ピタゴラス数をなんと 〜荒らされたので立て直しました〜 [無断転載禁止]©2ch.net

1旭=10002016/11/02(水) 07:53:23.97ID:kmhD7zB7
自分で作ったプログラムでa^2+b^2のaが35万以上計算しました。
100万以上に向けて頑張りたいと思いますので
応援お願いいたします。
プログラムにバグがあった場合抜けている数があると思うので
その点には留意いたしたいと思う次第であります。

262132人目の素数さん2018/09/23(日) 12:03:54.49ID:GHRoD3sa
>そういう解釈で結構だと思います (^_^)

>あえて無視した、と解釈していただいても宜しいかと (^_^)

こりゃあダメだな、研究発表の何かがわかってない
「知られている証明の別照明を与えた」と最初からいえば良かったのに
ま、何言ってものらりくらりかわすだけ
Webで書くなら勝手にすればいいが「数学会は俺の研究を評価しない」とか言うなよ

263Mb2018/09/23(日) 13:17:38.96ID:7dQacGQe
×「知られている証明の別照明を与えた」と最初からいえば良かったのに
〇「現在知られている証明とは違う、別証明を与えた」と最初からいえば
良かったかもしれないが、それは後付けの理由になってしまう。
それは「いわゆる “数学者”」に受け入れられないかもしれない、
と後から思ったんだけど、みたいな話を延々としても不毛だと思うんで、
「アイゼンシュタイン三角形」とか、「ヘロンの公式って、
内接円で考えるのはいいんだけど、数論的には別の切り口が
あるんじゃねぇ?」みたいな話に、教育的には
持ってゆきたいんだが。

264Maria2018/09/23(日) 13:34:26.66ID:7dQacGQe
>>261
> ま、何言っても のらりくらりかわすだけ
「真向正面から、ぶっ潰す」っていうスタイルがお好みなら、
ちょっと表(しかるべき学会とか)に出ていらっしゃって
下さらない? お呼びいただけたら参上しますわよん ♡

> Webで書くなら勝手にすればいいが「数学会は俺の研究を
> 評価しない」とか言うなよ
Web には書いてございます(笑)。
(NG ワードに引っかかっちゃったんで、
『プリンプトン322 BackLog』でググってください)
数学会はどうかともかく、日本ソフトウェア科学会の自然言語処理の
分科会は、うちらの研究を正しく評価してくださいませんでした
(それで所長が社会的ひきこもりに なっちゃったんだよ!)。
このあたり、日本語の形態素解析システムに関する、いろいろ薄らぐらい
話があるんで、自分からは言いませんが、「説明しろ!」というのなら、
いろいろ言っちゃうぞ?
よろしければ、
『日本語処理技術者の憂鬱 』
https://medaka.5ch.net/test/read.cgi/prog/1537503146/
へどうぞ。

265Mb2018/09/23(日) 14:00:44.52ID:7dQacGQe
>>260
> 石版については興味が無く
キリスト原理主義者の前でそれ言うと、
殺されかねないから用心したほうがいい。
「十戒」を記したのもタブレットだし、
「陶板」も「粘土板」もタブレットだ。

「かれこれ四千年前から、数学というものが
存在し、それが現在に至るまで連綿として続いている」
ということに対する敬意は、表明しておいたほうがいいぞ。

266132人目の素数さん2018/09/23(日) 14:13:51.49ID:6r9Vk7wm
天下り的にUDA行列を与えられ、これらをピタゴラス数に掛けていけば、
いくらでもピタゴラス数ができるよと教わっただけの人に対し、
てきとうな原始ピタゴラス数を示して、これが最後に掛けられたのが、U行列なのか、
D行列なのか、A行列なのかの見極めろと問えば、窮するのも仕方ないかもしれない。

その時、ピタゴラス数を、pq変換し、q<2pなのか、2p<q<3pなのか、3p<qなのかで
判断可能だというのは、立派な視点を与えたと思います。
(それぞれ、正方形二つを除いたとき、面積が負、長短辺入替、長短辺維持に対応)

しかし、UDA行列の実態は、(-a-2b+2c)^2 + (-2a-b+2c)^2 = (-2a-2b+3c)^2 の
符号反転変換だと知っている人に取ってみれば、全く自明な問いで、なぜ、困ってるの?
というレベルの問いなのです。

兎に角、解決したということで、一安心です。
それよりも、1/2、および、1/3 からスタートする有理数変換、
p/q → p/(2p+q) , q/(-p+2q) , q/(p+2q)
が、有理数生成法として、完全系(重複することなく、全てを表現可能)を成している
という事は私にとっては新鮮でした。
よく考えれば、全ての原始ピタゴラス数が三分木構造に埋め込まれているということの
焼き直しに過ぎないのですが、面白い知識を得た気がしてます。

267132人目の素数さん2018/09/23(日) 14:35:43.75ID:6r9Vk7wm
>>265
申し訳ありませんが、私が>>260にて「石版」と書いたのは、
>>252 の後半から >>259まで続く 一連の プリンプトン322 のお話です。
石版ではなく、粘土板だったようです。申し訳ありません。
しかし、あるいは、だからといって、意図的な曲解や、脱線はおやめください。

268Maria2018/09/23(日) 15:06:55.21ID:7dQacGQe
>>267
べつに、お気になさらずに。
いわゆる「十字架」も、本来は「スタウロス(杭)」
でして、「『十字架』という訳語は間違いだ!」という
意見もあります。
英語では、「ステーク」て、競馬のレースで「ステークス」と
いうのは、そこに由来しています。
むしろ、四千年以上の昔から「タブレット」として
利用されていたものが、現代においてスマートフォンとして
実現され利用されていることを、寿(ことほ)ぎたいと
思います。

つーワケで、スマホはパスポートサイズにしてくんねぇかなぁ?
と思うんだけど、どうかね。
あと、いわゆるタブレットは、A4 サイズとか B5 サイズ あたりに
してくれるといいと思うんだけど、じゃあ、縦横のドット数は
(当然、自然数だわな?)どうすんのよ、っていう話はあると思うん
だけど、「じゃあ、あんたはどう思うのよ」っていう話は、この
スレの話題として、あっていいと思う。
B4 サイズのタブレットって、正直しんどいと思うんだけど、
キーボードやマウスと WiFi でつながってりゃいいのかなぁ?
と思うと、他の人の意見も聞きたいと思う。

269Mr.Moto2018/09/23(日) 15:20:02.14ID:7dQacGQe
古代バビロンの粘土板、YBC7289 に√2の値が詳しく
記されていた、っていう話はあるんだが、
それを具体的にどうやって計算したのか、っていう話は
とりあえず現代において解明されていないんだよ。
古代バビロニアでは、「開平法」というものが、おそらく
知られていなかったらしくて、現在「バビロニアの開平法」と
呼ばれているものは、「割り算を行なって、除数と商の平均値を
求める」の繰り返しだと云われている。
「いや、『あらゆる数の平方根』を求めるアルゴリズムは
知られていなかったけど、白銀比とか黄金比については、連分数
との関連で、知られていたんじゃねーの?」と、おれらは考えている。
そのあたり、「どう思う?」っていうのは、いろんな人の意見を
聞いてみたいと思う。

270132人目の素数さん2018/09/24(月) 20:51:46.14ID:uSaLFfF9
唐突だが、√3の連分数展開って、どうなるんだ?
プリンプトン322の上限値が√3だったとしたら、
連分数で きれいに表されるはずだと思うんだが。

271Mr.Moto2018/09/27(木) 10:16:23.84ID:11+nU9yY
スレ違いではあるが、ピタゴラス数関連ということで
ご容赦願いたい。
プリンプトン322の計算を、コンピュータで
やりなおした結果がこれ。
0 < p < q < 180
長辺 / 短辺の比 AR は、1 < AR < φ。

1 : (p = 7, q = 17) {119, 120, 169}:1.9834027
2 : (p = 37, q = 91) {3367, 3456, 4825}:1.9491584
3 : (p = 43, q = 107) {4601, 4800, 6649}:1.9188021
4 : (p = 71, q = 179) {12709, 13500, 18541}:1.8862479
5 : (p = 5, q = 13) {65, 72, 97}:1.8150077
6 : (p = 11, q = 29) {319, 360, 481}:1.7851928
7 : (p = 29, q = 79) {2291, 2700, 3541}:1.7199837
8 : (p = 17, q = 47) {799, 960, 1249}:1.6927094
9 : (p = 13, q = 37) {481, 600, 769}:1.6426694
10 : (p = 41, q = 121) {4961, 6480, 8161}:1.5861225
11 : (p = 1, q = 3) {3, 4, 5}:1.5625
12 : (p = 23, q = 73) {1679, 2400, 2929}:1.4894168
13 : (p = 7, q = 23) {161, 240, 289}:1.4500173
14 : (p = 23, q = 77) {1771, 2700, 3229}:1.4302388
15 : (p = 5, q = 9) {28, 45, 53}:1.3871605

272Mr.Moto2018/09/27(木) 10:22:54.56ID:11+nU9yY
同じことを別の式で計算すると、
こうなる。
0 < m < n < 180
長辺 / 短辺の比 AR は、1 < AR < √3。

1 : (m = 5, n = 12) {119, 120, 85}:0.5017361
2 : (m = 27, n = 64) {3367, 3456, 2457}:0.5054321
3 : (m = 32, n = 75) {4601, 4800, 3424}:0.50884444
4 : (m = 54, n = 125) {12709, 13500, 9666}:0.512656
5 : (m = 4, n = 9) {65, 72, 52}:0.52160496
6 : (m = 9, n = 20) {319, 360, 261}:0.525625
7 : (m = 25, n = 54) {2291, 2700, 1975}:0.5350652
8 : (m = 15, n = 32) {799, 960, 705}:0.53930664
9 : (m = 64, n = 135) {14129, 17280, 12736}:0.5432236
10 : (m = 12, n = 25) {481, 600, 444}:0.5476
11 : (m = 40, n = 81) {4961, 6480, 4840}:0.5578799
12 : (m = 1, n = 2) {3, 4, 3}:0.5625
13 : (m = 81, n = 160) {19039, 25920, 19521}:0.56719726
14 : (m = 64, n = 125) {11529, 16000, 12096}:0.571536
15 : (m = 25, n = 48) {1679, 2400, 1825}:0.5782335
16 : (m = 8, n = 15) {161, 240, 184}:0.5877778
17 : (m = 27, n = 50) {1771, 2700, 2079}:0.5929
18 : (m = 2, n = 7) {28, 45, 18}:0.16
19 : (m = 9, n = 16) {175, 288, 225}:0.61035156
20 : (m = 72, n = 125) {10441, 18000, 14184}:0.620944

あぁ、すっきりした。んじゃ。
……と思ったら、最後の比のところが違ってるな。まあいいか。
このスレの住民なら、意味するところは わかるだろ。
そのうち気が向いたら、プログラム直してまた書いとくし。

273Mr.Moto2018/09/27(木) 10:38:12.95ID:11+nU9yY
>>272
こっちが正確な値です。どーも失礼いたしましたー

1 : (m = 5, n = 12) {119, 120, 169}:1.9834027
2 : (m = 27, n = 64) {3367, 3456, 4825}:1.9491584
3 : (m = 32, n = 75) {4601, 4800, 6649}:1.9188021
4 : (m = 54, n = 125) {12709, 13500, 18541}:1.8862479
5 : (m = 4, n = 9) {65, 72, 97}:1.8150077
6 : (m = 9, n = 20) {319, 360, 481}:1.7851928
7 : (m = 25, n = 54) {2291, 2700, 3541}:1.7199837
8 : (m = 15, n = 32) {799, 960, 1249}:1.6927094
9 : (m = 64, n = 135) {14129, 17280, 22321}:1.6685523
10 : (m = 12, n = 25) {481, 600, 769}:1.6426694
11 : (m = 40, n = 81) {4961, 6480, 8161}:1.5861225
12 : (m = 1, n = 2) {3, 4, 5}:1.5625
13 : (m = 81, n = 160) {19039, 25920, 32161}:1.5395334
14 : (m = 64, n = 125) {11529, 16000, 19721}:1.5192103
15 : (m = 25, n = 48) {1679, 2400, 2929}:1.4894168
16 : (m = 8, n = 15) {161, 240, 289}:1.4500173
17 : (m = 27, n = 50) {1771, 2700, 3229}:1.4302388
18 : (m = 2, n = 7) {28, 45, 53}:1.3871605
19 : (m = 9, n = 16) {175, 288, 337}:1.369225
20 : (m = 72, n = 125) {10441, 18000, 20809}:1.3364645

274Mr.Moto2018/09/27(木) 15:48:05.56ID:11+nU9yY
このスレの >>116 以降にチョッカイを出していたのだが、
いちおう >>273 までで役割は果たしたと思う
>>1 も、たぶん >>267 あたりの時点で、やり尽くした感が
あると思う)ので、あと 700 エントリくらいは、適当に埋めちゃう
ことにする。
そんなわけで、次スレに関しては、雑談の一部として
議論してもらって、なんかしらテーマがあったら
別途立てていただきたいと思うが、その点に関しては
>>1 氏はどう思う?」とお伺いを立てておきたいが、
まぁオレが立てたスレでもないんで、
オレが口を出すような話でもない。

とりあえず、プリンプトン322に関しては、いわゆる
ピタゴラス数に関する議論の出発点としての
歴史的な意味があるので、雑談っぽく埋めてゆきたいと
思っている。たぶん連投になっちゃうだろうけど
(質問等に関しては、「流れをぶった切ってしまって申し訳ない」
みたいな配慮はしなくていい。そもそもが「荒らされたんで立て直した」
みたいなスレでもあるし。だよな? >>1

つーコトで、よろしく。苦情等があれば(つーか、>>1 氏に
してみれば、途中からオレが脱線してるんで、不本意な部分は
あると思うので、そこは言ってもらえると ありがたい)、
適宜書き込んでほしい。

275Mb2018/09/27(木) 15:53:51.53ID:11+nU9yY
とりあえず、
ID:6r9Vk7wm 氏と
ID:Z3ZHtaSh 氏には、
非常に感謝している。
ありがとう m(_ _)m

276学術2018/09/27(木) 19:14:00.42ID:8ZNOee3m
これ面白いね。計算が間違う方が面白いんじゃないの、数学の癖というモノが
反比例の高次関数だから。

277学術2018/09/27(木) 19:17:30.88ID:8ZNOee3m
左利きの数学者のつぶれ方って面白いよ。数字は右利き用だから、迫害され、
才気も届くことはない。

278Mr.Moto2018/09/27(木) 19:39:51.31ID:11+nU9yY
ところで、>>271 の件なんだが、
> 11 : (p = 1, q = 3) {3, 4, 5}:1.5625
つーのは、倍率を M として、
「11 : (p = 1, q = 3:m = 1, n = 2:M=15) {45, 60, 75}:
[(対角線の二乗 / 長辺の二乗)の六〇進数による表記](≒1.5625):
[長辺 / 短辺 の比の値(この場合は ≒1.33)];
みたいに表しときゃいいのかね?
「授業で使うんなら、そっちの方が便利」っちゅー気がするんだが。

式としちゃあ、V_(p, q) と W_(m, n) でいいとは思うんだが、
エウクレイデスとプラーマグプタだと思うと、
E(p, q) と P(m, n) というのが粋っちゃあ粋だと思うんだが。

279Mr.Moto2018/09/27(木) 19:49:42.37ID:11+nU9yY
>>202
申し訳ない。
> 互いに素な奇数 0 < s < t を用いて
はちゃんと読んでいるんだが、
いろいろ試行錯誤する過程で
なんとなく p と q を使っていたので、
>>278 では、それを踏襲しただけだ。
「尊重しない」といった意味合いはないので、
気に障られたら勘弁していただきたい m(_ _)m

280Mb2018/09/27(木) 19:53:36.72ID:11+nU9yY
>>277
> 左利きの数学者のつぶれ方
久留島 喜内 (wwwww

281Mr.Moto2018/09/27(木) 20:42:21.09ID:11+nU9yY
てなワケで、
1)E(p, q) = { (q^2 - p^2) / 2, p * q, (p^2 + q^2) / 2 }
(p, q は、互いに素な奇数。ただし 0 < p < q)
2)P(m, n) = { n^2 - m^2, 2 * m * n, m^2 + n^2}
(m, n は、偶奇が異なる互いに素な自然数であり、0 < m < n)
という話になるのだが、困ったことに、こう定義すると、
E(p, q) = {偶数項, 奇数項, 斜辺(=対角線。奇数)}
P(m, n) = {奇数項, 偶数項, 斜辺(=対角線。奇数)}
という、いやらしいコトになる。古代メソポタミア的な
気分でいうと、
{短辺, 長辺, 対角線}
みたいな形に まとめたい気がするのだが、そうなると
{p, q} および {m, n} について「どういう条件で
『偶数辺 < 奇数辺』あるいは『奇数辺 < 偶数辺』が
成り立つか」っていう話になるので、これが また
そこそこ面倒臭い(つーか、高校生でも解るような
簡単な話なんだが)コトに なるので、これは これで
授業に使えるネタでは あると思う。

282Maria2018/09/28(金) 08:41:52.32ID:g0aqGguv
うちのマヌケでズボラな同僚が、いろいろと
お騒がせして申し訳ございません m(_ _)m
プリンプトン322の範囲が「45°から30°の
間」(1 < AR < √3)なのか「1 < AR < φ」なのかに
ついては {175, 288, 337} という反例が出たのでいいとして、
使われた公式が P(m, n) なのか E(p, q) なのかに
ついては決着がついていませんでした。
ところが、>>273 の #14 をごらんください。
{11529, 16000, 19721} という値があって、これは、
(m = 64, n = 125) に相当します。となると、「0 < n < 125」
という条件を考えると、#13 と #14 が消えて、プリンプトン322の
表の値に近づきます。ですが、それをやってしまうと、#4 の
{12709, 13500, 18541} (m = 15, n = 125) も落ちてしまい、
「プリンプトン322は、14行でなければならない」ことに
なってしまいます。
以上、結果報告でございました。

283Mr.Moto2018/09/28(金) 08:52:32.76ID:g0aqGguv
>>282
うっかり「久留島 喜内」でググッたら、
「オイラーの φ 関数」とかいう
「互いに素な自然数の個数」みたいなのに
引っかかってびっくりした。

284Maria2018/09/28(金) 12:30:52.32ID:g0aqGguv
>>288
おまえ煩(うるさ)いんだよ。
「左利き」に「酒呑み」っていう意味があって、
久留島 喜内が「日本三大算法家」の一人で、
酒好きで、詰将棋作家として有名とか、
そのあたりは丁寧にコメしとけよっ!
うちの評判を落とすじゃないかっ!

ただでさえ他スレで評判落としてるんだから ほんとにもぅ …

285学術2018/09/28(金) 13:36:49.89ID:o765lpmk
それでも参考程度だよ。その雰囲気、のその人。左脳の数学脳より、物理も合わないし、古典力学
古典数術 じゃないけど、かなりレアものを絞って、あとは多読多解に合わせないとなあ。

286132人目の素数さん2018/09/28(金) 14:59:35.50ID:g0aqGguv
>>285
すまんが、どのエントリに対してコメしているのか
判別しやすいように、アンカーを つけるように
心掛けては いただけまいか。

「どう対応したらいいんだろう?」ってな話があって、
所内が騒然としているので。

287学術2018/09/28(金) 16:48:56.85ID:o765lpmk
特定の誰かにレスするのは古い世代で、不特定の人に、ある分量ずつとか仕わけて
書いていることが多い。流れを読んで、次にまた変化してつながるように。
かといって全員ほど欲張ってはいないけど。

288Mb2018/09/28(金) 17:11:39.05ID:g0aqGguv
>>287
すまんが、うちらは自閉なんで、
空気が読めないんだ。

ひょっとしたら、これは “いじめ” なのか? “いじめ” なんだな?
数学板で、そういうことを やるような卑劣な輩がいるのか?
あぁ、そうですか。いいじゃないですか。結構ですよ。
ネット社会っていうのは、そういうもんなんですね?
じゃあ、そんなものは世の中から無くなってしまえばいい。
荒らすよ? 荒らしちゃいますよ。ええ、荒らしてやろうじゃないですか。
(読み筋は、『子供たちを責めないで』)

…… てなワケで、そのあたりは配慮してくれんか。頼む。m(_ _)m
なんかしら、このスレは、真面目な方も覗いてくださっている
らしいので。

289学術2018/09/28(金) 19:52:51.77ID:o765lpmk
嫁檄空気嫁。

議論がヒートアップするのは新しい、発見が近いからで、
いじめではないと思うけど。

290132人目の素数さん2018/09/28(金) 20:28:34.29ID:g0aqGguv
>>289
> 嫁檄空気嫁。
つーか、「おれらは空気読めないからアンカーを
つけてくれ」と言っているんだが?
建設的な議論をしようぜ。なぁ?

291学術2018/09/28(金) 20:35:15.51ID:o765lpmk
レス ビアン じゃないから アンカーいらないじゃん。

292学術2018/09/28(金) 20:36:06.64ID:o765lpmk
数学頭脳体も昨日借りたけど女性は尊敬してる。

293学術2018/09/28(金) 20:55:14.07ID:o765lpmk
建設的は現実逃避で荒れる方が難易度レベルは上さ。
アスペだけが障害じゃないし障害を言い訳にするのは醜いよ。
障害王でもめざすか?

294Mr.Moto2018/09/28(金) 21:13:54.12ID:g0aqGguv
>>291 >>292 >>293
申し訳ないんだが、
あんた統合失調相の強い疑いがある。
クスリが合ってない可能性が
かなり高いので、お医者さんに相談することを
お奨めする。

まぁ、おれらも他人事じゃねぇんだけどさ。

295132人目の素数さん2018/09/29(土) 00:41:13.32ID:inQvf7dt
>>237
>まあ話を聞いていると、学術論文にまとめる訓練を受けてないから
>敷居が高いと思ってるような気がする
>論文を書くマニュアル作業を身につけるのも指導者がいないと難しい

自然科学の基礎研究に『学力』『経済力』は不要。その動かぬ証拠はこうだ!

ガウク大統領は、次のように強調しているー
「1945年5月8日、我々は解放された。我々を解放したのは、ソ連の諸民族の代表者達だったが、そればかりではない。
それゆえ、我々は、感謝と尊敬の念を示さなくてはならない。戦後ドイツが、ベルリンの壁により長い間分断されたという
事実でさえも、そうした気持ちに影響を与えるべきではない。一部の観測筋は疑っているようだが、私には、
ロシアにもロシア人に対しても問題はない。」
http://jp.sputniknews.com/europe/20150502/284616.html

ドイツ人が泣いて感謝するロシアの自然科学能力は、こうして養われたものである!

我らがネステロフは、全てのギアボックスを簡単に直してしまったよ。ある時、
イギリス人の技術者がネステロフのところに来て、「あなたはどこの大学で技術を学んだのですか?」
と聞いたことがある。ネステロフのやつは「コルホーズ大学さ」なんて答えておったな。
http://www.geocities.co.jp/SilkRoad/5870/loza1.html

296学術2018/09/29(土) 07:18:59.57ID:YaHDSVjy
はあ
相談してみるわ。

297132人目の素数さん2018/09/29(土) 11:29:49.47ID:YaHDSVjy
経済学や経営学版にたまれよ。物理数学なんてロリコンセクハラ気味さ。
やりすぎると 。理系に痛手も生物はしっかりしているけど、医学看護歯学薬学
は将来的に別個の板にするべきと思うG。

298学術2018/09/29(土) 11:30:11.06ID:YaHDSVjy
↑自筆。

299学術2018/09/29(土) 11:30:35.43ID:YaHDSVjy
理系の板でも。

300学術2018/09/29(土) 12:39:10.31ID:YaHDSVjy
数学科は苦手で数学を詰めてやっているんだろうな。多学科の方が流ちょうな気がする。
数字数式扱っても。そういう志望動機の方がいいよ。できる奴はみんな数学をクリア
していったさ。

301学術2018/09/29(土) 12:39:59.74ID:YaHDSVjy
経営管理とかあるし、数学単独で、一人歩きするのは危険が伴うと思う。

302132人目の素数さん2018/09/29(土) 13:43:59.90ID:yHBIZeVl
>>297
おまいら応用数学とかで、なんぼでも潰しが利くだろ?
ぶっちゃけ、応用数学系のリテラシー不足してんじゃねぇか?
線形計画法とかゲーム理論とか、そういう方面に
ちゃんと目配りしてるか?
おれなんかバリバリの工学系(町工場のオヤジなんだよ)なのに
(コンピュータという道具があるから、なんとかなってんだけどさ)
数論とかに踏み込んでんだぞ?
おれがメソポタミアの数学に惹かれるっつーのは、
そういう「実用に寄り添いつつ、『数学的な興味』のほうにも
魅せられる」っつー、アンビバレント(二律背反)な心性があると
思ってるんだよ。
おまいら、真面目に、本気で話してみ?

303学術2018/09/29(土) 14:51:58.73ID:YaHDSVjy
工学数学か。なるほどねえ。数学は早熟ではないのか?中ランといううわさがあるし。
だけど、応用数学、それはあたりまえのことだがな、数論と接点があるのはいいことだわ。

304132人目の素数さん2018/09/29(土) 15:19:13.79ID:yHBIZeVl
>>303
いや、言っとくけで、マジで統合失調症を疑った ほうがいいぞ?
知人に統合失調症を患(わずら)っているひとはいて、「精神病院で
ドクター論文書いて、ついでに嫁までゲットしました。
あっはっはっはっはー」つー例も見たから いいんだけどさ、
>>294 は正直マジだから。

> 工学数学か。なるほどねえ。数学は早熟ではないのか?
> 中ランといううわさがあるし。
> だけど、応用数学、それはあたりまえのことだがな、
> 数論と接点があるのはいいことだわ。
というのも、「工学数学」ではなく「工業数学」(線形代数とか、
制禦工学とかに関連するフーリエ変換とかラプラス変換とか)に絡めて
ちゃんと説明する努力をしたほうがいいと思うんだが、どうだ。

305学術2018/09/29(土) 18:15:26.53ID:YaHDSVjy
なんか知ってることが多くて興味ないよ。僕は文系数学だから、何かの足しになると思って覗いてるけど、数式に反応しない民族まで巻き込んで序列を付けたり、
給料を計算したりして優越するのはよくないんじゃないの?

ムハンマドの宗教書は好きだけど、数学なんてこき使われるだけだろ?
ドクタークラスならなおさら。自分は文学とか心理学とか化学とか
民俗神話の博士の方さ。

精神病院は殆んど卒業してて、クリニックすすめられてるさ。訪問看護院にね。
入院での悲惨な境遇や、影響からの相当頻度の人の死隔離拘束の現実も追体験して、二度と過ちが起きないように
数学・理系を使うのも悪くないねえ。

306学術2018/09/29(土) 18:18:15.07ID:YaHDSVjy
線型は所見だけど、ゲーム理論自体は、乗り越えるというより
僕は文系だから、謎解きのようなものをしているときもあったけどな。
ま嫁がいるなら易しくしてやれよ。
別に数学なんて何時から初めていつ辞めてもいいだろう。数学を専門や
カリキュラムで学んだものは、他人のために数学を使っている奴がほとんどだよ。
他人の幸せを望む。いいことだろ。

307学術2018/09/29(土) 18:27:28.60ID:YaHDSVjy

308132人目の素数さん2018/09/30(日) 16:23:41.42ID:eUAsyKZ/
>>307
ごめん。オレらはサンフランシスコみたいな、北のほうは
体質に合わないんだ。
サンディエゴあたり(特に、オールドタウンは住みたいと思う)の、
もう、太陽の光の色が違うような場所
(サングラスは手放せないけどな)のほうが、
体質に合ってる。

309132人目の素数さん2018/10/02(火) 10:03:26.45ID:nD5p/zJR
クヌス先生が一九七〇年に『古代バビロニアの算法』なんていう
論文を書いていたというのは知らなかった ……。

310132人目の素数さん2018/11/09(金) 08:45:21.93ID:pvdoV3Z4
>>118-123

原始…に限らなければ (m,n) や (p,q) と1対1の対応が可能かも。
もしそうなら、カントル流でナンバリング可能か。

原始…に限ると、原始と非原始の個数をカウントする必要が出てきて、面倒なことにならぬか。

311132人目の素数さん2018/11/09(金) 18:52:36.76ID:WZrN+B7L
一般の場合は、自由に与えた二数(r,s)に対し、a=|r^2-s^2|、b=2r*s、c=r^2+s^2なんかを使って、
ピタゴラス数を定めればよい(だけ?)ので、あとは、(r,s)に対するナンバリングのルールの設定だけですよね。

この方法に準じ、原始に限る場合は、二数が互いに素である必要があります。面倒そう、と思うのは自然だ
と思います。しかし、それは、(r^2-s^2)^2+(2r*s)^2=(r^2+s^2)^2 の公式を使おうとするからです。

全ての原始ピタゴラス数は、ある三分木構造に埋め込むことができることが知られています。
三分木の各ノードをナンバリングすれば、原始ピタゴラス数をナンバリングしたことになります。
あるいは、有理数と原始ピタゴラス数は一対一(※)に対応可能であることを利用し、
有理数のナンバリングに沿うような形で、原始ピタゴラス数をナンバリングすることもできます。
※:原始ピタゴラス数(a,b,c)と(b,a,c)を別物として扱うことで、区間(0,1)の有理数と一対一に対応

このスレッドには、大きく2種類の原始ピタゴラス数をナンバリングするプログラムをアップしてあります。
一つは三分木への埋め込みを利用する方法で、もう一つはファレイ分数を利用する方法です。
番号から原始ピタゴラス数への変換、及び、逆変換をlog(n)オーダーの計算量で実現できることを示しています。
(それぞれ、>>119 と >>156 からいけます。)

>>原始…に限ると、原始と非原始の個数をカウントする必要が出てきて、面倒なことにならぬか。
私も当初、ファレイ分数の方は、φ関数の様な物を用意する必要があるかと思いましたが、
発想の転換で必要とせずにプログラミングできました。

312132人目の素数さん2018/11/22(木) 18:01:56.62ID:x/Au2Ugh
「ペル方程式」
 2aa - bb = 1,
をみたす (a,b) について
(2aa)^2 + (bb)^2 = 2(2aa)(bb) + (2aa-bb)^2 = (2ab)^2 + 1^2,

(a/b)^2 + (b/2a)^2 = 1^2 + 1/(2ab)^2,

例えば
50^2 + 49^2 = 70^2 + 1^2 = 65^2 + 26^2,

(5/7)^2 + (7/10)^2 = 1^2 + (1/70)^2 > 1,

新着レスの表示
レスを投稿する