c-a, y = c+a-b, z = a+b-c とおくと
1 = aa + bb + cc
 = {(x+y)^2 + (y+z)^2 + (z+x)^2}/4
 = {(x+y+z)/√3}^2 + (1/4){(x-y)/√2}^2 + (1/4){(x+y-2z)/√6}^2,
回転楕円体 (どら焼き形)
 短軸:1  (1,1,1)方向  
 長軸:2  それと垂直方向
0677132人目の素数さん
垢版 |
2021/09/04(土) 23:49:24.75ID:KMsJe/e+
>> 676

もう少し具体的に
0678132人目の素数さん
垢版 |
2021/09/05(日) 02:00:08.90ID:HFxHmzMl
a=u^2,b=v^2,c=w^2
束縛
C = u^4+v^4+w^4-1
評価関数
S = (v^2+w^2-u^2)^n+(w^2+u^2-v^2)^n+(u^2+v^2-w^2)^n

s = 2n((v^2+w^2-u^2)^(n-1)+(w^2+u^2-v^2)^(n-1)+(u^2+v^2-w^2)^(n-1))とおいて
dC=4(u^3,v^3,w^3)
dS=s(u,v,w)
s≠0により
dSがdCで張られる
⇔vw(v^2-w^2)=wu(w^2u^2)=uv(u^2-v^2)=0
⇔u^2=v^2=w^2 or u^2=v^2 & w=0 or u=v=0 or...
0679132人目の素数さん
垢版 |
2021/09/05(日) 06:18:37.20ID:Zhg5gGCb
専門的過ぎてついていけない
数オリの高校生の理解できる解法でお願いします
0680132人目の素数さん
垢版 |
2021/09/05(日) 10:01:38.24ID:HFxHmzMl
数学の問題は進んだテクニック使っても全然簡単にならず、実は中学生でも理解できるような話の方が楽に解ける時がある
数オリとかの問題とかそういう問題のオンパレードだし、ピーターフランクルとかそんな問題大好きの人もいっぱいいる
しかしそれは進んだ数学を勉強しないでいい理由になどにはならないし、ましてや逆に言えば、進んだテクニック使えば楽に解ける問題をいつまでもいつまでもそういう”初頭数学縛り”をかけて解くのは単なる“自己満”でしか無い
不等式の話を本当に極めるなら未定乗数法は絶対避けては通れない
0681132人目の素数さん
垢版 |
2021/09/05(日) 12:53:40.46ID:LDbpAA38
grad(f(u,v,w)) = ∇f = (∂f/∂u, ∂f/∂v, ∂f/∂w)
s1 = 2n{-(v^2+w^2-u^2)^(n-1) + (w^2+u^2-v^2)^(n-1) + (u^2+v^2-w^2)^(n-1)},
s2 = 2n{(v^2+w^2-u^2)^(n-1) - (w^2+u^2-v^2)^(n-1) + (u^2+v^2-w^2)^(n-1)},
s3 = 2n{(v^2+w^2-u^2)^(n-1) + (w^2+u^2-v^2)^(n-1) - (u^2+v^2-w^2)^(n-1)},
とおくと
 grad(C) = ∇C = 4(u^3, v^3, w^3)
 grad(S) = ∇S = (s1・u, s2・v, s3・w)
       = s(u, v, w)
ここから ついていけない…
0682132人目の素数さん
垢版 |
2021/09/06(月) 18:13:36.65ID:eC9BaMcK
問題[2]
 a_n = (1 + 1/n)^n, b_n = (1 + 1/n)^(n+1)  (nは正の整数)
とおくとき、nが増加するとa_nは増加し、b_nは減少することを証明せよ。
 (数学検定 2011年秋, 1級 2次 問題[2] の一部)
* 作問者は AM-GM を活用する解答を期待していたが…

〔補題258〕               >>258
 (1) (1 + 1/n)^(n+1/2) は単調減少でeに収束
 (2) n! < n^(n+1/2) / e^(n-1),
 (3) (2n)! / n! < (√2)(4n/e)^n,

>>263
Σ[k=1,n] (1/((k+1)(k!)^2))^(1/k) ≒ 1.99877613 - ee/n + 64.5/nn - …
0685132人目の素数さん
垢版 |
2021/09/15(水) 17:00:11.30ID:cOPYG12B
f(t)=1/(n+e^t)、F(t1,‥) = Σf(ti)とおく
f(t)はt≧lognで下に凸かつt≦lognで上に凸
全てtiがlognより小さい領域ではti=0のときFは最大値1
そうでない領域でΣti=0かつF(ti)>1が存在すれば
t1 =(n-1)c, ti=-c (i≧2,t1>logn)
であるtiで存在する
e^t=uとおいて
F(ti)-1
= 1/(n-1+u^(n-1) + (n-1)/(n-1+1/u)-1
= 1/(n-1+u^(n-1) - 1/((n-1)u+1)
しかしu≧1において
n-1+u^(n-1)≧(n-1)u+1
であるから矛盾
0686132人目の素数さん
垢版 |
2021/09/16(木) 05:07:13.88ID:Sn49tAbo
背理法で…
不等式が成り立たないとする。すなわち、
 Σ[k=1,n] 1/(n-1+x_k) >1,
であると仮定する。このとき
1/(n-1+x_i) > 1 - Σ[k≠i] 1/(n-1+x_k)
 = (1/(n-1))Σ[k≠i] x_k /(n-1+x_k)
 ≧ ( Π[k≠i] x_k /(n-1+x_k) )^{1/(n-1)}, (AM-GM)
となる。i=1,…,n で掛けて
 Π[i=1,n] 1/(n-1+x_i) > Π[k=1,n] x_k /(n-1+x_k),
となるが、これは 1 > Π[k=1,n] x_k を意味するので矛盾である。

ルーマニアMO-1999,
文献[9], 佐藤(訳), 朝倉書店(2013), 問題3.35 p.131
Inequalitybot [109]
0687132人目の素数さん
垢版 |
2021/09/16(木) 05:13:59.10ID:Sn49tAbo
〔類題〕
 x_1, x_2, …, x_n >0 が Σ[k=1,n] 1/(n-1+x_k) = 1 を満たすとする。
このとき
   Π[k=1,n] x_k ≧ 1,
を証明せよ。

文献[9], 佐藤(訳), 朝倉書店(2013), 問題1.46改 p.14
0688132人目の素数さん
垢版 |
2021/09/20(月) 10:34:26.70ID:YMP5Sl+4
(1)
z,w∈C、|z|=|w|=1 のとき、
|z+1| + |w+1| + |zw+1| ≧ 2

(2)
a,b,c∈C に対して、
|a| + |b| + |c| ≦ |a+b-c| + |b+c-a| + |c+a-b|

( ゚∀゚) ウヒョッ!
0689132人目の素数さん
垢版 |
2021/09/20(月) 22:52:38.35ID:lYkiWXwV
(1)は簡単やな
x^をxの複素共役として
|z+1|+|w+1|+|zw+1|
=|z+1|+|w^+1|+|z+w^|
なので|a|+|b|+|c|=1のとき
|b+c|+|c+a|+|a+b|≧2
を示せば良い
b = c exp(2iA), c = exp(2iB), a = exp(2iC), A+B+C=π
となる非負実数A,B,Cがとれるとしてよくこのとき
|b+c|+|c+a|+|a+b|
=2(cosA+cosB+cosC)
であるからcos(x)の凸性により(A,B,C)=(-π,π,π),(π,-π,π),(π,π,-π)のとき最小値2
0690132人目の素数さん
垢版 |
2021/09/20(月) 23:02:12.47ID:lYkiWXwV
(2)は力技で
sを複素定数としC^3の領域
R={ .. | a + b + c = 2s }
におけるS=2( |s-a| + |s-b| + |s-c| ) - ( |a| + |b| + | c| )の最小値が0以上であることを示せば良い
それには全微分できない領域で非負、全微分可能な極値で非負を言えば十分
s=0であればS=|a|+|b|+|c|となり自明だからs≠0とする

i) a=0のとき
S=2(|b+c|/2 + |b-c|/2 × 2) - (|b|+|c|)
=|b+c|/2-|b|+|b+c|/2-|c|+|b-c|
≧-|b-c|/2 × 2 + |b-c| = 0

(ii) a=s のとき
このときs=a=b+cより
S=2(|b|+|c|)-(|b+c|+|b|+|c|)
=|b|+|c|-|b+c|≧0

(iii) a=bのとき
このときs=a+c/2より
S=2(|c/2|+|c/2|+|a-c/2|)-(|a|×2+|c/2|)
=|c|+|2a-c|-|2a|≧0

(iv)a,b,cが同一直線上のとき
a,b,cは実数としてよくSをaの関数として見たときlim[a→±∞]S=∞だから極値だけ考えればよく、極値をとるのはa=s,0の場合のみであるから既出の場合に還元される

(v)その他の場合
Sは全微分可能でありz^を複素共役としてe(z)=z/|z|とおけば
dS = -2(e(s-a)^da + e(s-a)da^+ e(s-b)^db +e(s-b)db^+ e(s-c)^dc + e(s-c)dc^)-(e(a)^da+e(a)da^+e(b)^db+e(b)db^+e(c)^dc+e(c)dc^)
でありコレがda+db+dcの複素定数倍であるから
2e(s-a)+e(a)=2e(s-b)+e(b)=2e(s-c)+e(c)=0
である
よってa,b,cが同一直線上となるので既出のケースに還元される
0691132人目の素数さん
垢版 |
2021/09/21(火) 12:09:47.62ID:AENcTZtD
>>689
(1)
|a| = |b| = |c| = 1 のとき
 |b+c| + |c+a| + |a+b| ≧ 2,
ですか。

>>690
(2) は簡単やな。Ravi変換で
 b+c-a = p,
 c+a-b = q,
 a+b-c = r,
とおけば
(左辺) = |a| + |b| + |c|
 = |q+r|/2 + |r+p|/2 + |p+q|/2
 ≦ |p| + |q| + |r|.
0692132人目の素数さん
垢版 |
2021/09/21(火) 12:22:40.65ID:IIHpCqtI
あれ?
その方法最初に考えてダメと思ったんやけど勘違いしたかな?
まぁ複素係数の微分形式の復習になったからいいけど
0693132人目の素数さん
垢版 |
2021/09/21(火) 20:58:30.74ID:AENcTZtD
>>689
 C ≧ π/2 の場合 (鈍角) は
 |b+c| + |c+a| + |a+b|
 = 2(|cosA| + |cosB| + |cosC|)
 ≧ 2(cosA + cosB)
 ≧ 2(1 + cos(A+B))   (凸性)
 ≧ 2,        (A+B≦π/2)
ですね。あるいは
 cosA + cosB + cosC
 = 1 + 4sin(A/2)sin(B/2)sin(C/2)   (A+B+C=π)
 ≧ 1,
0694132人目の素数さん
垢版 |
2021/09/22(水) 19:57:40.85ID:K2h4cEAP
>>688
(1)は簡単やな
 |z+1| + |w^+1| + |z+w^|
 ≧ |(z+1) + (w^+1) - (z+w^)|
 = 2,

 |b+c| + |c+a| + |a+b|
 ≧ |-(b+c) + (c+a) + (a+b)|
 = 2|a|,
同様にして
 |b+c| + |c+a| + |a+b| ≧ 2 Max{|a|,|b|,|c|}

(2)は簡単やな  >>691
0695132人目の素数さん
垢版 |
2021/09/22(水) 20:21:10.20ID:miCnVfcc
>>694
なんでそういう書き方するん?
それ読んだ相手がどういう気持ちになるか考えられへんの?
0697132人目の素数さん
垢版 |
2021/09/25(土) 11:52:48.15ID:S56dxsDJ
1/n^3 = n/n^4
 < n/(nn-1/4)^2
 = {(n+1/2)^2 - (n-1/2)^2}/{2(nn-1/4)^2}
 = (1/2){1/(n-1/2)^2 - 1/(n+1/2)^2}
∴ Σ[n=2,∞] 1/n^3 < 2/9 = 0.222222
ぢゃ出ない・・・・orz
■ このスレッドは過去ログ倉庫に格納されています

ニューススポーツなんでも実況